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Ground State and Multiple Solutions for
Kirchhoff Type Equations With Critical
Exponent

Dongdong Qin, Yubo He, and Xianhua Tang

Abstract. In this paper, we consider the following critical Kirchhoò type equation:

{
−(a + b ∫Ω ∣∇u∣2)∆u = Q(x)∣u∣4u + λ∣u∣q−1u, in Ω,
u = 0, on ∂Ω,

By using variational methods that are constrained to the Nehari manifold, we prove that the above
equation has a ground state solution for the case when 3 < q < 5. _e relation between the number
of maxima of Q and the number of positive solutions for the problem is also investigated.

1 Introduction and Main Results

Consider the following Kirchhoò type equation:

(1.1) {
−(a + b ∫Ω ∣∇u∣2)∆u = Q(x)∣u∣4u + λ∣u∣q−1u, in Ω,
u = 0, on ∂Ω,

where a, b > 0, 3 < q < 5, Q ∈ C(Ω, (0,+∞)), λ > 0 is a parameter, and Ω ⊂ R3 is
an open bounded domain with C1-smooth boundary. Problem (1.1) has been widely
investigated in the literature over the past several decades, especially on the existence
andmultiplicity of positive solutions, ground states, and sign-changing solutions (see
[2, 4, 9, 13, 15, 27, 29, 33, 36, 40] and the references therein).

_is problem is related to the stationary analogue of the following wave equation
proposed by Kirchhoò [18],

(1.2) ut t − ( a + b∫
Ω
∣∇u∣2dx)∆u = f (x , u),

where u denotes the displacement, f (x , u) the external force, and a the initial tension,
while b is related to the intrinsic properties of the string, such as Young’s modulus.
Because of the presence of the nonlocal term (∫Ω ∣∇u∣2dx)∆u, equation (1.2) is not
a pointwise identity, which provokes some mathematical diõculties and makes the
study of such a class of problems particularly interesting. Nonlocal eòect also ûnds
its applications in modelling suspension bridges [1] and describing the growth and
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movement of a particular species in biological systems [10]. For more mathematical
and physical background of problem (1.1), see [5, 11, 18] and the references therein.

When b = 0, equation (1.1) is reduced to the well-known scalar Schrödinger equa-
tion

(1.3)
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆u = Q(x)u2∗−1 + λuq , in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded domain, and

2∗ =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2N
N − 2

if N ≥ 3,

+∞ if N = 1, 2.

Let us recall some results. Brézis and Nirenberg studied (1.3) with Q(x) ≡ 1, and
obtained some classic results [7]. When N = 3, if 1 < q ≤ 3, they obtained that (1.3)
has a solution for λ > 0 large enough; if 3 < q < 2∗−1 = 5, (1.3) has a solution for every
λ > 0; if q = 1 and Ω is a ball, (1.3) has a solution if and only if λ ∈ ( λ1

4 , λ1), where λ1 is
the ûrst eigenvalue of −∆ with the Dirichlet condition on Ω. Ambrosetti, Brévis, and
Cerami [4] considered the case 0 < q < 1 and showed that there exists a λ0 > 0 such
that (1.3) admits two positive solutions for λ ∈ (0, λ0). When q = Q(x) ≡ 1 andN ≥ 7,
inûnitely many nontrivial solutions was proved by Devillanova and Solimini [12] for
λ > 0. Later, this result was generalized to p-Laplacian by Cao, Peng, and Yan [9] with
the aid of the local Pohozaev identity. Recently, Liao, Liu, Zhang, and Tang studied
(1.3) and obtained the existence and multiplicity of positive solutions via the Nehari
manifold method [21]. For more related results, see [6,8,32,35,39] and the references
therein.

When b /= 0, a vast literature on the study of the existence and multiplicity of
solutions for Kirchhoò type equations via variational methods has grown since Lions
introduced an abstract framework for this problem [23].

Replacing the right-hand side of equation (1.1) by f (x , u), we are led to following
equation:

(1.4) {
−(a + b ∫Ω ∣∇u∣2dx)∆u = f (x , u), in Ω,
u = 0, on ∂Ω.

When the primitive of f is subcritical, Corrêa [11] obtained positive solutions for both
N = 1 andN ≥ 2 via ûxed point theorems; He and Zou [15] established inûnitelymany
solutions under the classical (AR) condition or the following Nehari type condition:

(Ne) t ↦
f (x , t)
∣t∣3

is increasing on (−∞, 0) ∪ (0,∞).

See also [16] where multiplicity results were obtained when f has an oscillating be-
havior. Perera and Zhang [27] considered the asymptotically 4-linear case provided
that f satisûes

lim
t→0

f (x , t)
at

= λ, lim
t→∞

f (x , t)
bt3

= µ uniformly in x .
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Using the Yang index and critical group, they showed that if λ ∈ (λ l , λ l+1) and µ ∈

(µm , µm+1) with l /= m, then (1.4) has a nontrivial solution, where 0 < λ1 < λ2 ≤ ⋅ ⋅ ⋅ is
the sequence of all eigenvalues of −∆ in H1

0(Ω) and 0 < µ1 ≤ µ2 ≤ ⋅ ⋅ ⋅ is the sequence
of all eigenvalues of the problem

{
−(∫Ω ∣∇u∣2dx)∆u = µu3 , in Ω,
u = 0, on ∂Ω,

We also considered the asymptotically 4-linear case and proved the existence of
ground state solution for (1.4) by improving the Nehari manifold method [28]. More
precisely, a homeomorphism between a subset of the unit sphere and theNehariman-
ifold (deûned later by (2.12)) is constructed, fromwhich aminimizing sequence on the
Nehari manifold can be found naturally. For the case of 4-sublinear or 4-superlinear,
positive, negative, and sign-changing solutions were all obtained by Zhang and Per-
era [40] by using invariant sets of descent �ow. See also [26] for similar results. Re-
cently, Chen, Kuo, and Wu [10] investigated (1.4) for the case that

f (x , t) = λh(x)∣t∣q−2 t + g(x)∣t∣p−2 t, 1 < q < 2 < p < 2∗ ,

where h, g ∈ C(Ω) satisfy h+ ∶= max{h, 0} /= 0 and g+ ∶= max{g , 0} /= 0. By using the
Nehari manifold and ûbering mapmethods, some existence results were obtained for
cases p > 4, p = 4, and p < 4, respectively. For autonomous nonlinearity f satisfying
(Ne), least energy sign-changing solutions to problem (1.4) were established recently
by Shuai [31] with the aid of the quantitative deformation lemma and degree theory.
Later, Tang and Cheng [34] improved this result by using the non-Nehari manifold
method introduced in [32].

When the primitive of f is of critical growth having the following form

(1.5) f (x , t) = t5 + λg(x , t) and 0 < ρ∫
t

0
g(x , s)ds ≤ g(x , t)t with 4 < ρ < 6,

Alves, Corrêa, and Ma [2] showed that there exists a λ∗ > 0 such that problem (1.4)
has a positive solution of mountain pass type for all λ ≥ λ∗. Later, Hamydy, Massar,
and Tsouli [14] extended this result to a p-Kirchhoò type problem. Under assump-
tion (1.5) with 5 < ρ < 6 and λ = 1, Xie, Wu, and Tang [36] proved that (1.4) has two
distinct solutions. Figueiredo [13] improved the result of [2] by relaxing ρ to the in-
terval (2, 6). Moreover, by applying a truncation argument used in [3], they showed
that there exists a λ∗ > 0 such that (1.4) has a positive solution for all λ ≥ λ∗. In a
recent paper Lei et al. [19] considered the case that g(x , t) ≡ tq with 0 < q < 1 in (1.5).
Assuming that b > 0 is suõciently small and using the concentration compactness
argument, they showed that there exists a λ∗ > 0 such that (1.4) has two positive so-
lutions for 0 < λ < λ∗. For similar Kirchhoò type problems in the whole space, see
[17, 20, 25, 37] and the references therein.

Motivated by above works, we continue to study (1.1), that is,

f (x , t) = Q(x)∣t∣4 t + λ∣t∣q−1 t,

for all 3 < q < 5 in (1.4). When Q /≡ const, problem (1.1) is more delicate. _e main
diõculty lies in the analysis of a (PS) sequence, that is, a sequence {un} ∈ H1

0(Ω) such
that {Iλ(un)} is bounded and I′λ(un) → 0, where Iλ is the corresponding energy
functional of (1.1). In order to obtain a positive solution, λ > 0 needs to be large
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enough in [2, 13]. Note that there is no restriction on λ in [7] when 3 < q < 5. It is
natural to ask whether a similar result of Brézis and Nirenberg [7] holds for (1.1). In
this paper we not only give a positive answer, but also obtain the multiplicity result of
(1.1) for λ > 0 small.
For positive Q, we introduce the following assumptions.

(Q1) there exists a0 ∈ Ω such that Q(a0) = QM = maxx∈Ω Q(x) and

∣Q(x) − Q(a0)∣ = o(∣x − a0∣
5−q
2 ), as x → a0 .

(Q2) there exist k points a1 , a2 , . . . , ak in Ω such that Q(a i) are strict local maxima
satisfying Q(a i) = QM = maxx∈Ω Q(x) and

∣Q(x) − Q(a i
)∣ = o(∣x − a i

∣
5−q
2 ), as x → a i ,

for every i = 1, 2, . . . , k.
Our main results are as follows.

_eorem 1.1 Let (Q1) be satisûed. _en problem (1.1) has a positive ground state
solution for all λ > 0.

_eorem 1.2 Let (Q2) be satisûed. _en there exists λ̃ > 0 such that problem (1.1) has
at least k positive solutions for all 0 < λ < λ̃.

Conditions like or similar to (Q1) and (Q2) are commonly used in the study of
critical problems (see[8, 21, 22] and the references therein).

Remark 1.3 _eorems 1.1 and 1.2 improve and extend related results of [2,13, 19,36]
in the sense that not only the ground state solution of (1.1) is proved, but also the
restriction that λ should be large enough in [2, 13] is removed. Moreover, we also
obtain the multiplicity of positive solutions of (1.1) for λ > 0 small.

To complete this section, we sketch our proof. By using the mountain pass theo-
rem, we can ûnd a (PS)cλ sequence, where the mountain pass level cλ is deûned later
by (2.19). So it is crucial to ûnd a proper energy level c∗ below which the (PS) condi-
tion can be veriûed. _is can be done by some delicate analysis with the aid of (Q1).
To show the multiplicity of positive solutions of (1.1), we minimize the energy func-
tional corresponding to (1.1) on some submanifold of the Nehari manifold. Deûne
the minimal energy by cλ , i as in (3.3); the main diõculty is to ûnd and estimate the
(PS)cλ , i sequence. We solve the problem by using some techniques and the Nehari
manifold method.

_is paper is organized as follows. In Section 2, we prove the existence of a ground
state solution of (1.1) via the mountain pass theorem. By considering a barycenter
function restricted to the Nehari manifold, we investigate the multiplicity of positive
solutions of (1.1) in Section 3. Some remarks will be given in Section 4.
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2 Proof of Theorem 1.1

_e natural space for the Kirchhoò type equation (1.1) is the Sobolev space H1
0(Ω)

equipped with the inner product (u, v) = ∫Ω ∇u ⋅ ∇vdx, for all u, v ∈ H1
0(Ω), and

the norm ∥u∥ = (u, u)1/2. It is well known that H1
0(Ω) is continuously embedded in

Ls(Ω) for s ∈ [1, 6], and compactly for s ∈ [1, 6) (see [38, _eorem 1.9]). _en there
exists a γs > 0 such that

(2.1) ∣u∣s ≤ γs∥u∥, ∀ u ∈ H1
0(Ω), 1 ≤ s ≤ 6,

where ∣ ⋅ ∣s denotes the usual Ls(Ω) norm. Solutions of (1.1) are critical points of the
functional

Iλ(u) =
a
2
∥u∥2

+
b
4
∥u∥4

−
1
6 ∫Ω

Q(x)∣u∣6dx −
λ

q + 1 ∫Ω
∣u∣q+1dx , u ∈ H1

0(Ω).

By virtue of (2.1), Iλ is of class C1 and

⟨I′λ(u), v⟩ = (a+b∥u∥2
)(u, v)−∫

Ω
Q(x)∣u∣4uvdx−λ∫

Ω
∣u∣q−1uvdx , u, v ∈ H1

0(Ω).

Let S be the best Sobolev constant (see [38, Proposition 1.43]):

(2.2) S = inf
u∈D1,2(RN)∖{0}

∫RN ∣∇u∣2dx
(∫RN ∣u∣6dx)1/3 = inf

u∈H1
0(Ω)∖{0}

∫Ω ∣∇u∣2dx
(∫Ω ∣u∣6dx)1/3 .

Recall that S is attained by the function Uε(x) = (3ε2)1/4

(ε2+∣x ∣2)1/2 , ε > 0. Moreover,

∫
RN

∣∇Uε ∣
2dx = ∫

RN
∣Uε ∣

6dx = S
3
2 .

For 0 ≤ i ≤ k, let φ i ∈ C∞0 (Ω) be a cut-oò function such that 0 ≤ φ i ≤ 1 and
∣∇φ i ∣ ≤ C0, and for some δ0 > 0,

(2.3) φ i(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 ∣x − a i ∣ ≤ δ0
2 ,

0 ∣x − a i ∣ ≥ δ0 .

_en we deûne

(2.4) v i
ε(x) = φ i(x)Uε(x − a i

), i = 1, 2, . . . , k.

Since wemainly consider the case q ∈ (3, 5), we make use of it without mention when
no confusion can arise.

Lemma 2.1 Let (Q1) be satisûed. _en for ε > 0 small,

sup
t≥0

Iλ(tv0ε (x)) < c
∗
∶=

a
3
(
bS3 +

√
b2S6 + 4aQMS3

2QM
) +

b
12

(
bS3 +

√
b2S6 + 4aQMS3

2QM
)

2
.
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Proof From [7, 38], we have following results

(2.5)
∣v0ε ∣

2
6 = (∫

RN
∣Uε ∣

6dx)
1/3
+ O(ε3) = S1/2

+ O(ε3),

∥v0ε ∥
2
= ∫

RN
∣∇Uε ∣

2dx + O(ε) = S3/2
+ O(ε),

and

(2.6) ∫
Ω
∣v0ε ∣

sdx =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

O(ε
3
2 ∣ ln ε∣) s = 3,

O(ε
6−s
2 ) 3 < s < 6,

O(ε
s
2 ) 1 ≤ s < 3.

Note that

(2.7) Iλ(tv0ε ) =
a
2
t2∥v0ε ∥

2
+
b
4
t4∥v0ε ∥

4
−

t6

6 ∫Ω
Q(x)∣v0ε ∣

6dx−
λ

q + 1
tq+1

∫
Ω
∣v0ε ∣

q+1dx ,

and

dIλ(tv0ε )
dt

= at∥v0ε ∥
2
+ bt3∥v0ε ∥

4
− t5 ∫

Ω
Q(x)∣v0ε ∣

6dx − λtq ∫
Ω
∣v0ε ∣

q+1dx .

From p ∈ (3, 5), we deduce that Iλ(tv0ε ) → 0 as t → 0 and Iλ(tv0ε ) → −∞ as t → +∞.
Moreover, there exists a unique tε > 0 such that Iλ(tv0ε ) achieves its maximum. We
claim that there exist two constants T1 , T2 > 0 such that T1 < tε < T2. In fact, from
limt→0 Iλ(tv0ε ) = 0 uniformly for all ε > 0, we choose

ξ =
Iλ(tεv0ε )

4
> 0.

_en there exists T1 > 0 independent of ε such that ∣Iλ(T1v0ε )∣ = ∣Iλ(T1v0ε )−Iλ(0)∣ < ξ.
According to the monotonicity of Iλ(tv0ε ) near t = 0, we have tε > T1. Similarly, from
limt→+∞ Iλ(tv0ε ) = −∞ uniformly for all ε > 0, we have tε < T2.

Set

(2.8) Bε =
∥v0ε ∥2

(∫Ω Q(x)∣v0ε ∣6dx)1/3

and let h(t) ∶= a
2 t

2∥v0ε ∥2 + b
4 t

4∥v0ε ∥4 − t6
6 ∫Ω Q(x)∣v0ε ∣6dx. _en

h′(t) = t( a∥v0ε ∥
2
+ bt2∥v0ε ∥

4
− t4 ∫

Ω
Q(x)∣v0ε ∣

6dx) ,

and h(t) attains its maximum at

tmax = (
b∥v0ε ∥4 +

√
b2∥v0ε ∥8 + 4a∥v0ε ∥2

∫Ω Q(x)∣v0ε ∣6dx
2 ∫Ω Q(x)∣v0ε ∣6dx

)

1/2
.
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Moreover, h′(t) > 0 for all 0 < t < tmax and h′(t) < 0 for all t > tmax. Direct
computation implies that

h(tmax) =
a∥v0ε ∥2 (b∥v0ε ∥4 +

√
b2∥v0ε ∥8 + 4a∥v0ε ∥2

∫Ω Q(x)∣v0ε ∣6dx)
6 ∫Ω Q(x)∣v0ε ∣6dx

(2.9)

+
b∥v0ε ∥4(b∥v0ε ∥4 +

√
b2∥v0ε ∥8 + 4a∥v0ε ∥2

∫Ω Q(x)∣v0ε ∣6dx)2

12(2 ∫Ω Q(x)∣v0ε ∣6dx)2

=
a
3
(
bB3

ε +
√
b2B6

ε + 4aB3
ε

2
) +

b
12

(
bB3

ε +
√
b2B6

ε + 4aB3
ε

2
)

2
.

Let α ∶= 5−q
2 . _en α ∈ (0, 1) by q ∈ (3, 5). In view of (Q1),

∣Q(x) − Q(a0)∣ = o(∣x − a0∣α).

_en for any η > 0, there exists a δ > 0 such that

(2.10) ∣Q(x) − Q(a0)∣ < η∣x − a0∣α , ∀ 0 < ∣x − a0∣ < δ.

We claim that

(2.11) (∫
Ω
Q(x)∣v0ε ∣

6dx)
1/3

= Q
1
3
M ∣v0ε ∣

2
6 + o(εα).

Indeed, for 0 < ε < δ, it follows from (2.3), (2.4), and (2.10) that

∣∫
Ω
Q(x)∣v0ε ∣

6dx − ∫
Ω
QM ∣v0ε ∣

6dx∣ ≤ ∫
Ω
∣Q(x) − Q(a0)∣ ∣v0ε ∣

6dx

= ∫{x∈Ω∶∣x−a0 ∣≤δ0}
∣Q(x) − Q(a0)∣∣v0ε ∣

6dx

≤ ∫{x∈Ω∶∣x−a0 ∣≤δ}
η∣x − a0∣α

(3ε2)
3
2

(ε2 + ∣x − a0∣2)3 dx

+ 2QM ∫{x∈Ω∶δ≤∣x−a0 ∣≤δ0}
(3ε2)3/2

(ε2 + ∣x − a0∣2)3 dx

≤ C1η∫
δ

0

ε3r2+α

(ε2 + r2)3 dr + C1 ∫

δ0

δ

ε3r2

(ε2 + r2)3 dr

= C1ηεα ∫
δ
ε

0

r2+α

(1 + r2)3 dr + C1 ∫

δ0
ε

δ
ε

r2

(1 + r2)3 dr

≤ C2ηεα + C2ε3 ,

where C1 ,C2 > 0 are constants. From α ∈ (0, 1), we get

lim sup
ε→0

∣ ∫Ω Q(x)∣v0ε ∣6dx − ∫Ω QM ∣v0ε ∣6dx∣
εα

≤ C2η,

which implies (2.11) since η > 0 is arbitrary.
By (2.5), (2.8), and (2.9), we have

Bε =
S3/2 + O(ε)

Q
1
3
M(S1/2 + O(ε3)) + o(εα)
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and

h(tmax) ≤
a
3
(
bS3 +

√
b2S6 + 4aQMS3

2QM
) +

b
12

(
bS3 +

√
b2S6 + 4aQMS3

2QM
)

2
+ o(εα)

= c∗ + o(εα).

_en it follows from (2.6), (2.7), and T1 < tε < T2 that

sup
t≥0

Iλ(tv0ε ) = Iλ(tεv0ε ) ≤ h(tmax) −
λ

q + 1
Tq+1

1 ∫
Ω
∣v0ε ∣

q+1dx

≤ c∗ + o(εα) − C3εα < c∗ ,

where ε > 0 is small enough and C3 depending on λ, q is a positive constant. _is
completes the proof.

Lemma 2.2 Let p ∈ (3, 5). _e following statements hold.
(i) If {un} is a (PS)c sequence in H1

0(Ω), then un ⇀ u for some u ∈ H1
0(Ω) and

I′λ(u) = 0. Moreover, if u /≡ 0, then ∫Ω ∣∇un ∣
2dx → ∫Ω ∣∇u∣2dx.

(ii) For any u ∈ H1
0(Ω) ∖ {0}, there exists a unique tu > 0 such that tuu ∈ Nλ , and

Iλ(tuu) = maxt≥0 Iλ(tu), where the Nehari manifoldNλ is deûned by

(2.12) Nλ ∶= {v ∈ H1
0(Ω) ∖ {0} ∶ ⟨I′λ(v), v⟩ = 0}.

Note that for p ∈ (3, 5), the function

u z→
λ∣u∣q−1u + Q(x)∣u∣4u

∣u∣3

is increasing on (−∞, 0)∪(0,∞). Taking advantage of this fact and using the Nehari
manifold method, it is not diõcult to verify (i) and (ii). See [20, Lemma 3.2] and
[37, Lemma 2.2 (i)].

Lemma 2.3 Let c ∈ (−∞, c∗). _en Iλ satisûes the (PS)c condition in H1
0(Ω) for all

λ > 0.

Proof Let {un} ⊂ H1
0(Ω) be a (PS)c sequence satisfying

(2.13) Iλ(un) = c + o(1), and I′λ(un) = o(1).

_en for n large,

c + 1 + ∥un∥ ≥ Iλ(un) −
1

q + 1
⟨I′λ(un), un⟩(2.14)

= (
1
2
−

1
q + 1

) a∥un∥
2
+ (

1
4
−

1
q + 1

)b∥un∥
4

+ (
1

q + 1
−

1
6
) ∫

Ω
Q(x)∣un ∣

6dx ,

which implies that {un} is bounded in H1
0(Ω). Passing to a subsequence, we may

assume that

(2.15) un ⇀ u in H1
0(Ω), un → u in Ls

(Ω), 1 ≤ s < 6, and un → u a.e. on Ω.
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Lemma 2.2 (i) implies that I′λ(u) = 0. Set vn = un − u. By Brezis–Lieb’s lemma, we
have

∥vn∥
2
= ∥un∥

2
− ∥u∥2

+ o(1),(2.16)

∫
Ω
Q(x)∣vn ∣

6dx = ∫
Ω
Q(x)∣un ∣

6dx − ∫
Ω
Q(x)∣u∣6dx + o(1).

_en we deduce from (2.13), (2.15), and (2.16) that
(2.17)

Iλ(un) − Iλ(u) =
a
2
∥vn∥

2
+
b
4
(∥vn∥

4
+ 2∥vn∥

2
∥u∥2

) −
1
6 ∫Ω

Q(x)∣vn ∣
6dx + o(1),

o(1) = ⟨I′λ(un), un⟩ − ⟨I′λ(u), u⟩

= a∥vn∥
2
+ b(∥vn∥

4
+ 2∥vn∥

2
∥u∥2

) − ∫
Ω
Q(x)∣vn ∣

6dx + o(1).

We may assume there exist l i ≥ 0, i = 1, 2, 3 such that

a∥vn∥
2
→ l1 , b(∥vn∥

4
+ 2∥vn∥

2
∥u∥2

) → l2 , ∫
Ω
Q(x)∣vn ∣

6dx → l3 .

Clearly, l3 = l1 + l2. Next, we show that l1 = 0.
If l1 > 0, then l2 , l3 > 0. By Sobolev inequality, we have

a3
∫

Ω
Q(x)∣vn ∣

6dx ≤ a3QM ∫
Ω
∣vn ∣

6dx ≤ a3QM(S−1
∥vn∥

2
)
3
= a3QMS−3

∥vn∥
6 ,

b(∫
Ω
Q(x)∣vn ∣

6dx)
2
3 ≤ bQ

2
3
M(S−1

∥vn∥
2
)
2
= bQ

2
3
MS−2

∥vn∥
4 ,

which implies that l1 ≥ aQ
− 1

3
M S(l1 + l2)

1
3 and l2 ≥ bQ

− 2
3

M S2(l1 + l2)
2
3 . Direct computa-

tion shows that
(2.18)

l1 ≥ a(
bS3 +

√
b2S6 + 4aQMS3

2QM
) and l2 ≥ b(

bS3 +
√
b2S6 + 4aQMS3

2QM
)

2
.

Note that Iλ(u) = Iλ(u) − 1
q+1 ⟨I

′
λ(u), u⟩ ≥ 0. _en it follows from (2.17) and (2.18)

that

c ≥ lim
n→∞[

a
3
∥vn∥

2
+
b
12

(∥vn∥
4
+ 2∥vn∥

2
∥u∥2

)] =
1
3
l1 +

1
12

l2 ≥ c∗ .

_is contradicts with c < c∗. _erefore, l1 = 0, i.e., ∥vn∥ = ∥un − u∥ → 0. _e proof is
completed.

By a standard argument we can verify the following result (see [25]).

Lemma 2.4 Iλ satisûes the mountain pass geometry.
(i) _ere exist κ, ρ > 0 such that Iλ(u) ≥ κ for ∥u∥ = ρ.
(ii) _ere exists e ∈ H1

0(Ω) with ∥e∥ > ρ such that Iλ(e) < 0.

Deûne

(2.19) cλ ∶= inf
γ∈Γλ

sup
t∈[0,1]

Iλ(γ(t)) > 0,
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where Γλ = {γ ∈ C([0, 1],H1
0(Ω)) ∶ γ(0) = 0, Iλ(γ(1)) < 0}. _en by the moun-

tain pass theorem without the (PS) condition, there exists a (PS)cλ sequence {un} ⊂

H1
0(Ω) satisfying

(2.20) Iλ(un) → cλ , and I′λ(un) → 0 in (H1
0(Ω))

−1 .

Moreover, for p ∈ (3, 5), as in [30, 38], we can prove

(2.21) cλ = inf
u∈Nλ

Iλ(u) = inf
u∈H1

0(Ω)∖{0}
max
t≥0

Iλ(tu) > 0.

Proof of_eorem 1.1 By Lemma 2.1 we get cλ ≤ maxt>0 Iλ(tv0ε (x)) < c∗ for ε > 0
small. Consider the sequence {un} given by (2.20). Lemma 2.3 implies that there
exists u ∈ H1

0(Ω) such that, up to a subsequence, un → u in H1
0(Ω). _en I′λ(u) = 0

and Iλ(u) = cλ . By (2.21), u /≡ 0, and it is a ground state solution of problem (1.1).
Since Iλ(u) = Iλ(∣u∣) and ⟨I′λ(u), u⟩ = ⟨I′λ(∣u∣), ∣u∣⟩, we see that u is a nonnegative
solution. By the strong maximum principle, u(x) > 0 for x ∈ Ω. _us u is a positive
ground state solution of (1.1).

3 Proof of Theorem 1.2

Let q ∈ (3, 5). It is easy to verify that Iλ is coercive and bounded from below on Nλ
for all λ > 0. Indeed, for every u ∈ Nλ ,

(3.1) Iλ(u) = Iλ(u) −
1

q + 1
⟨I′λ(u), u⟩

= (
1
2
−

1
q + 1

) a∥u∥2
+ (

1
4
−

1
q + 1

)b∥u∥4
+ (

1
q + 1

−
1
6
) ∫

Ω
Q(x)∣u∣6dx

≥ (
1
2
−

1
q + 1

) a∥u∥2 .

We minimize the energy functional Iλ on some submanifold of Nλ . As in [6, 8], we
deûne a barycenter map β∶H1

0(Ω) ∖ {0} → R3 by

β(u) = ∫Ω
x∣u∣6dx

∫Ω ∣u∣6dx
.

Let
Nλ , i = {u ∈ Nλ ∶ ∣β(u) − a i ∣ < r0},
Θλ , i = {u ∈ Nλ ∶ ∣β(u) − a i ∣ = r0},

i = 1, 2, . . . , k,

where r0 > 0 such that

Br0(a i) ∩ Br0(a j) = ∅ for i /= j (i , j = 1, 2, . . . , k),
k
⋃
i=1
Br0(a i) ⊂ Ω

and Br0(a i) = {x ∈ RN ∶ ∣x − a i ∣ ≤ r0}. By Lemma 2.2 (ii), there exists a unique
tv i

ε
> 0 such that tv i

ε
v i
ε ∈ Nλ . Moreover, by the deûnition of β, one has

β(tv i
ε
v i
ε) =

∫Ω xφ6
i (x)

(3ε2)3/2
(ε2+∣x−a i ∣2)3 dx

∫Ω φ6
i (x)

(3ε2)3/2
(ε2+∣x−a i ∣2)3 dx

=
∫Ω(εx + a i)φ6

i (εx + a
i) 33/2

(1+∣x ∣2)3 dx

∫Ω φ6
i (εx + a i) 33/2

(1+∣x ∣2)3 dx
Ð→ a i
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as ε → 0. _en we have actually proved the following result.

Lemma 3.1 For each i = 1, 2, . . . , k, β(tv i
ε
v i
ε) → a i as ε → 0. Moreover, there exists

ε0 > 0 such that β(tv i
ε
v i
ε) ∈ Br0(a i) for all 0 < ε < ε0 and 1 ≤ i ≤ k.

Lemma 3.1 shows that Nλ , i /= ∅ for all 1 ≤ i ≤ k. By (3.1), the following terms

(3.3) cλ , i = inf
u∈Nλ , i

Iλ(u), c̃λ , i = inf
u∈Θλ , i

Iλ(u)

are well deûned. Moreover, it follows from (2.21) that cλ , i ≥ cλ > 0.

Lemma 3.2 Let (Q2) be satisûed. _en for all λ > 0 and 1 ≤ i ≤ k,

sup
t≥0

Iλ(tv i
ε) < c

∗ .

Lemma 3.2 can be proved similarly to Lemma 2.1 by using v i
ε and a i instead of v0ε

and a0, respectively.

Lemma 3.3 _ere exists λ̃ > 0 such that

(3.4) c̃λ , i > c∗ for all 0 < λ < λ̃, 1 ≤ i ≤ k.

Proof Suppose by contradiction that there exists a positive sequence {λn} such that
λn → 0 and c̃λn , i → c̃ ≤ c∗ for some 1 ≤ i ≤ k. Up to a subsequence, we may assume
that

(3.5) c̃ −
1
n
< c̃λn , i < c̃ +

1
n
.

By the deûnition of c̃λn , i , there exists a sequence {un ,m}m ⊂ Θλn , i such that for any
n ∈ N, Iλn(un ,m) → c̃λn , ias m → ∞. Now we choose a subsequence {mn} ⊂ N such
that c̃λn , i ≤ Iλn(un ,mn) < c̃λn , i +

1
n , n ∈ N, which, together with (3.5), implies that

c̃ −
1
n
< Iλn(un ,mn) < c̃ +

2
n
.

Let uk = uk ,mk , k ∈ N. _en, up to a subsequence, we have

(3.6) Iλn(un) → c̃ ≤ c∗ .

By a similar argument as in (2.14), we have that {un} is bounded in H1
0(Ω) and

(3.7) a∥un∥
2
+ b∥un∥

4
− ∫

Ω
Q(x)∣un ∣

6dx − λn ∫
Ω
∣un ∣

p+1dx = 0.

Using Sobolev inequalities, we have λn ∫Ω ∣un ∣
p+1dx = o(1) and

∥un∥
2
≥ C4 , ∫

Ω
Q(x)∣un ∣

6dx ≥ C4

for some positive constant C4. _en, up to a subsequence, we may assume that there
exists an l > 0 such that

(3.8) ∥un∥
2
Ð→ l and lim

n→∞∫Ω
Q(x)∣un ∣

6dx Ð→ al + bl 2 .
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By (2.2),

(3.9) al + bl 2 ≤ lim
n→∞∫Ω

QM ∣un ∣
6dx ≤ QM lim

n→∞(S−1
∥un∥

2
)
3
= QMS−3 l 3 .

Direct computation shows that

l ≥
bS3 +

√
b2S6 + 4aQMS3

2QM
.

Using (3.6) and (3.7), we are led to

c̃ = lim
n→∞ Iλn(un) =

a
2
l +

b
4
l 2 −

1
6
(al + bl 2) =

a
3
l +

b
12

l 2 ≥ c∗ .

_erefore, c̃ = c∗ and all the inequalities in (3.9) must be equalities. We deduce from
(3.8) and (3.9) that

(3.10) lim
n→∞∫Ω

QM ∣un ∣
6dx = QMS−3 l 3 = al + bl 2 = lim

n→∞∫Ω
Q(x)∣un ∣

6dx .

Set wn =
un

∣un ∣6 . _en ∣wn ∣6 = 1 and (3.10) implies that

lim
n→∞ ∥wn∥

2
= lim

n→∞
∥un∥

2

∣un ∣
2
6
=

l
(S−3 l 3) 1

3
= S .

_us {wn} is a minimizing sequence for S. We apply a result of Lions [24] to con-
clude that there exist an x0 ∈ Ω and a subsequence, still denoted by {wn}, such that
∣∇wn ∣

2 ⇀ dµ = Sδx0 , ∣wn ∣
6 ⇀ dν = δx0 , weakly in the sense of measure, where µ, ν

are ûnite measures and δx0 is a Dirac measure assigned to x0. On one hand, in view
of un ∈ Θλn , i , we have

β(wn) =
∫Ω x∣wn ∣

6dx

∫Ω ∣wn ∣6dx
→ x0 , as n Ð→∞,

From ∣β(wn) − a i ∣ = r0 and Br0(a i) ∩ Br0(a j) = ∅ for i /= j, we deduce that x0 /= a i

for each 1 ≤ i ≤ k. On the other hand, it follows from (3.10) that

QM = QM lim
n→∞∫Ω

∣wn ∣
6dx = lim

n→∞∫Ω
Q(x)∣wn ∣

6dx = Q(x0).

_is is a contradiction. _us (3.4) holds.

Lemma 3.4 Let 1 ≤ i ≤ k be ûxed. _en for every u ∈ Nλ , i , there exists τ > 0
and θ∶B(0 ; τ) ⊂ H1

0(Ω) → R such that θ(0) = 1, and θ(v)(u − v) ∈ Nλ , i for any
v ∈ B(0 ; τ). Moreover,

⟨θ′(0), φ⟩ =

2a(u, φ) + 4b∥u∥2(u, φ) − 6 ∫Ω Q(x)∣u∣4uφdx − λ(q + 1) ∫Ω ∣u∣q−1uφdx
a(1 − q)∥u∥2 + b(3 − q)∥u∥4 − (5 − q) ∫Ω Q(x)∣u∣6dx

for any φ ∈ C∞0 (Ω).
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Proof _e original idea is contained in [35, 39]. Here we give the proof for com-
pleteness. For every u ∈ Nλ , i , we deûne a function f u ∶R ×H1

0(Ω) → R by

f u(θ , v) = ⟨I′λ(θ(u − v)), θ(u − v)⟩

= aθ2
∥u − v∥2

+ bθ4
∥u − v∥4

− θ6
∫

Ω
Q(x)∣u − v∣6dx

− λθq+1
∫

Ω
∣u − v∣q+1dx .

Note that f u(1, 0) = ⟨I′λ(u), u⟩ = 0 and

d f u

dθ
∣(θ ,v)=(1,0) = 2a∥u∥2

+ 4b∥u∥4
− 6∫

Ω
Q(x)∣u∣6dx − λ(q + 1)∫

Ω
∣u∣q+1dx

= a(1 − q)∥u∥2
+ b(3 − q)∥u∥4

− (5 − q)∫
Ω
Q(x)∣u∣6dx < 0.

Applying the implicit function theorem, there exist a τ > 0 and a diòerential function
θ∶B(0 ; τ) ⊂ H1

0(Ω) → R such that θ(0) = 1, and for any φ ∈ C∞0 (Ω),

⟨θ′(0), φ⟩

= −⟨
( f u)′v(θ(v), v)
( f u)′θ(θ(v), v)

∣
v=0

, φ⟩

=
2a(u, φ) + 4b∥u∥2(u, φ) − 6 ∫Ω Q(x)∣u∣4uφdx − λ(q + 1) ∫Ω ∣u∣q−1uφdx

a(1 − q)∥u∥2 + b(3 − q)∥u∥4 − (5 − q) ∫Ω Q(x)∣u∣6dx
,

and f u(θ(v), v) = 0 for all v ∈ B(0 ; τ), which implies that

⟨Iλ(θ(v)(u − v)), θ(v)(u − v)⟩ = 0 for all v ∈ B(0 ; τ).

_erefore θ(v)(u − v) ∈ Nλ . By the continuity of β, taking τ > 0 small enough, we
have β(θ(v)(u − v)) ∈ B(a i , r0). _us θ(v)(u − v) ∈ Nλ , i .

Proof of_eorem 1.2 By Lemmas 3.1and 3.2, we have

0 < cλ , i ≤ Iλ(tv i
ε
v i
ε) = sup

t≥0
Iλ(tv i

ε) < c
∗ .

It follows from Lemma 3.3 that

(3.11) cλ , i < c∗ < c̃λ , i for all 0 < λ < λ̃.

_is implies that cλ , i = inf{Iλ(u) ∶ u ∈ Nλ , i ∪ Θλ , i}, for all 0 < λ < λ̃. Consider
a minimizing sequence {w i

n} ⊂ Nλ , i ∪ Θλ , i for Iλ . Since Iλ(∣ ⋅ ∣) = Iλ( ⋅ ), we may
assume that w i

n(x) ≥ 0 for x ∈ Ω. By the Ekeland variational principle [38], there
exists a sequence {u i

n} ⊂ Nλ , i ∪Θλ , i such that
(3.12)

∥u i
n −w i

n∥ ≤
1
n
, Iλ(u i

n) ≤ cλ , i +
1
n2 , Iλ(v) ≥ Iλ(u i

n) −
1
n
∥v − u i

n∥, ∀ v ∈ Nλ , i .

We claim that {u i
n} is a (PS)cλ , i sequence for Iλ . It is suõcient to show that

I′λ(u
i
n) Ð→ 0

in (H1
0(Ω))−1 as n → ∞. By (3.11) and (3.12), we have u i

n ∈ Nλ , i for n large. Ap-
plying Lemma 3.4, there exist a τ i

n and a diòerentiable functional θ i
n ∶B(0 ; τ i

n) ⊂
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H1
0(Ω) → R such that θ i

n(0) = 1, and θ i
n(v)(u i

n − v) ∈ Nλ , i for any v ∈ B(0 ; τ i
n). Let

φ ∈ H1
0(Ω) with ∥φ∥ = 1 and s ∈ (0, τ i

n). _en

v = sφ ∈ B(0 ; τ i
n) and θ i

n(sφ)(u
i
n − sφ) ∈ Nλ , i .

By (3.12) and the mean value theorem, we have

∥θ i
n(sφ)(u i

n − sφ) − u i
n∥

n
≥ Iλ(u i

n) − Iλ(θ i
n(sφ)(u

i
n − sφ))

= ⟨I′λ(t0u
i
n + (1 − t0)θ i

n(sφ)(u
i
n − sφ)), u i

n − θ i
n(sφ)(u

i
n − sφ)⟩

= ⟨I′λ(u
i
n), u

i
n − θ i

n(sφ)(u
i
n − sφ)⟩ + o(∥u i

n − θ i
n(sφ)(u

i
n − sφ)∥)

= sθ i
n(sφ)⟨I

′
λ(u

i
n), φ⟩ + (1 − θ i

n(sφ))⟨I
′
λ(u

i
n), u

i
n⟩

+ o(∥u i
n − θ i

n(sφ)(u
i
n − sφ)∥)

= sθ i
n(sφ)⟨I

′
λ(u

i
n), φ⟩ + o(∥u i

n − θ i
n(sφ)(u

i
n − sφ)∥),

where t0 ∈ (0, 1) and the second equality follows from ∥u i
n − θ i

n(sφ)(u i
n − sφ)∥ → 0

as s → 0. Letting s → 0, we obtain

⟨I′λ(u
i
n), φ⟩ ≤

∥u i
n − θ i

n(sφ)(u i
n − sφ)∥( 1

n + ∣o(1)∣)
s∣θ i

n(sφ)∣

=
∥u i

n(θ i
n(sφ) − θ i

n(0)) − sφθ i
n(sφ)∥(

1
n + ∣o(1)∣)

s∣θ i
n(sφ)∣

≤
(∥u i

n∥∣θ i
n(sφ) − θ i

n(0)∣ + s∣θ i
n(sφ)∣∥φ∥)(

1
n + ∣o(1)∣)

s∣θ i
n(sφ)∣

= ( 1 + ∥u i
n∥

∣θ i
n(sφ) − θ i

n(0)∣
s

)(
1
n
+ ∣o(1)∣)

≤ (1 + ∥u i
n∥∥(θ

i
n)
′
(0)∥)(

1
n
+ ∣o(1)∣) .

In view of the boundedness of {u i
n} and {(θ i

n)
′(0)} we have that I′λ(u

i
n) → 0 in

(H1
0(Ω))−1 as n →∞. Hence {u i

n} is a (PS)cλ , i sequence for Iλ .
Equation (3.11) implies that cλ , i < c∗. From Lemma 2.3, there exists u i ∈ H1

0(Ω)

with u i ≥ 0 such that, up to a subsequence, u i
n → u i in H1

0(Ω) for every 1 ≤ i ≤ k.
_en I′λ(u

i) = 0 and Iλ(u i) = cλ , i > 0. _us, u i is a nontrivial and nonnegative
solution of problem (1.1). Using the strong maximum principle, we have u i(x) > 0 in
Ω, 1 ≤ i ≤ k. _erefore, problem (1.1) admits at least k positive solutions u i (1 ≤ i ≤ k)
for all 0 < λ < λ̃.

4 Remarks on the Results and Approach

In _eorem 1.1 and_eorem 1.2, positive solutions are obtained via the Nehari man-
ifold method provided 3 < q < 5, which forces the boundedness of any Palais–Smale
sequence of the functional Iλ . It is an intriguing problem to study the case 0 < q ≤ 3.
_e boundedness of the Palais–Smale sequence becomes a major diõculty in prov-
ing the existence of a positive solution in that case. We point out that if the domain
is the whole space R3, He and Li [17] considered Kirchhoò type equation (1.1) with
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Q(x) ≡ 1 and 1 < q ≤ 3. By using variational methods that are constrained to a
Nehari–Pohozaev manifold, they showed the existence of positive solutions of (1.1)
and studied the concentration phenomena of the semiclassical solutions. However,
themethod used there is not applicable to the bounded domain case. New approaches
and techniques should be introduced. So, it is very interesting and challenging to in-
vestigate further problem (1.1) with 0 < q ≤ 3. _is is the work under consideration.

We emphasize that the method used in this paper is still valid for the following
Schrödinger–Poisson equation:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆u + ϕu = Q(x)∣u∣4u + λ∣u∣q−1u, in Ω,
−∆ϕ = u2 , in Ω,
u = ϕ = 0, on ∂Ω,

We leave the details to the readers.
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