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Dynamics of a surfactant-laden viscoelastic
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As is known, the presence of surfactants can profoundly influence the dynamics of
Newtonian viscous threads. Also, it is known that non-Newtonian viscoelastic threads
behave differently from Newtonian ones, particularly in the nonlinear regime. A naturally
arising question is how surfactants affect the dynamic behaviour of non-Newtonian
viscoelastic threads. To gain some insights into it, we build a one-dimensional model
for an Oldroyd-B/finitely extensible nonlinear elastic-Peterlin approximation (FENE-P)
viscoelastic liquid thread covered with an insoluble surfactant monolayer based on the
slender body theory. A parametric study is performed to examine the effects of the
dimensionless numbers related to the surfactant, including the initial concentration, the
Marangoni number, the surface Péclet number, the shear Boussinesq number and the
dilatational Boussinesq number. It is found that the formation of the beads-on-a-string
structure can be greatly delayed by the surfactant. At large values of the surface Péclet
number, the exponential thinning of the Oldroyd-B viscoelastic thread is little influenced,
but the surfactant may lead to the disappearance of secondary droplets. At moderate values
of the surface Péclet number, the surfactant induces the formation of secondary droplets.
The primary droplets are axially stretched by the Marangoni or surface viscous stresses
and evolve into a prolate or a more singular shape eventually. The surfactant can delay
the pinch-off of the FENE-P viscoelastic thread to a great extent, but it affects little the
decrease in the minimum thread radius prior to pinch-off when the surface Péclet number
is large.
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1. Introduction

The presence of surface active agents (surfactants) can significantly alter the surface
properties of a liquid and give rise to interesting phenomena, such as tip streaming
from a highly deformed liquid droplet submerged in a shear or extensional flow (Eggers
1997; Anna 2016; Montanero & Gañán-Calvo 2020) and flower-like patterning of an
evaporating liquid droplet spreading on a liquid substrate (Wodlei et al. 2018). In a variety
of applications including atomization, ink-jet printing, spinning, coating, emulsification,
enhanced oil recovery, microfluidics, food industry and drug delivery, the addition of
surfactant molecules can help to control actively and easily the motion, spread, transport,
formation, deformation and breakup of films, jets, threads, drops, bubbles, colloids or
biological molecules. Surfactants have been one of the most attractive and most studied
factors in those liquid–air surface and liquid–liquid interfacial problems in the last three
decades (Eggers & Villermaux 2008; Vlahovska 2019; Montanero & Gañán-Calvo 2020).
Nevertheless, the underlying mechanisms have not yet been fully understood.

An insoluble surfactant monolayer at a liquid surface may affect the dynamics of
the liquid in three ways (Kamat et al. 2018; Montanero & Gañán-Calvo 2020; Wee,
Wagoner & Basaran 2022): it lowers the average capillary force by reducing the surface
tension coefficient, i.e. the so-called soluto-capillarity effect; the non-uniform distribution
of surfactant molecules at the surface causes a non-zero surface tension gradient and
thereby the Marangoni stress that tends to eliminate the non-uniformity; it induces the
surface rheological effects characterized by the surface shear and dilatational viscosities,
and with shear and dilatational deformations of the surface, it yields the viscous
stresses that participate in the force balance at the surface. The reduction in the surface
tension, the surface tension gradient and the resulting Marangoni stress and the surface
viscous stresses are all associated with the distribution of surfactant at the surface. The
distribution of insoluble surfactant is basically determined by two mechanisms: surface
convection and surface diffusion. The former gives rise to inhomogeneity and thereby
surface tension gradients, whereas the latter tends to restore homogeneity (Hameed et al.
2008; Martínez-Calvo & Sevilla 2018; Montanero & Gañán-Calvo 2020). The relative
importance of surface convection and surface diffusion, represented by the surface Péclet
number, may substantially influence the dynamics of a fluid system. In general, the
multiple effects of a surfactant monolayer together with their complex mathematical
descriptions make the related theoretical, numerical and experimental investigations
challenging.

The situation can be more intricate when the surfactant is soluble. In such a case,
surfactant molecules exist not only at the surface but also in the bulk. The solubility
cannot be neglected when the adsorption/desorption characteristic time of the surfactant
is comparable to or smaller than the other characteristic times of the system (e.g.
the capillary time for a Newtonian jet or both the capillary time and the extensional
relaxation time for a viscoelastic jet). If the bulk concentration of the surfactant is below
the critical micellar concentration (CMC), it is presented as monomers in the bulk; if
the bulk concentration is above the CMC, surfactant molecules partially aggregate into
micelles spontaneously (Craster, Matar & Papageorgiou 2009; Montanero & Gañán-Calvo
2020). The concentrations of monomers and micelles are governed by their respective
conservation equations. There is a term describing the breakup or formation of micelles
in each equation. Moreover, there is a term denoting the flux of surfactant from the
bulk to the surface due to the adsorption/desorption process in the conservation equation
at the surface. Surfactant solubility seems to affect fluid dynamics in an indirect
way.
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Dynamics of surfactant-covered viscoelastic threads

Studying how capillarity, bulk viscosity, inertia, Marangoni stress, surface viscosity and
other possible factors compete with or cooperate with each other in a fluid system has both
scientific and practical relevance. There have been many reports in the literature devoted
to understanding the effects of insoluble or soluble surfactants on the linear and nonlinear
dynamics of films, drops, bubbles, jets, threads and other similar configurations, e.g. Liao,
Franses & Basaran (2006), Hameed et al. (2008), Craster et al. (2009), Young et al. (2009),
Ponce-Torres et al. (2016), Martínez-Calvo & Sevilla (2018), Hu, Fu & Yang (2020), He &
Wylie (2021) and Wee et al. (2021). The mechanism in one geometric configuration may
be extrapolated to another. It is also possible that different mechanisms play a major role
in different configurations. In the following, we introduce the studies of cylindrical liquid
jets and threads.

Linear theory has confirmed that the presence of surfactants has a stabilizing effect
on the Rayleigh–Plateau instability of Newtonian viscous liquid jets (Craster, Matar &
Papageorgiou 2002; Timmermans & Lister 2002; Ponce-Torres et al. 2016; Martínez-Calvo
& Sevilla 2018). That is, surfactants reduce the growth rates of small disturbances. This
effect is unsurprising, since the average capillary force is lowered and the Marangoni and
surface viscous stresses are created in the presence of surfactants. Similarly, increasing
surfactant activity or surface viscosity stabilizes liquid jets. Another finding is that the
linear analysis based on the long wave approximation cannot accurately predict some
instability features (such as the cutoff wavenumber) of surfactant-laden liquid jets and
threads without the inclusion of the necessary high-order terms (Hansen, Peters & Meijer
1999; Timmermans & Lister 2002; Martínez-Calvo & Sevilla 2018).

The nonlinear effects come into play, as disturbances grow with time. Linear theory fails
to predict the late stages of jet or thread instability. The nonlinear dynamics of Newtonian
jets and threads in the presence of surfactants has been studied via the asymptotic methods
and numerical simulations, e.g. Anshus (1973), Craster et al. (2002), Timmermans &
Lister (2002), Dravid et al. (2006), McGough & Basaran (2006), Craster et al. (2009),
Hameed & Maldarelli (2016), Martínez-Calvo et al. (2020) and Wee et al. (2021). It
was found that the pinch-off of Newtonian liquid threads can be delayed by surfactants
(Anshus 1973; Craster et al. 2002). The addition of surfactants to Newtonian viscous
threads favours the formation of secondary droplets between primary droplets. The size
of secondary droplets is increased or decreased by surfactants, depending on their strength
and diffusivity (Dravid et al. 2006). Surface viscosities were found to be responsible for
the accumulation of surfactant molecules in secondary droplets (Ponce-Torres et al. 2016,
2017). The detachment of primary droplets will never take place and the formation of
secondary droplets will be impeded, as long as the Marangoni stress is sufficiently large
(Hameed et al. 2008). The experimental and numerical studies of McGough & Basaran
(2006) and Kamat et al. (2018) showed that the Marangoni stress near the pinching point
of a thread induces the formation of microthread cascades. When the transport of an
insoluble surfactant is dominated by surface convection (the surface Péclet number is
large), surfactant molecules are swept away from the pinching point (Newtonian liquid
threads pinch off at the neck where the primary droplet joins the ligament). As a result,
surfactant-laden jets behave in a similar way to surfactant-free jets prior to pinch-off and
exhibit the same similarity (Eggers 1993; Craster et al. 2002; Timmermans & Lister 2002;
Liao et al. 2006; McGough & Basaran 2006; Eggers & Villermaux 2008). Remarkably, the
surface viscous stresses can still play a role when most of surfactant molecules are swept
away from the pinching point, because the surface-to-volume ratio at the pinching point
becomes extremely large as the minimum radius of the jet tends to zero (Montanero &
Gañán-Calvo 2020; Wee et al. 2020, 2021). However, surfactant molecules are not always
evacuated from the pinching region, even for large surface Péclet numbers of the order
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of 105, as detected by Ponce-Torres et al. (2020). The one-dimensional (1-D) nonlinear
analysis of surfactant-laden viscous threads in the Stokes limit showed that there exists
a critical value of the surface Péclet number. Below this critical value, surface diffusion
is dominant and the thread thins exponentially in time; above it, surface convection is
dominant and the thinning of the thread exhibits a power-law dependence on time until
pinch-off (Wee et al. 2022). In the Stokes limit, the surface viscous stresses enter the
dominant force balance and tend to slow down the thinning of Newtonian threads (Ozan &
Jakobsen 2019; Wee et al. 2020). The balance between the capillary force and the surface
viscous stresses is established at sufficiently high surfactant surface concentrations,
resulting in an asymptotic regime in which the filament thins exponentially in time at a
rate only depending on the surface tension and the surface viscosities (Martínez-Calvo &
Sevilla 2020). When the inertia is taken into account, the inertial, capillary, bulk viscous
and surface viscous forces establish the dominant force balance as the jet nears pinch-off,
whereas the Marangoni stress plays a secondary role (Wee et al. 2021). For viscous threads
laden with soluble surfactants at concentrations above the CMC, larger secondary droplets
are formed due to the Marangoni stress (Craster et al. 2009). The study of the surfactant
effects has been extended to compound liquid jets (Craster, Matar & Papageorgiou 2003;
Yao, Yang & Fu 2021).

Polymer solutions are frequently encountered in applications. They belong to the family
of non-Newtonian fluids, possessing rheological properties such as shear thinning and
viscoelasticity. A dilute polymer solution can be approximately regarded as a viscoelastic
liquid of constant viscosity (Tirtaatmadja, McKinley & Cooper-White 2006; James 2009).
Thus the elastic effects are separated from the viscous effects, greatly facilitating the study
of the viscoelastic liquid dynamics. The linear and nonlinear behaviour of viscoelastic
liquid jets and threads has been studied analytically and numerically with the aid of simple
viscoelastic models such as Oldroyd-B, Giesekus and finitely extensible nonlinear elastic
(Goldin et al. 1969; Goren & Gottlieb 1982; Entov & Hinch 1997; Chang, Demekhin
& Kalaidin 1999; Brenn, Liu & Durst 2000; Fontelos & Li 2004; Clasen et al. 2006a;
Liu & Liu 2006; Eggers & Villermaux 2008; Ardekani, Sharma & Mckinley 2010; Bhat
et al. 2010; Ye, Yang & Fu 2016; Turkoz et al. 2018; Alsharif 2019). In the linear regime,
viscoelastic jets were found to be more unstable than their Newtonian counterparts when
the axial viscoelastic stress in the base flow is relaxed sufficiently far away from the nozzle.
In the nonlinear regime, phenomenally different from Newtonian jets, viscoelastic jets
evolve into a quasistatic topological structure, i.e. the beads-on-a-string structure, which is
characterized by primary droplets connected by a thin filament of almost uniform thickness
(sometimes secondary droplets exist in the filament). The pinch-off of viscoelastic
liquid threads, if it occurs in finite time, can be greatly delayed by viscoelasticity. Note
that the aforementioned viscoelastic models possess a constant viscosity and a single
relaxation time and cannot account for the concentration dependence or the conformation
dependence of the viscosity or the relaxation time (Beck & Shaqfeh 2006; Clasen et al.
2006b; Prabhakar, Prakash & Sridhar 2006; Tirtaatmadja et al. 2006; Dinic & Sharma
2020; Kumar, Richter & Schroeder 2020). As a consequence, they may fail to capture
accurately the capillary thinning or pinching dynamics of viscoelastic threads observed
in experiments. Future theoretical and numerical studies are expected to consider more
realistic models.

The addition of soluble surfactants to polymer solutions may introduce additional
complexity and difficulty in mathematical formulation and experimental measurement
(Martínez Narváez, Mazur & Sharma 2021). On the one hand, surfactants may influence
the rheological properties of polymer solutions to a certain extent, for example, increasing
bulk viscosity and lowering the critical shear rate for the onset of shear thinning.
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Dynamics of surfactant-covered viscoelastic threads

On the other hand, the interaction between polymer molecules and surfactant molecules
may lead to the self-aggregation of the latter above the critical aggregation concentration
when the bulk concentration of surfactant is sufficiently high. To date, the dynamics
of polymer–surfactant association complexes has been rarely reported. An experimental
investigation was executed by Dechelette et al. (2011) to examine the combined effect of
polymer and soluble surfactant on the jet breakup and secondary droplet formation. It
was found that the Marangoni stress may lead to an increase in secondary droplet size at
sufficiently high surfactant concentrations.

If the surfactant has a negligible solubility or is insoluble, the interaction between
polymer and surfactant molecules can be appropriately neglected. Even for this much
simpler case, few studies can be found in the literature addressing the dynamics of
surfactant-laden viscoelastic liquid jets or threads. An asymptotic approach based on the
slenderness of the jet was used by Alhushaybari & Uddin (2020) to study the absolute and
convective instability of a viscoelastic liquid jet falling under the gravity in the presence
of insoluble surfactants. They identified the convective/absolute instability boundaries for
various parameter regimes. He & Wylie (2021) studied the temporal linear instability of
a viscoelastic thread surrounded by another immiscible viscoelastic fluid in the presence
of insoluble surfactants. They carried out a detailed parametric study and concluded that
the surfactant decreases the growth rates and increases the most unstable wavenumber
corresponding to the maximum growth rate.

At the nonlinear stages, viscoelastic liquid jets and threads behave differently
from Newtonian ones, particularly the delay of pinch-off and the formation of the
beads-on-a-string structure. To our knowledge, the effect of surfactants on the nonlinear
characteristics of viscoelastic liquid jets and threads has not yet been reported. In the
present work, we build a 1-D model to describe the nonlinear dynamic behaviour of
viscoelastic threads in the presence of insoluble surfactants, taking into account the
surface rheological effects. A number of 1-D models based on the slender body theory
have been developed for clean Newtonian viscous threads, surfactant-laden Newtonian
viscous threads or clean viscoelastic threads (Eggers & Villermaux 2008; Montanero
& Gañán-Calvo 2020). It has been shown that these simplified 1-D models provide
reasonable results at a much lower computational cost than the two-dimensional (2-D)
and three-dimensional (3-D) numerical simulations.

The paper is organized as follows: in § 2, the theoretical model is described; in § 3,
the 1-D equations are derived; in § 4, the dispersion relation for the 1-D linear analysis
is derived and a parametric study is performed to examine the effects of the surfactant
on the linear and nonlinear behaviour of the viscoelastic thread; finally, in § 5, the main
conclusion is drawn.

2. Theoretical description

Consider an infinitely long cylindrical liquid thread of radius R surrounded by atmospheric
air, as sketched in figure 1. The liquid, which is a polymer solution, is incompressible
and viscoelastic. Before being perturbed, the thread is quiescent with no base flow, and
moreover, the thread surface is covered uniformly with a monolayer of bulk-insoluble
surfactant molecules of concentration Γ0. The rheological properties of the surfactant,
characterized by the surface shear and dilatational viscosities, are taken into account.
The hydrodynamic effect of the ambient air is neglected. The effect of the gravitational
force, temperature and mass transfer is neglected as well. The cylindrical coordinate
system (z, r, θ) with z, r, θ the axial, radial and azimuthal coordinates, respectively,
is used to describe the problem. Upon a small-amplitude axisymmetric harmonic
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R
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λ

r = S(z, t), Γ = Γ(z, t), σ(Γ ), κs(Γ ), μs(Γ )

ρ, η0, λc, L

Γ0

Figure 1. Schematic of a viscoelastic liquid thread covered with an insoluble surfactant.

disturbance being imposed, the thread begins to deform, whose shape is denoted by
r = S(z, t). Simultaneously, the surfactant is redistributed along the thread surface, whose
concentration is denoted by Γ = Γ (z, t).

The continuity and momentum equations governing the flow field are

1
r

∂(rv)

∂r
+ ∂u

∂z
= 0, (2.1)

ρ

(
∂v

∂t
+ v

∂v

∂r
+ u

∂v

∂z

)
= −∂p

∂r
+ ηs

(
∂2v

∂r2 + 1
r

∂v

∂r
− v

r2 + ∂2v

∂z2

)

+∂τrr

∂r
+ ∂τrz

∂z
+ τrr − τθθ

r
, (2.2)

ρ

(
∂u
∂t

+ v
∂u
∂r

+ u
∂u
∂z

)
= −∂p

∂z
+ ηs

(
∂2u
∂r2 + 1

r
∂u
∂r

+ ∂2u
∂z2

)
+ ∂τrz

∂r
+ τrz

r
+ ∂τzz

∂z
,

(2.3)

where u and v are the axial and radial components of the velocity vector u, respectively,
ρ is the density of the polymer solution, p is the pressure, ηs is the contribution of the
solvent to the viscosity and τzz, τrr, τrz and τθθ are the components of the polymer stress
tensor τ p which, in the form of a matrix, is

τ p =
⎛
⎝τzz τrz 0

τrz τrr 0
0 0 τθθ

⎞
⎠ . (2.4)

The viscoelasticity of the liquid is assumed to be described by the FENE-P (finitely
extensible nonlinear elastic-Peterlin approximation) constitutive equation (Fontelos & Li
2004)

τ p = ηp

λc

⎛
⎜⎝ A

1 − tr(A)

L2

− I

⎞
⎟⎠ , (2.5)

where ηp is the contribution of the polymer to the viscosity, λc is the stress relaxation time,
L is the finite extensibility parameter, I is the identity tensor, A is the conformation tensor
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Dynamics of surfactant-covered viscoelastic threads

whose components are

A =
⎛
⎝Azz Arz 0

Arz Arr 0
0 0 Aθθ

⎞
⎠ , (2.6)

and tr(A) is the trace of A. The four non-zero components of A are governed by

∂Azz

∂t
+ v

∂Azz

∂r
+ u

∂Azz

∂z
= 2

∂u
∂z

Azz + 2
∂u
∂r

Arz + 1
λc

⎛
⎜⎝1 − Azz

1 − tr(A)

L2

⎞
⎟⎠ , (2.7)

∂Arr

∂t
+ v

∂Arr

∂r
+ u

∂Arr

∂z
= 2

∂v

∂r
Arr + 2

∂v

∂z
Arz + 1

λc

⎛
⎜⎝1 − Arr

1 − tr(A)

L2

⎞
⎟⎠ , (2.8)

∂Aθθ

∂t
+ v

∂Aθθ

∂r
+ u

∂Aθθ

∂z
= 2

v

r
Aθθ + 1

λc

⎛
⎜⎝1 − Aθθ

1 − tr(A)

L2

⎞
⎟⎠ , (2.9)

∂Arz

∂t
+ v

∂Arz

∂r
+ u

∂Arz

∂z
= ∂v

∂z
Azz + ∂u

∂r
− v

r
Arz + 1

λc

⎛
⎜⎝− Arz

1 − tr(A)

L2

⎞
⎟⎠ . (2.10)

The surfactant concentration Γ is governed by the time-dependent advection–diffusion
equation (Hameed et al. 2008; Martínez-Calvo & Sevilla 2018)

∂Γ

∂t
+ u

∂Γ

∂z
+ Γ

S
√

1 + S′2
∂(Sut)

∂z
+ CΓ un = Ds

S
√

1 + S′2

∂

(
SΓ ′

√
1 + S′2

)
∂z

, (2.11)

where the prime ′ denotes the partial derivative with respect to z, Ds is the surface diffusion
coefficient of the surfactant, un and ut are the normal and tangential components of the
velocity at the surface, i.e.

un = v − uS′
√

1 + S′2 , ut = u + vS′
√

1 + S′2 , (2.12a,b)

and C is the mean curvature given by

C = 1

S
√

1 + S′2 − S′′(
1 + S′2)3/2 , (2.13)

with ′′ denoting the second-order derivative with respective to z.
At the thread surface r = S(z, t), the kinematic condition must be satisfied, i.e.

v = ∂S
∂t

+ u
∂S
∂z

, (2.14)

and the force balance requires

− T · n + ∇s · T s = 0, (2.15)

where T = −pI + ηs[∇u + (∇u)T ] + τ p is the stress tensor from the liquid phase but
evaluated at the thread surface (the superscript T indicates the transpose), n is the
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unit outward vector normal to the surface, ∇s is the surface gradient operator defined
as ∇s = Is · ∇ = (I − nn) · ∇ and T s is the surface stress tensor modelled by the
Boussinesq–Scriven approximation (Boussinesq 1913; Scriven 1960; Martínez-Calvo &
Sevilla 2018)

T s = Is[σ + (κs − μs)(∇s · us)] + μs[(∇sus) · Is + Is · (∇sus)
T ], (2.16)

where κs and μs are the surface dilatational and shear viscosities, respectively, us is the
velocity of the polymer solution at the surface and σ is the surface tension coefficient
(hereafter, it is called the surface tension for short). Note that κs, μs and σ are all functions
of the local surfactant concentration Γ . We simply assume that κs and μs are linearly
dependent on Γ (Ponce-Torres et al. 2017; Wee et al. 2021), i.e.

κs(Γ ) = κsr
Γ

Γr
, μs(Γ ) = μsr

Γ

Γr
, (2.17a,b)

where the subscript r denotes the reference values. The dependence of the surface tension
σ on the surfactant surface concentration Γ is assumed to be described by the Langmuir
equation of state (Liao et al. 2006; Hameed et al. 2008; Wee et al. 2021)

σ(Γ ) = σ0 + RgTΓ∞ ln
(

1 − Γ

Γ∞

)
, (2.18)

where σ0 is the surface tension of the clean surface, Rg is the universal gas constant, T is
the absolute temperature and Γ∞ is the maximum packing concentration of the surfactant.
Introducing the surface pressure Π(Γ ) = σ0 − σ(Γ ), the combination of (2.17a,b) and
(2.18) gives the following dependence

κs(Π) = κsr
Γ∞
Γr

[
1 − exp

(
− Π

RgTΓ∞

)]
, μs(Π) = μsr

Γ∞
Γr

[
1 − exp

(
− Π

RgTΓ∞

)]
.

(2.19a,b)
As a matter of fact, the dependence of the surface viscosities on the surface pressure
diverges. For instance, it was found in the experiments that the surface shear viscosity
μs often increases exponentially with the surface pressure Π (Fuller & Vermant 2012;
Manikantan & Squires 2020). The Π -dependent surface viscosities have been shown
to lead to surprising consequences in lubrication flows and affect significantly the
deformation and breakup of droplets (Manikantan & Squires 2017; Singh & Narsimhan
2021, 2022; Herrada et al. 2022). They may also affect the dynamics of liquid jets and
threads, which remains an open problem to be explored.

The substitution of (2.16) into (2.15) yields
− T · n + ∇sσ − n(∇s · n)σ + ∇s [(κs − μs)(∇s · us)]

− n(∇s · n)(κs − μs)(∇s · us) + ∇s ·
{
μs

[
(∇sus) · Is + Is · (∇sus)

T
]}

= 0. (2.20)

After some algebraic operations, the force balance in the normal direction is written as

p − 1
1 + S′2

[
2ηs

∂v

∂r
− 2ηs

(
∂v

∂z
+ ∂u

∂r

)
+ 2ηsS′2 ∂u

∂z
+ S′2τzz − 2S′τrz + τrr

]

= C
[
σ + (κs − μs)

(
(Sut)

′

S
√

1 + S′2 + Cun

)]

+ 2μs

1 + S′2

[
S′ut + un

S2 − S′′

1 + S′2

(
∂(ut)

∂z
− S′′un

1 + S′2

)]
, (2.21)
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Dynamics of surfactant-covered viscoelastic threads

and in the tangential direction as

1√
1 + S′2

[
2ηsS′

(
∂v

∂r
− ∂u

∂z

)
+ ηs

(
1 − S′2

) (
∂v

∂z
+ ∂u

∂r

)

+ S′ (τrr − τzz) + (1 − S′2)τrz

]

= ∂σ

∂z
+ ∂

∂z

[
(κs − μs)

(
(Sut)

′

S
√

1 + S′2 + Cun

)]

+
√

1 + S′2

S
∂

∂z

[
2μsS

1 + S′2

(
∂ut

∂z
− unS′′

1 + S′2

)]

− 2μsS′
√

1 + S′2

[
S′ut + un

S2 − S′′

1 + S′2

(
∂ut

∂z
− S′′un

1 + S′2

)]
. (2.22)

3. One-dimensional model

If the radius of the perturbed thread varies gradually along the axial direction, the thread
can be considered as a slender body and a 1-D analysis can be applied (Clasen et al. 2006a;
Eggers & Villermaux 2008). The equations for the 1-D model are derived in Appendix A.
Taking the thread radius R, the capillary time tc =

√
ρR3/σ0, the zero-shear viscosity

η0 = ηs + ηp, the surface tension of the clear surface σ0, the capillary force σ0/R and
the maximum packing concentration of the surfactant Γ∞ as the scales of length, time,
viscosity, surface tension, pressure and surfactant concentration, respectively, the 1-D
equations are non-dimensionalized as

∂(S2)

∂t
+ ∂(S2u)

∂z
= 0, (3.1)

∂u
∂t

+ u
∂u
∂z

= 3βOh
S2

∂

(
S2 ∂u

∂z

)
∂z

+ 1
S2

∂
[
S2 (τzz − τrr)

]
∂z

− ∂

∂z

{
C

[
σ + Oh (κs − μs)

S

(
∂(uS)

∂z
− C

2
∂(uS2)

∂z

)]}
1© 2©

+2
S

{
∂σ

∂z
+ ∂

∂z

[
Oh(κs − μs)

S

(
∂(uS)

∂z
− C

2
∂(uS2)

∂z

)]}
3© 4©

+5Oh
S2

∂

∂z

(
μsS

∂u
∂z

)
,

5© (3.2)

τzz = (1 − β)Oh
De

⎛
⎜⎝ Azz

1 − tr(A)

L2

− 1

⎞
⎟⎠ , (3.3)
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F. Li and D. He

τrr = (1 − β)Oh
De

⎛
⎜⎝ Arr

1 − tr(A)

L2

− 1

⎞
⎟⎠ , (3.4)

De
(

∂Azz

∂t
+ u

∂Azz

∂z
− 2Azz

∂u
∂z

)
= 1 − Azz

1 − tr(A)

L2

, (3.5)

De
(

∂Arr

∂t
+ u

∂Arr

∂z
+ Arr

∂u
∂z

)
= 1 − Arr

1 − tr(A)

L2

, (3.6)

∂Γ

∂t
+ 1

S
∂(SuΓ )

∂z
− CΓ

2S
∂(S2u)

∂z
= 1

Pe
1
S

∂

(
S
∂Γ

∂z

)
∂z

, (3.7)

where

κs(Γ ) = Bκ∞Γ, μs(Γ ) = Bμ∞Γ, σ(Γ ) = 1 + E ln(1 − Γ ), (3.8)

C = 1

S

√
1 +

(
∂S
∂z

)2
−

∂2S
∂z2[

1 +
(

∂S
∂z

)2
]3/2 , (3.9)

tr(A) = Azz + 2Arr. (3.10)

Note that the same symbols are used to denote both the dimensional and the dimensionless
quantities for brevity. The dimensionless numbers appearing in the above 1-D equations
are the Ohnesorge number Oh = η0/

√
ρσ0R representing the relative importance of bulk

viscosity and capillarity, the solvent to solution viscosity ratio β = ηs/η0, the Deborah
number De = λc/tc measuring the relative importance of elasticity and capillarity,
the surface Péclet number Pe = R2/tcDs measuring the relative importance of surface
convection and surface diffusion in surfactant transport, the elasticity number E =
RgTΓ∞/σ0 measuring the activity of the surfactant or the sensitivity of the surface tension
to changes in the surfactant concentration (in order to distinguish from the elasticity
of the viscoelastic liquid, hereafter it is called the Marangoni number, as referred to
in Ponce-Torres et al. 2016; Martínez-Calvo et al. 2020; Herrada et al. 2022) and the
dilatational Boussinesq number Bκ∞ = κs(Γ = Γ∞)/η0R = (κsr/η0R)(Γ∞/Γr) and the
shear Boussinesq number Bμ∞ = μs(Γ = Γ∞)/η0R = (μsr/η0R)(Γ∞/Γr) measuring
the relative importance of surface and bulk viscosities.

Equation (3.1) expresses the volume conservation, (3.2) is the 1-D momentum equation,
(3.3)–(3.6) are the constitutive equations for the FENE-P viscoelastic model and (3.7)
expresses the surfactant mass conservation. On the right-hand side of (3.2), the first term
is the viscous force from the solvent, the second term is the viscoelastic force from the
polymer and the rest of the terms, numbered 1©– 5©, are all related to the surfactant,
indicating that the surfactant influences the nonlinear dynamics of the viscoelastic thread
in a complicated way. Specifically, term 1© is the capillary force, term 3© is the Marangoni
stress resulting from the spatial non-uniformity of the surface tension and terms 2©, 4©
and 5© are the surface viscous stresses associated with surface dilatational and shear
deformations. If the surface dilatational viscosity κs is equal to the surface shear viscosity
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Dynamics of surfactant-covered viscoelastic threads

μs, both term 2© and term 4© vanish and the momentum equation (3.2) is, fortunately,
reduced. On the left-hand side of (3.7), the full curvature is preserved. If the slender body
approximation is considered, (3.7) is simplified as

∂(Γ 2)

∂t
+ ∂(Γ 2u)

∂z
= 2

Pe
Γ

S

∂

(
S
∂Γ

∂z

)
∂z

. (3.11)

When the finite extensibility L approaches infinity (polymer chains are infinitely
extensible), the Oldroyd-B viscoelastic model is recovered, for which (3.1) and (3.2) and
(3.7) remain unchanged, but the constitutive equations (3.3)–(3.6) reduce to

τzz + De
(

∂τzz

∂t
+ u

∂τzz

∂z
− 2τzz

∂u
∂z

)
= 2(1 − β)Oh

∂u
∂z

, (3.12)

τrr + De
(

∂τrr

∂t
+ u

∂τrr

∂z
+ τrr

∂u
∂z

)
= −(1 − β)Oh

∂u
∂z

. (3.13)

If the Deborah number is set to be zero, the 1-D model reduces to that for Newtonian
viscous liquid threads covered with insoluble surfactants, as proposed by Martínez-Calvo
& Sevilla (2018) and Wee et al. (2021). In addition, if the surfactant concentration Γ is set
to zero, the 1-D model reduces to that for surfactant-free viscoelastic threads of FENE-P
type as built in Fontelos & Li (2004).

4. Numerical results

The 1-D equations (3.1)–(3.7) are solved by using an implicit finite difference scheme with
adaptive mesh refinement (Li & He 2021). Considering both accuracy and efficiency, the
number of spatial discrete points is 1000–1600, and the time step varies between 10−6 and
0.005. The convergence condition at each time step is that the maximum relative error is
below 0.001. The calculation stops when the dimensionless minimum radius of the thread
is less than 0.001. The validity of the code is checked by comparing with the results in
Fontelos & Li (2004), Li & He (2021) and Wee et al. (2021).

At the initial time t = 0, the thread is perturbed by a small cosinusoidal harmonic
disturbance, i.e.

S(z, t = 0) =
√

1 − ε2
0
2

+ ε0 cos(kz), (4.1)

where k is the dimensionless axial wavenumber and ε0 is the initial amplitude of the
disturbance whose value is fixed to 0.01.

Due to spatial periodicity and symmetry, only a half-wavelength long segment of
the thread needs to be calculated. Therefore, in the calculation, the domain is limited
to z ∈ [0, λ/2], where λ = 2π/k is the dimensionless wavelength of the disturbance.
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F. Li and D. He

The periodic boundary conditions are imposed at z = 0 and z = λ/2, i.e.

∂S
∂z

(z = 0, t) = ∂S
∂z

(
z = λ

2
, t

)
= 0, u(z = 0, t) = u

(
z = λ

2
, t

)
= 0,

∂τzz

∂z
(z = 0, t) = ∂τzz

∂z

(
z = λ

2
, t

)
= 0,

∂τrr

∂z
(z = 0, t) = ∂τrr

∂z

(
z = λ

2
, t

)
= 0,

∂Azz

∂z
(z = 0, t) = ∂Azz

∂z

(
z = λ

2
, t

)
= 0,

∂Arr

∂z
(z = 0, t) = ∂Arr

∂z

(
z = λ

2
, t

)
= 0,

∂Γ

∂z
(z = 0, t) = ∂Γ

∂z

(
z = λ

2
, t

)
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

There are in total ten dimensionless parameters involved in this problem:
Oh, β, De, L, Pe, E, Bκ∞, Bμ∞, Γ0 and k. The physical properties of surfactant-laden or
viscoelastic fluids as well as the values of the dimensionless numbers considered in the
literature are collected in table 1. As one can see, the properties span a wide range. We
would like to consider a viscoelastic thread of moderate viscosity and moderate elasticity.
Suppose the density ρ is 1000 kg m−3, the zero-shear viscosity η0 is 0.1 Pa s, the stress
relaxation time λc is 0.5 ms, the surface tension σ0 is 0.05 N m−1 and the radius of the
unperturbed thread R is 100 μm. Then, the Ohnesorge number Oh has a value of 1.4 and
the Deborah number De has a value of 3.5. The values of Oh and De are kept unchanged,
since we focus on the effects of the surfactant on the dynamic behaviour of the viscoelastic
thread. Without loss of generality, the solvent to solution viscosity ratio β is fixed to 0.5
and the finite extensibility parameter L takes a value of 5 for the FENE-P model. The
surfactant surface diffusivity Ds is about 10−10–10−9 m2 s−1 (Timmermans & Lister 2002;
Martínez-Calvo & Sevilla 2018). The surface Péclet number Pe is of the order of magnitude
of 103 to 106, suggesting that surface convection is dominant in surfactant transport. In
many studies, surface diffusion was reasonably neglected, i.e. the surface Péclet number
was taken to be infinity (Timmermans & Lister 2002; Martínez-Calvo & Sevilla 2018;
Alhushaybari & Uddin 2020; Martínez-Calvo et al. 2020; Wee et al. 2021). In addition
to a case of large surface Péclet number (Pe = 105), we will examine a case of moderate
surface Péclet number (Pe = 1), in which surface convection and surface diffusion are of
equal importance. In small-scale applications such as microemulsions and nanoemulsions,
the surface Péclet number can be order one (O(1)). We intend to discuss the effect of
surfactant diffusivity on the nonlinear evolution of a viscoelastic thread via the moderate
Pe case. The initial surfactant concentration Γ0 varies between 0 and 0.5. The range of
the Marangoni number E is from 0 to 0.6. The surface shear and dilatational viscosities
are 10−5–10−4 Pa s m (Martínez-Calvo & Sevilla 2018) or much lower (∼ 10−8Pa s m)
(Zell et al. 2014; Ponce-Torres et al. 2020). The Boussinesq numbers Bκ∞ and Bμ∞ range
widely from 0 to O(103). The larger the Boussinesq numbers, the more important the
surface viscous stresses. We consider a relatively conservative range of Bκ∞ and Bμ∞
from 0 to 100. Moreover, we assume that Bκ∞ is equal to Bμ∞. The measurement of
surface shear and dilatational viscosities is an experimental challenge. Some experiments
showed that the surface dilatational viscosity can be orders of magnitude larger than the
surface shear viscosity and can be augmented by adsorption if the surfactant is soluble
(Lucassen & van den Tempel 1972; Alvarez et al. 2012; Singh & Narsimhan 2021, 2022;
Herrada et al. 2022). The range of the axial wavenumber k is from 0.3 to 0.9. All the
values of the dimensionless numbers considered in the simulation are summarized in
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Dimensionless numbers Values

the Ohnesorge number Oh 1.4
the solvent to solution viscosity ratio β 0.5
the Deborah number De 3.5
the finite extensibility parameter L 2, 5, 10, 50,∞
the initial surfactant concentration Γ0 0, 0.1, 0.2, 0.3, 0.5
the surface Péclet number Pe 1, 105

the Marangoni number E 0, 0.2, 0.4, 0.6
the dilatational Boussinesq number Bκ∞ 0, 0.1, 1, 10, 100
the shear Boussinesq number Bμ∞ 0, 0.1, 1, 10, 100
the axial wavenumber k 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Table 2. The values of the dimensionless numbers considered in the simulation.

table 2. Finally, to facilitate simulation and analysis, a reference state is selected, in which
Oh = 1.4, β = 0.5, De = 3.5, Γ0 = 0.3, E = 0.4, Pe = 105, Bκ∞ = Bμ∞ = 0 and L = 5
(FENE-P) or ∞ (Oldroyd-B). The dimensionless numbers are fixed to the reference state
unless specified otherwise.

4.1. Linear instability analysis based on the 1-D model
In this subsection, a brief linear analysis is performed based on the present 1-D model.
Following the normal mode method, the quantities are decomposed into a base and a
perturbation part, i.e.

(S, u, τzz, τrr, Azz, Arr, Γ ) =
(

1, 0, 0, 0,
L2

L2 + 3
,

L2

L2 + 3
, Γ0

)

+ (Ŝ, û, τ̂zz, τ̂rr, Âzz, Ârr, Γ̂ ) exp(αt + jkz) + c.c., (4.3)

where the hat denotes the initial amplitudes of the perturbation parts, α is the complex
frequency with the real part αr the temporal growth rate and the imaginary part αi
the speed of wave propagation, j is the imaginary unit and ‘c.c.’ denotes the complex
conjugate.

Linearizing the 1-D equations (3.1)–(3.7) and then substituting the decomposition (4.3)
into the linearized equations, we obtain a set of linear homogeneous algebraic equations
for the unknowns (Ŝ, û, τ̂zz, τ̂rr, Âzz, Ârr, Γ̂ ). The determinant of the coefficient matrix of
the equations has to be zero to ensure the system has non-trivial solutions, which yields
the following dispersion relation:

α + 3βOhk2 = −k2(1 − β)Oh
L2 + 3

L2 (Ξ1 − Ξ2) − k2EΓ0

2(1 − Γ0)

(
α + k2

Pe

)

+ σik2(1 − k2)

2α
− Bκ∞ + 9Bμ∞

2
Γ0Ohk2, (4.4)
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Dynamics of surfactant-covered viscoelastic threads

where

Ξ1 =

∣∣∣∣∣∣∣∣
2L2

L2 + 3
2(L2 + 3)

L4

− L2

L2 + 3
Deα + L2 + 3

L2 + 2(L2 + 3)

L4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Deα + L2 + 3

L2 + L2 + 3
L4

2(L2 + 3)

L4

L2 + 3
L4 Deα + L2 + 3

L2 + 2(L2 + 3)

L4

∣∣∣∣∣∣∣
, (4.5)

Ξ2 =

∣∣∣∣∣∣∣∣
Deα + L2 + 3

L2 + L2 + 3
L4

2L2

L2 + 3
L2 + 3

L4 − L2

L2 + 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Deα + L2 + 3

L2 + L2 + 3
L4

2(L2 + 3)

L4

L2 + 3
L4 Deα + L2 + 3

L2 + 2(L2 + 3)

L4

∣∣∣∣∣∣∣
, (4.6)

and σi(= 1 + E ln(1 − Γ0)) is the initial surface tension corresponding to the initial
surfactant concentration Γ0. Note that the four terms on the right-hand side of (4.4) are
related to the viscoelasticity of the polymer solution, the Marangoni stress, the surface
tension and the surface shear and dilatational viscosities, respectively.

When the finite extensibility L approaches infinity, the dispersion relation (4.4) reduces
to that for the linear Jeffreys model and any nonlinear viscoelastic model (e.g. Oldroyd-B
and FENE-P) that becomes the Jeffreys model after linearization, i.e.

α + 3βOhk2 = −3k2(1 − β)Oh
1 + Deα

− k2EΓ0

2(1 − Γ0)

(
α + k2

Pe

)

+ σik2(1 − k2)

2α
− Bκ∞ + 9Bμ∞

2
Γ0Ohk2. (4.7)

When the Deborah number De is equal to zero, (4.7) reduces to the dispersion relation
determining the linear instability characteristics of surfactant-laden Newtonian viscous
threads (Martínez-Calvo & Sevilla 2018), i.e.

α + 3Ohk2 = − k2EΓ0

2(1 − Γ0)

(
α + k2

Pe

) + σik2(1 − k2)

2α
− Bκ∞ + 9Bμ∞

2
Γ0Ohk2. (4.8)

The effect of the dimensionless numbers on the linear instability of the
surfactant-covered viscoelastic thread is shown in figure 2. It can be seen that the temporal
growth rate αr decreases with the increase in the initial surfactant concentration Γ0, the
surface Péclet number Pe, the Marangoni number E, the dilatational Boussinesq number
Bκ∞ or the shear Boussinesq number Bμ∞ (see figures 2a–2f ). In general, surfactants
suppress the linear instability of viscoelastic threads, as they affect Newtonian viscous
threads (Hansen et al. 1999; Timmermans & Lister 2002; Martínez-Calvo & Sevilla 2018).
The mechanism can be interpreted from several aspects: the presence of the surfactant
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lowers the surface tension and thereby the capillary force that destabilizes the viscoelastic
thread; the Marangoni stress tends to eliminate the spatial non-uniformity of the surface
tension and thereby suppresses the growth of the disturbance; the surface shear and
dilatational viscosities and the resulting viscous stresses have a stabilizing effect on the
viscoelastic thread.

Comparing the large Pe case in figure 2(a) with the moderate Pe case in figure 2(b),
the temporal growth rate αr is apparently more sensitive to the presence of the surfactant
at larger values of Pe. Recall that the surface Péclet number Pe represents the relative
importance of surface convection and surface diffusion in surfactant transport. At large
values of Pe, surface convection is dominant, resulting in high non-uniformity of surfactant
and thereby large Marangoni stress that suppresses the instability of the thread. This trend
can also be seen in figure 2(c). The cutoff wavenumber kc, beyond which the thread
is linearly stable (αr ≤ 0), remains at unity no more in the presence of the surfactant.
Analytically the cutoff wavenumber kc can be obtained from the dispersion relation (4.4).
Setting the complex frequency α in (4.4) to be zero, we have

kc =
√

1 − EΓ0

σi(1 − Γ0)
. (4.9)

Clearly, kc is strictly equal to unity only when Γ0 is zero. As shown in figure 2, kc decreases
(that is, the range of unstable axial wavenumbers is narrowed down) as Γ0, Pe or E
increases. However, this statement may not be true since the high-order terms are neglected
in the 1-D model, as pointed out by Hansen et al. (1999), Timmermans & Lister (2002) and
Martínez-Calvo & Sevilla (2018) in the study of Newtonian threads. The 2-D axisymmetric
linear instability analysis has showed that the cutoff wavenumber remains at unity. The 1-D
model may overestimate the suppressing effect of the surfactant on the thread instability
at large wavenumbers near the cutoff. To eliminate the discrepancy, necessary high-order
terms should be retained in the long wave approximation (Martínez-Calvo & Sevilla 2018),
which is of interest but beyond the scope of the present research. Anyway, the 1-D model
does not need to give results that agree with the 2-D instability analysis over the entire
unstable wavenumber range. We can still get some insights into how surfactants affect the
linear instability and nonlinear behaviour of viscoelastic threads via the 1-D model.

A non-Newtonian viscoelastic thread possesses a higher temporal growth rate than its
Newtonian viscous counterpart. That is, elasticity has a destabilizing effect on the linear
instability of a thread (Brenn et al. 2000). It is found that finite extensibility affects
viscoelastic threads in a different way. As shown in figure 2(g), the temporal growth rate αr
increases as the finite extensibility parameter L decreases, suggesting that the extensibility
of polymer chains suppresses the instability of the thread.

4.2. Nonlinear behaviour of a surfactant-covered Oldroyd-B viscoelastic thread
An Oldroyd-B viscoelastic liquid thread never breaks up because of its infinite
extensibility. The 1-D models, the 2-D axisymmetric numerical simulations and the
experiments have shown that a quasistatic beads-on-a-string structure is gradually formed
during the nonlinear evolution of an Oldroyd-B viscoelastic thread (Chang et al.
1999; Ardekani et al. 2010; Tembely et al. 2012; Turkoz et al. 2018). Moreover, the
filament between two adjacent primary droplets, with an almost uniform thickness, thins
exponentially in time at a rate of 1/3De, and the flow in the filament is uniaxial extensional
(Clasen et al. 2006a). The influence of other factors such as electric field, temperature,
surfactant and exterior fluid phase on the dynamics of viscoelastic jets and threads has
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Figure 2. The temporal growth rate αr vs the axial wavenumber k. The effect of (a–b) the initial surfactant
concentration Γ0, (c) the surface Péclet number Pe, (d) the Marangoni number E, (e) the dilatational Boussinesq
number Bκ∞, ( f ) the shear Boussinesq number Bμ∞ and (g) the finite extensibility parameter L. In (a), Pe =
105; in (b), Pe = 1. (a–f ) The Oldroyd-B model (L → ∞) and (g) the FENE-P model. The arrows denote the
direction of a parameter increasing.
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Figure 3. Effect of the initial surfactant concentration Γ0 on the thinning of the Oldroyd-B viscoelastic thread.
(a) The thread radius S and (b) the first normal stress difference τzz − τrr at the midpoint z = λ/2. Here,
k = 0.8. The solid lines in (a) are the predictions of linear theory.

drawn attention in recent years (Eggers & Villermaux 2008; Montanero & Gañán-Calvo
2020). In the following, we examine how the presence of a surfactant monolayer affects
the nonlinear behaviour of an Oldroyd-B viscoelastic thread.

The effect of the initial surfactant concentration Γ0 on the temporal evolution of the
Oldroyd-B viscoelastic thread is shown in figure 3, where the large surface Péclet number
case (Pe = 105) is considered and the surface dilatational and shear viscosities are turned
off (Bκ∞ = Bμ∞ = 0). As shown in figure 3(a), the radius of the Oldroyd-B viscoelastic
thread at the midpoint z = λ/2 (where the centre of the filament is located), denoted
by Sλ/2, first experiences a fast decrease and then enters a slow exponential thinning,
regardless of the presence of the surfactant. The surfactant has a negligible influence
on the 1/3De exponential thinning law of the filament. A local balance between the
capillary and elastic forces is presumably established in the filament as in the absence
of the surfactant. The first normal stress difference τzz − τrr increases exponentially in
time at the rate 1/3De, as shown in figure 3(b). It indicates that the surfactant plays a
minimal role at the late stages of filament thinning. In contrast, the surfactant does greatly
influence the evolution of the thread at the early stages. Most notably, the decrease of Sλ/2
is slowed down in the presence of the surfactant. As shown in figure 3(a), the filament
needs increasingly more time to reach the uniaxial extension stage, as Γ0 increases. This
trend is qualitatively in accordance with the linear prediction in figure 2(a). The temporal
evolution of Sλ/2 predicted by linear theory is included in figure 3(a) for comparison
(the solid lines). The 1-D linear theory turns out to underestimate the development of
the disturbance as the nonlinear effects come into play.

To understand the negligible effect of the surfactant on the thinning of the viscoelastic
thread at the late stages, the variation of the thread radius S, the surfactant concentration
Γ , the surface tension σ , the axial velocity u and the first normal stress difference
τzz − τrr along the thread are examined in figure 4(a) for the large surface Péclet number
case (Pe = 105) and the initial surfactant concentration Γ0 = 0.3 (the reference state).
Obviously, at the observed time t = 212, the beads-on-a-string structure has been formed
and an elasto-capillary balance has been established inside the filament. Note that the
surfactant concentration Γ varies along the thread in a way quite similar to the thread
radius S. As a matter of fact, at a value of the surface Péclet number as large as 105, the
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Dynamics of surfactant-covered viscoelastic threads

diffusion term on the right-hand side of the surfactant advection–diffusion equation (3.7)
or (3.11) is very small. Neglecting the diffusion term, (3.8) approximates to

∂(Γ 2)

∂t
+ ∂(Γ 2u)

∂z
= 0. (4.10)

The above equation is the same in form with the volume conservation equation (3.1),
implying that the spatio-temporal evolution of the surfactant concentration Γ and the
thread radius S follows the same discipline. Hence, we can write

Γ (z, t) = aS(z, t), (4.11)

where a is a coefficient to be determined. Apparently, a = Γ0. The surface tension σ in
figure 4(a) is approximated as

σ = 1 + E ln(1 − Γ0S). (4.12)

Most of surfactant molecules initially residing at the filament surface have been convected
to the primary droplet before the thread enters the final elasto-capillary stage, due to the
strong convection. The filament is almost free of surfactant in the elasto-capillary regime,
with a nearly zero Γ and a nearly unity σ . Due to the evacuation of the surfactant, the
1/3De exponential thinning law is maintained, the axial velocity u goes linearly with z and
the first normal stress difference τzz − τrr is spatially uniform in the filament, as illustrated
in figure 4(a).

For a viscoelastic thread with no surfactant, the shape of primary droplets is almost
spherical under the action of surface tension (Clasen et al. 2006a). If the viscosity is
small, primary droplets undergo shape oscillations until energy is dissipated (Ardekani
et al. 2010; Li, Yin & Yin 2017). For the moderate viscosity considered in this problem,
no oscillation takes place. On the other hand, the presence of the surfactant is found to
alter the beads-on-a-string morphology to some extent. In figures 5(a) and 5(b), the thread
profiles are plotted for different values of the initial surfactant concentration Γ0 and a
fixed value of the axial wavenumber k = 0.5. It is shown that the surfactant leads to the
stretch of the primary droplets in the axial direction. The primary droplets are spherical no
more. They look like prolate spheroids in shape. Moreover, they deform more and more
as the initial surfactant concentration Γ0 increases. The deformation may be caused by
the Marangoni stress that tends to drive liquid from the small surface tension region (the
primary droplets) to the large surface tension region (the filament).

There is a secondary droplet between two adjacent primary ones, located at the midpoint
z = λ/2. Increasing the surfactant concentration results in the decrease in the secondary
droplet size, as illustrated in figure 5(b). The volume of the secondary droplet, denoted by
Vs, is shown in figure 5(c). Clearly, Vs decreases as the initial surfactant concentration Γ0
increases. When Γ0 is large enough, the secondary droplet can be completely removed.
For instance, for the axial wavenumber k = 0.7, the secondary droplet disappears at a
value of Γ0 as large as 0.3. The calculation result shows that the secondary droplet
begins to form at the late stages of filament thinning. The mechanism, responsible for
the decrease in secondary droplet size, might lie in that the tiny amount of surfactant at
the filament surface slightly weakens the local capillary force and thereby impedes the
formation of secondary droplet. In figure 8 below, it is shown that the Marangoni stress
also plays a role in reducing the secondary droplet size. In applications, surfactants may
help eliminate unwelcome secondary droplets arising in viscoelastic threads, as long as
surface convection is strong enough. It is also shown in figure 5(c) that the volume of
the secondary droplet increases as the axial wavenumber k decreases. The most unstable
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Figure 4. Variation of the thread radius S, the surfactant concentration Γ , the surface tension σ , the axial
velocity u and the first normal stress difference τzz − τrr along the thread. In panel (a), Pe = 105; in panel
(b), Pe = 1. Here, k = 0.8.

wavenumber kmax corresponding to the maximum growth rate is most probably dominant
in nature. According to the 1-D linear result in figure 2(a), the most unstable wavenumber
is generally small. For Γ0 = 0, kmax = 0.375; as Γ0 increases, kmax decreases. On the other
hand, the tendency in figure 5(c) suggests that the nonlinear evolution of the viscoelastic
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Figure 5. (a) Thread profiles for different values of the initial surfactant concentration Γ0, where k = 0.5.
(b) Zoomed-in secondary droplets located at the midpoint z = λ/2, where t = 100.85 (Γ0 = 0), 100.55 (Γ0 =
0.1), 105.1 (Γ0 = 0.2) and 113.9 (Γ0 = 0.3). (c) Dependence of the secondary droplet volume Vs on Γ0 and k.

thread exposed to natural disturbances yields secondary droplets of large volume, at least
larger than those for k = 0.4.

The moderate surface Péclet number case is examined in figure 6. At Pe = 1, surface
diffusion is comparable to surface convection and the motion of the surfactant is governed
by both factors. The temporal evolution of the thread radius at the midpoint, Sλ/2, is
illustrated in figure 6(a) for different values of the initial surfactant concentration Γ0 and
a fixed axial wavenumber k = 0.9. For a small value of Γ0 equal to 0.1, Sλ/2 decreases
all the way and the thread evolves into a beads-on-a-string structure with no secondary
droplet. At the large times the thinning of the filament is little influenced by the surfactant
and basically follows the 1/3De exponential law in time. The scenario is changed with Γ0
increasing, see the lines for Γ0=0.3 and 0.5 in figure 6(a). At some instant, Sλ/2 begins to
go upward, indicating that a secondary droplet is formed at the midpoint. Moreover, the
size of the secondary droplet increases as Γ0 increases. The predictions of linear theory
are shown in figure 6(a) (the solid lines) for comparison.

The spatio-temporal evolution of the surfactant concentration Γ and the surface tension
σ is illustrated in figures 6(b)–6(e) for the large Pe case and the moderate Pe case,
respectively, where the initial surfactant concentration Γ0 is fixed to 0.3. Compared with
the large Pe case, in the moderate Pe case the surfactant layer remains almost equally
dense over the entire thread due to the surface diffusion mechanism. Recall that the
surface area of the thread tends to decrease all the way to minimize the surface energy.
Reasonably, the surfactant concentration Γ increases monotonically with time from its
initial value Γ0, and the surface tension σ decreases monotonically. Due to its abundance
and non-uniform distribution at the filament surface, the surfactant affects significantly the
thinning characteristics of the filament. An elasto-capillary balance fails to be established
within the filament. Under the action of the capillary force and possibly the Marangoni
stress as well, a small quantity of liquid is driven towards the midpoint z = λ/2 and forms
a secondary droplet there.

For the case of moderate surface Péclet number Pe = 1, the thread profiles are plotted
in figure 7 for different values of the initial surfactant concentration Γ0 and the axial
wavenumber k = 0.5. Most interestingly, the secondary droplet at the midpoint gains
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Figure 6. (a) Effect of the initial surfactant concentration Γ0 on the temporal evolution of the thread radius at
the midpoint, Sλ/2, where Pe = 1 and the solid lines are the predictions of linear theory. Spatial distribution of
(b,c) the surfactant concentration Γ and (d,e) the surface tension σ along the thread as time increases, where
Γ0 = 0.3. In (b) and (d), Pe = 105; in (c) and (e), Pe = 1. Here, k = 0.9.

weight as Γ0 increases. This trend is opposite to the large Pe case shown in figure 5.
In addition, high-order secondary droplets appear in the filament when Γ0 is sufficiently
large, see the profile for Γ0 = 0.5.

The effect of the Marangoni stress is explored in figure 8 by comparing the case in
which the Marangoni stress is taken into account with the case in which it is turned
off. Figure 8(a) illustrates the temporal evolution of the thread radius at the midpoint,
Sλ/2, for the axial wavenumbers k = 0.8 and 0.9. For such large axial wavenumbers, no
secondary droplet is formed in the beads-on-a-string structure. It can be seen that the
Marangoni stress slows down the growth of the disturbance and delays the arrival of the
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Dynamics of surfactant-covered viscoelastic threads
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Figure 7. The case of moderate surface Péclet number Pe = 1. (a) Thread profiles for different values of the
initial surfactant concentration Γ0 and (b) zoomed-in secondary droplets at the midpoint z = λ/2. Here, k = 0.5
and t = 100.85 (Γ0 = 0), 95.75 (Γ0 = 0.1), 99.4 (Γ0 = 0.3) and 122.3 (Γ0 = 0.5).

elasto-capillary stage to a great extent. That is, the Marangoni stress acts as a resistance to
the instability of the viscoelastic thread. On the other hand, the Marangoni stress has no
significant effect on the exponential thinning law of the filament in the elasto-capillary
regime (recall that this is the case of large surface Péclet number). The effect of the
Marangoni stress on the thread profile is examined in figures 8(b) and 8(c). For small
axial wavenumbers such as k = 0.5 and 0.6, a secondary droplet unavoidably appears at
the midpoint of the filament. The Marangoni stress decreases the size of the secondary
droplet to a certain extent. In addition, the Marangoni stress stretches the primary droplets
in the axial direction and makes them more prolate, as illustrated previously in figure 5.

The primary droplets attain an almost static shape in the elasto-capillary regime. It is of
interest to seek the static solution to the shape of primary droplets. For a surfactant-free
viscoelastic thread, the static solution is a sphere (Clasen et al. 2006a), as illustrated in
figure 9(a). When the thread is covered with a surfactant monolayer, its primary droplets
are spherical no more. The static solution can be readily obtained in some simplified
cases. For instance, if we neglect the time-dependent term, the inertia, the viscoelastic
stress and the surface shear and dilatational viscosities (in the primary droplet region this
simplification is reasonable), the momentum equation (3.2) yields

∂(σC)

∂z
− 2

S
∂σ

∂z
= 0. (4.13)

In the large surface Péclet number case, the surface tension σ can be approximated by
(4.12). The substitution of (4.12) into (4.13) yields

∂(σC)

∂z
+ 2EΓ0

S(1 − Γ0S)

∂S
∂z

= 0. (4.14)

Note that both σ and C are functions of S(z) only. So (4.14) is essentially an ordinary
differential equation for S

∂

∂z
[σC + 4EΓ0 arctan(2Γ0S − 1)] = 0. (4.15)
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Figure 8. Effect of the Marangoni stress. (a) Temporal evolution of the thread radius at the midpoint, Sλ/2, for
k = 0.8 and 0.9; (b) and (c) thread profiles for k = 0.5 and 0.6, respectively. Solid lines: the Marangoni stress
is taken into account; dotted lines: the Marangoni stress is turned off. In (b), t = 113.9 (Marangoni) and 92 (no
Marangoni); in (c), t = 126.85 (Marangoni) and 104.6 (no Marangoni).
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Figure 9. Shape of the primary droplet located at the origin z = 0. The cases of (a) a surfactant-free
viscoelastic thread, (b) a surfactant-covered viscoelastic thread with the Marangoni stress turned off and (c) a
surfactant-covered viscoelastic thread with the Marangoni stress taken into account. The dotted lines denote
an isolated spherical droplet of the same volume. The solid lines denote the primary droplets simulated by the
1-D model. The dashed lines denote the static solutions. Here, k = 0.8.

An analytical solution to (4.14) or (4.15) may exist or not. We turn to numerical methods
such as finite difference.

A static solution is plotted in figure 9(c). It is shown that the static solution agrees well
with the 1-D numerical simulation. As outlined previously, the primary droplet exhibits
a prolate spheroid profile under the action of the Marangoni stress. In contrast, when
the Marangoni stress is turned off, the primary droplet becomes oblate, as illustrated in
figure 9(b). That is, the primary droplet is stretched in the radial direction, due to the
spatial non-uniformity of the surface tension.

The effect of the Marangoni number E on the nonlinear evolution of the Oldroyd-B
viscoelastic thread is shown in figure 10. As shown in figure 10(a), the Marangoni number
E prolongs the early stages of thread thinning. As the Marangoni number increases, the
local capillary force decreases and the Marangoni stress increases. Both factors result
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Dynamics of surfactant-covered viscoelastic threads
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Figure 10. Effect of the Marangoni number E on the nonlinear behaviour of the Oldroyd-B viscoelastic thread.
(a) Temporal evolution of the thread radius at the midpoint, Sλ/2, where k = 0.8 and the solid lines are the
predictions of linear theory. (b) Dependence of the secondary droplet volume Vs on E and k. Note that for
k = 0.7 and E = 0.4 or 0.6 the secondary droplet actually does not exist.

in the decrease in the temporal growth rate of the initial disturbance, as predicted by
linear theory. At the final stage, an elasto-capillary balance is established in the filament
and the 1/3De exponential law is little influenced by the Marangoni number (recall that
this is the large surface Péclet number case). On the other hand, the Marangoni number
influences the beads-on-a-string morphology. Particularly, it decreases the size of the
secondary droplet or even leads to the disappearance of the secondary droplet, as illustrated
in figure 10(b). The capillary force at the filament surface decreases as the Marangoni
number increases. This tendency might be responsible for the weight loss of the secondary
droplet. The 1-D linear result in figure 2(d) shows that the most unstable wavenumber kmax
decreases from 0.375 as the Marangoni number E increases from zero. Figure 10(b) shows
that the smaller the axial wavenumber, the larger the secondary droplet. So secondary
droplets formed under natural excitations are predicted to possess volumes larger than
those for k = 0.4 in figure 10(b).

The measurement of surface shear and dilatational viscosities is technically challenging
due to the difficulty of separating the surface rheological effects from the Marangoni
effects (Kamat et al. 2018; Wee et al. 2020). Several recent analytical and numerical studies
on Newtonian threads have accounted for the surface viscosities and proposed possible
routes to measuring the surface rheological properties (Wee et al. 2020, 2021). The effect
of the surface viscosities on Newtonian threads are summarized in table 3. In the following,
we examine their effect on the nonlinear dynamics of Oldroyd-B viscoelastic threads.

Figure 11 illustrates the temporal evolution of the thread radius S, the first normal
stress difference τzz − τrr, the extension rate ε̇(= ∂u/∂z) and the Trouton ratio ηE/η0(=
3β + (τzz − τrr)/Ohε̇, ηE: the elongational viscosity) at the midpoint z = λ/2 for the axial
wavenumber k = 0.8, where a wide range of the Boussinesq numbers is considered. It is
shown that the thinning of the viscoelastic thread can be delayed to an extraordinary extent
at large values of the Boussinesq numbers, in agreement with the tendency predicted by
linear theory in figures 2(e) and 2( f ).

At large values of the Boussinesq numbers such as 10 and 100, the final stage of filament
thinning is characterized by a uniaxial extensional flow no more. If the flow were uniaxial
extensional, the extension rate ε̇ would approach the constant 2/3De. However, as shown
in figure 11(c), for Bκ∞ = Bμ∞ = 10 or 100, the extension rate oscillates violently with
decreasing amplitude, possibly attributed to the interplay between the surface viscous
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Effects Cases Papers

Surface viscosities play a crucial role in surfactant
accumulation in secondary droplets.

Pe = ∞ Ponce-Torres
et al. (2017)

Surface viscosities have a stabilizing influence on jet
instability. The most unstable wavenumber depends
non-monotonically on surface viscosities.

1-D and 2-D linear
analysis

Martínez-Calvo
& Sevilla (2018)

Surface viscous stresses enter the dominant force
balance and alter the thinning rate of a thread prior to
breakup.

Stokes flow, Pe = 0
or ∞, κs = μs

Wee et al. (2020)

Surface rheological effects do not change the power-law
scalings but reduce the thinning rate in the final
asymptotic regime. As the jet nears pinch-off, a balance
between inertial, capillary, bulk viscous and surface
viscous forces is built.

Pe 	 1 or Pe = ∞,

κs = μs

Wee et al. (2021)

The critical surface Péclet number Pec on the
boundary between diffusion-dominated region and
convection-dominated region depends linearly on the
Boussinesq number. When Pe < Pec, the thread thins
exponentially in time; when Pe > Pec, its behaviour is
self-similar and exhibits a power-law dependence on
time until pinch-off.

1-D nonlinear
analysis, κs = μs

Wee et al. (2022)

Table 3. The effects of surface viscosities on inviscid and viscous threads.

stresses, the capillary force and the viscoelastic stresses as the thread enters the final
stage. At the final stage, the filament thinning deviates from the 1/3De exponential law.
Meanwhile, the temporal evolution of the first normal stress difference τzz − τrr does not
follow exactly the 1/3De exponential law, as shown in figure 11(b). The Trouton ratio
ηE/η0 behaves weirdly as well, see figure 11(d). In general, at large Boussinesq numbers,
the surface viscous stresses enter the dominant force balance and affect the thinning of the
filament significantly.

An interesting phenomenon is observed at moderate Boussinesq numbers. As shown
in figure 11(a), for Bκ∞ = Bμ∞ = 1, the thread radius at the midpoint, Sλ/2, begins to
increase at some instant, indicating that a secondary droplet is formed. This is a delicate
situation, for the secondary droplet disappears when the Boussinesq numbers increase a
little. There seems to be a narrow window of Bκ∞ and Bμ∞ near O(1) for the appearance
of secondary droplet. The surface viscosities prompt the formation of secondary droplet
when they are small but suppress it when they are large.

The role of the surface viscous stresses at the final stage of thread thinning can be better
understood by defining the filament Ohnesorge number OhS

1f = μs(ρσR3
f )

−1/2, where the
surface shear viscosity μs, the surface tension σ and the filament radius Rf are all evaluated
at the midpoint z = λ/2. The filament Ohnesorge number OhS

1f represents the ratio of
the surface viscous stresses to the capillary force in the filament. The evolution of OhS

1f
in time is shown in figures 12(a) and 12(b) for Bκ∞ = Bμ∞ = 0.1 and Bκ∞ = Bμ∞ =
10, respectively, where the thread radius Sλ/2 and the surfactant concentration Γλ/2 are
plotted as well. As illustrated in the figure, before the final stage, OhS

1f increases slowly and
Sλ/2 and Γλ/2 decrease rapidly with time increasing; in contrast, at the final stage, OhS

1f
increases rapidly and Sλ/2 and Γλ/2 decrease slowly with time increasing. For the large
surface Péclet number case (Pe = 105) considered in figure 12, the increase in OhS

1f at the
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Dynamics of surfactant-covered viscoelastic threads
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Figure 11. Effect of the Boussinesq numbers Bκ∞ and Bμ∞ on the thinning behaviour of the Oldroyd-B
viscoelastic thread, (a) the thread radius S, (b) the first normal stress difference τzz − τrr, (c) the extension
rate ε̇ and (d) the Trouton ratio ηE/η0 at the midpoint z = λ/2. The ordinate axis on the right is only for
Bκ∞ = Bμ∞ = 100 at extremely large times. Here, k = 0.8.

final stage, similar to the decrease in Sλ/2 or Γλ/2, seems to follow an almost exponential
law in time, especially for small Boussinesq numbers. For Bκ∞ = Bμ∞ = 0.1, OhS

1f can
reach O(1). For Bκ∞ = Bμ∞ = 10, OhS

1f , which is already larger than unity at the initial
time, can be O(102) at the final time. The surface viscous stresses can still be large in the
filament and compete with the capillary force and the viscoelastic stresses, even though
surfactant molecules are almost swept away from the filament for large surface Péclet
numbers.

The effect of the surface viscosities on the morphology of the Oldroyd-B viscoelastic
thread is further examined in figure 13, where the thread profiles are plotted for different
values of the axial wavenumber k. The two distinct roles of the surface viscosities can
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Figure 12. Temporal evolution of the filament Ohnesorge number OhS
1f , the thread radius S and the surfactant

concentration Γ at the midpoint λ/2. In (a), Bκ∞ = Bμ∞ = 0.1; in (b), Bκ∞ = Bμ∞ = 10. Here, k = 0.8.

be more clearly seen in the figure. For instance, for k = 0.7, there exists a secondary
droplet at the midpoint when the surface viscosities are absent (Bκ∞ = Bμ∞ = 0).
With the Boussinesq numbers Bκ∞ and Bμ∞ increasing from zero, the secondary droplet
is continuously shrunk. When the surface viscosities are sufficiently large, the secondary
droplet completely disappears, see the thread profile for Bκ∞ = Bμ∞ = 100, reflecting the
suppression effect of the surface viscosities on secondary droplets. The same phenomenon
occurs at smaller axial wavenumbers, see the thread profiles for k = 0.3 to 0.6. This
trend is easily understood, considering that large surface viscosities create large surface
viscous stresses that tend to hinder the formation of secondary droplets. For larger axial
wavenumbers k = 0.8 and 0.9, the thread evolves into a beads-on-a-string structure with
no secondary droplet, in the absence of surface viscosities. However, at Bκ∞ = Bμ∞ = 1,
the surface viscosities cause the appearance of a secondary droplet at the midpoint.
Then, the surface viscosities try to shrink the secondary droplet and eventually lead to its
disappearance, see the thread profiles for Bκ∞ = Bμ∞ = 100. The formation of secondary
droplet at large axial wavenumbers and moderate surface viscosities seems odd. It possibly
results from the interplay between the inertial, capillary and surface viscous forces.

It is also found that surface viscosities can deform primary droplets. As shown in
figure 13, the primary droplets are continuously stretched in the axial direction as the
shear and dilatational Boussinesq numbers increase. At a value of Bκ∞ and Bμ∞ as large
as 100, the shape of the primary droplets becomes singular. The corner regions connecting
the filament to the primary droplets get stretched. The shape resembles a cone in the 3-D
space. From a physical point of view, the capillary force fails to overcome the surface
viscous stresses and cannot help the primary droplets maintain their spheroidal shape at
high surface viscosities.

In the 1-D momentum equation (3.2), the terms numbered 2©, 4© and 5© represent the
surface viscous stresses. If the shear and dilatational viscosities are not equal, terms 2©
and 4© are non-zero. These two terms make the simulation more difficult. To simplify the
calculation, one strategy is to apply the slender body approximation to the full curvature
in 2© and 4©, i.e.

C  1
S
. (4.16)

The accuracy of this simplification is checked in figure 14 by comparing the slender
body approximation with the full-curvature case. It is shown in figure 14(a) that the
simplification does not lead to any significant difference in the temporal evolution of the
Oldroyd-B viscoelastic thread. In figures 14(b) and 14(c), the slender body approximation
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Figure 13. Thread profiles for different values of the Boussinesq numbers Bκ∞ and Bμ∞ and different values
of the axial wavenumber k. The insets illustrate the zoomed-in secondary droplet located at the midpoint
z = λ/2.
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Figure 14. Comparison of the slender body approximation (solid lines) and the full-curvature (dotted lines)
case. (a) Temporal evolution of the thread radius at the midpoint, Sλ/2, for k = 0.8 and 0.9, where Bκ∞ = 1 and
Bμ∞ = 10; (b) and (c) thread profiles for k = 0.7 and k = 0.8, respectively, where Bκ∞ = 0.1 and Bμ∞ = 1.

seems to predict smaller secondary droplets and less spherical primary droplets. Note that
Bκ∞ is taken to be smaller than Bμ∞. If Bκ∞ is larger than Bμ∞, the trends in figures 14(b)
and 14(c) are presumably opposite, since the signs of Bκ∞ and Bμ∞ in terms 2© and 4© of
(3.2) are opposite.

4.3. Nonlinear behaviour of a surfactant-covered FENE-P viscoelastic thread
Different from Oldroyd-B viscoelastic threads, viscoelastic threads of FENE-P type break
up in finite time, owing to finite extensibility of polymer chains. The nonlinear behaviour
of a FENE-P viscoelastic thread free of surfactant is represented in figure 15. As shown in
figure 15(a), the 1/3De exponential thinning law is valid no more for the FENE-P model.
At the nonlinear stages, the elastic force in the filament fails to balance the capillary force,
and the dynamics of the thread is dominated by inertia, capillarity and viscoelasticity. In
such a case, the minimum radius of the thread decreases linearly in time until pinch-off.
For smaller values of the finite extensibility L, the minimum thread radius Smin decreases
faster and pinch-off occurs earlier. Meanwhile, the location of Smin, denoted by zmin,
moves from the midpoint zλ/2 to the corner region connecting the filament to the primary
droplet, although the thickness of the filament appears to be uniform (Fontelos & Li 2004).
The pinch-off time, denoted by tp, is diagrammed in figure 15(b). It can be seen that tp
decreases as L decreases. On the other hand, tp depends greatly on the axial wavenumber,
or rather, on the growth rate predicted by linear theory. The thread profiles are plotted in
figures 15(c) and 15(d) for a relatively large axial wavenumber k = 0.8 and a relatively
small axial wavenumber k = 0.3, respectively. It is found that finite extensibility may
alter the beads-on-a-string morphology to a certain extent. In the case of k = 0.8, a tiny
secondary droplet arises at the midpoint when L is sufficiently small, say L = 2. In the case
of k = 0.3, small extensibility may lead to large deformation of secondary droplet, see the
thread profile for L = 5. In the following, we examine briefly the effect of surfactants on
the nonlinear behaviour of FENE-P viscoelastic liquid threads.
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Figure 15. Effect of the finite extensibility parameter L on the nonlinear behaviour of a FENE-P viscoelastic
thread free of surfactant. (a) The minimum thread radius Smin (the lower lines) and its location zmin (the upper
lines) for different values of L, where k = 0.8. (b) The pinch-off time tp vs L for different values of k. Thread
profiles for (c) k = 0.8 and (d) k = 0.3 for different values of L.

Figure 16 illustrates the effect of the initial surfactant concentration Γ0 on the thinning
of the FENE-P viscoelastic thread. It can be seen from figure 16(a) that the surfactant
retards the pinch-off of the thread. This is mainly because the decrease in the minimum
thread radius Smin at the early stages is decelerated with increasing Γ0, which is basically
a linear effect. At the final stage, the influence of the surfactant is limited, for most of
the surfactant molecules are swept away from the filament for the large surface Péclet
number case considered, as discussed in the Oldroyd-B model. In figure 16(b), close to
the pinch-off time tp, Smin goes to zero almost in the same way as Γ0 varies, only that Smin
decreases a little faster at larger values of Γ0.

The effect of surfactant surface diffusion on the nonlinear behaviour of the FENE-P
viscoelastic thread is explored by considering the moderate surface Péclet number case
Pe = 1. The result is illustrated in figure 17. As shown in figure 17(a), similar to the large
Pe case (Pe = 105), in the moderate Pe case the pinch-off of the FENE-P viscoelastic
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Figure 16. Effect of the initial surfactant concentration Γ0 on the thinning of the FENE-P viscoelastic thread.
(a) Temporal evolution of the minimum thread radius Smin and (b) Smin vs the time to the pinching tp − t for
different values of Γ0. Here, k = 0.8.

thread is retarded by increasing the initial surfactant concentration Γ0, owing to the
suppression effect of the surfactant on the temporal growth rate of the initial disturbance.
At the nonlinear stages, the minimum thread radius Smin approaches zero at different
speeds for different values of Γ0, as illustrated in figure 17(b). Unfortunately, no common
trend can be found, suggesting that the surfactant affects the pinch-off of the viscoelastic
thread in a complicated way.

The variation of the thread radius S, the surfactant concentration Γ , the surface tension
σ , the axial velocity u and the first normal stress difference τzz − τrr along the thread
is illustrated in figure 17(c) for the axial wavenumber k = 0.8 and the initial surfactant
concentration Γ0 = 0 and 0.3. The spatial variation of u and τzz − τrr suggests that a
tiny secondary droplet arises at the midpoint z = λ/2 in the absence of the surfactant
(Γ0 = 0), although it is almost invisible from the thread profile. In the presence of the
surfactant, i.e. Γ0 = 0.3, the volume of the secondary droplet is visibly increased. Due
to surface diffusion, surfactant molecules cover the entire thread densely. Particularly in
the neighbourhood of the secondary droplet, the surfactant concentration Γ is close to
unity and the surface tension σ is very small. Correspondingly, the viscoelastic force in
the neighbourhood of the secondary droplet is small and the secondary droplet deforms
greatly from spherical.

The effect of the initial surfactant concentration Γ0 on the beads-on-a-string
morphology in the moderate Pe case can be seen from figures 17(d) and 17(e) for the
relatively large axial wavenumber k = 0.8 and the relatively small axial wavenumber
k = 0.4, respectively. For both wavenumbers, the secondary droplet at the midpoint gains
weight and exhibits a more singular shape as Γ0 increases. Meanwhile, the thickness of the
filament becomes more non-uniform. Pinch-off always occurs at the corner region where
the filament joins the primary droplet. For the relatively small axial wavenumber k = 0.4,
higher-order generations of secondary droplets can be formed at sufficiently large values
of Γ0 (see the thread profile for Γ0 = 0.5).

The effect of the Marangoni stress on the pinch-off of the FENE-P viscoelastic thread
is examined in figure 18, by comparing the case in which the Marangoni stress is taken
into account with the case in which the Marangoni stress is turned off. As seen in
figure 18(a), for the relatively large axial wavenumber k = 0.8, the pinch-off of the
viscoelastic thread occurs much earlier when the Marangoni stress is turned off. Note
that the two lines intersect with each other near Smin = 0.53 and tp − t = 23. Before
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Figure 17. The case of moderate surface Péclet number Pe = 1. (a) Temporal evolution of the minimum
thread radius Smin and (b) Smin vs the time to the pinching tp − t for distinct values of the initial surfactant
concentration Γ0. (c) Spatial variation of the thread radius S, the surfactant concentration Γ , the surface tension
σ , the axial velocity u and the first normal stress difference τzz − τrr along the thread. In (a–c), k = 0.8. In (c),
the solid lines are for Γ0 = 0.3 (the time instant t = 110.795) and the dotted lines are for Γ0 = 0 (t = 94.48).
(d) Thread profiles for k = 0.8 and distinct values of Γ0, where the inset is the zoomed-in filament and
secondary droplet regions. (e) Thread profiles for k = 0.4 and distinct values of Γ0.

intersecting, the minimum thread radius Smin decreases much more rapidly in the absence
of the Marangoni stress. In contrast, from the intersection point, it takes Smin the same
time in two cases to decrease to zero. In general, the Marangoni stress greatly delays
the pinch-off of the FENE-P viscoelastic thread. The thread profiles prior to pinch-off
are plotted in figures 18(b) and 18(c) for k = 0.8 and 0.3, respectively. For both axial
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Figure 18. Effect of the Marangoni stress on the nonlinear behaviour of the FENE-P viscoelastic thread.
(a) The minimum thread radius Smin vs the time to the pinching tp − t for k = 0.8. Thread profiles for
(b) k = 0.8 and (c) k = 0.3.

wavenumbers, the primary droplets have been axially stretched by the Marangoni stress
before the pinch-off takes place. The secondary droplets remain singular in shape when
the Marangoni stress is absent. It indicates that the Marangoni stress has little to do with
the non-spherical shape of secondary droplets. The deformation of secondary droplets
possibly results from small local surface tension. On the other hand, the Marangoni stress
affects secondary droplets by reducing their size.

Figure 19 shows the effect of the Marangoni number E on the pinch-off of the FENE-P
viscoelastic thread. At the early stages, the thinning of the thread can be greatly slowed
down by increasing the value of E, owing to the suppression effect of the Marangoni
number on the linear instability of the thread. At the late stages, from approximately Smin =
0.45 and tp − t = 21, the effect of the Marangoni number becomes quite limited. Recall
that in the large surface Péclet number case of the Oldroyd-B viscoelastic thread, surfactant
molecules are continuously convected to the primary droplet and not many remain at the
filament surface. The situation is similar for the FENE-P viscoelastic thread.

In addition to the Marangoni number E, the Boussinesq numbers Bκ∞ and Bμ∞ may
greatly delay the pinch-off of the FENE-P viscoelastic thread, as illustrated in figure 20(a).
At relatively small values of Bκ∞ and Bμ∞ such as 0.1 and 1, the surface viscosities
slow down the growth of the initial disturbance at the early stages. At relatively large
values of Bκ∞ and Bμ∞ 10 and 100, the surface viscosities tend to inhibit the pinch-off of
the viscoelastic thread. The thread profiles for the axial wavenumber k = 0.3 and several
values of Bκ∞ and Bμ∞ are plotted in figure 20(b). Like in Oldroyd-B threads, the surface
viscous stresses may lead to the axial stretch of primary droplets. When Bκ∞ and Bμ∞ are
large, e.g. Bκ∞ = Bμ∞ = 10, the corner connecting the filament to the primary droplet is
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Figure 19. Effect of the Marangoni number E on the pinch-off of the FENE-P viscoelastic thread. The
minimum thread radius Smin vs the time to the pinching tp − t. Here, k = 0.8.
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Figure 20. Effect of the Boussinesq numbers Bκ∞ and Bμ∞ on the pinch-off of the FENE-P viscoelastic
thread. (a) The minimum thread radius Smin vs the time to the pinching tp − t for k = 0.8. (b) Thread profiles
for different values of Bκ∞ and Bμ∞, k = 0.3.

axially stretched and the primary droplet is greatly deformed. On the other hand, for this
small axial wavenumber, the secondary droplet located at the midpoint loses weight under
the action of the surface viscous stresses. At sufficiently large values of Bκ∞ and Bμ∞, the
secondary droplet disappears.
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5. Conclusion

Based on the slender body theory, we develop a 1-D model to numerically study the
effect of an insoluble surfactant monolayer on the nonlinear dynamics of a non-Newtonian
viscoelastic thread of Oldroyd-B or FENE-P type. In particular, we take into account the
surface rheological properties of the surfactant. There are five dimensionless numbers
related to the surfactant, i.e. the initial surfactant concentration, the Marangoni number,
the surface Péclet number, the dilatational Boussinesq number and the shear Boussinesq
number. The effect of these dimensionless numbers on the dynamics of the viscoelastic
thread initially perturbed by a small harmonic disturbance is examined one by one.

The 1-D linear instability result shows that the temporal growth rate of the disturbance
can be decreased by increasing the initial surfactant concentration, the Marangoni number,
the surface Péclet number, the dilatational Boussinesq number or the shear Boussinesq
number. That is, the presence of the surfactant suppresses the linear instability of the
viscoelastic thread in all ways. The suppression effect of the surfactant is profound. It can
greatly postpone the late nonlinear stages of thread thinning.

The surface Péclet number plays an important role in the nonlinear evolution of the
viscoelastic thread. At large values of the surface Péclet number, the surfactant has a
negligible influence on the exponential thinning of the Oldroyd-B viscoelastic thread,
owing to the evacuation of surfactant molecules from the filament under the dominance
of surface convection. On the other hand, the surfactant may affect the beads-on-a-string
structure in two ways: it decreases the size of the secondary droplet or even remove it
completely when the initial surfactant concentration or the Marangoni number is large
enough; it stretches the primary droplet in the axial direction and leads to its deformation
from a spherical to a prolate shape. In these phenomena, the Marangoni stress plays a role.
At moderate values of the surface Péclet number, surfactant molecules are distributed over
the filament due to surface diffusion, leading to the formation of secondary droplet in the
filament.

At large values of the shear and dilatational Boussinesq numbers, the thinning of the
viscoelastic thread can be greatly delayed by the surface viscous stresses. At the final stage,
besides the capillary and elastic forces, the surface viscous stresses enter the dominant
force balance in the filament. The filament follows the 1/3De exponential law no more.
On the other hand, the surface viscous stresses can lead to the decrease in the secondary
droplet size. When the Boussinesq numbers are sufficiently large, the secondary droplet
disappears. Larger surface viscous stresses also lead to larger deformation of primary
droplets.

The pinch-off of the FENE-P viscoelastic thread can be greatly delayed by the presence
of the surfactant. Prior to pinch-off, the decrease in the minimum thread radius is little
influenced by the surfactant, if the surface Péclet number is large. However, when surface
diffusion is important, the surfactant affects the pinch-off of the thread in a complicated
way. The effect of the surfactant on the beads-on-a-string morphology of the FENE-P
viscoelastic thread is similar to that on the Oldroyd-B viscoelastic thread.

According to the 1-D simulation, for surfactant-covered viscoelastic threads, the corner
region connecting the primary droplet to the filament may possess self-similarity. An
exploration of self-similar solutions may be performed in the future, taking into account
the Marangoni stress and/or the surface rheological properties. Another open problem
is the deformation of primary droplets driven by the surface viscous stresses. The
singular shape of primary droplets is rare and deserves more investigation. In addition,
it is of interest to develop an improved 1-D model with all necessary high-order terms
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included. The numerical simulation of the 2-D axisymmetric nonlinear dynamics of
surfactant-covered viscoelastic threads needs to be carried out to verify the 1-D results.
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Appendix A. Derivation of the 1-D equations

The characteristic length in the radial direction, lr, is assumed to be much smaller than the
characteristic length in the axial direction, lz, i.e.

lr = εlz, (A1)

where ε is a small parameter. The balance of the capillary, inertial and viscoelastic forces
gives

ρ
lz
l2t

= η0
lz/lt
l2z

= σ0

lr

1
lz

. (A2)

Use the scales

r = lrr̃, z = lzz̃, t = lt t̃, S = lrS̃, v = lr
lt

ṽ, u = lz
lt

ũ, σ = σ0σ̃, p = ρl2z
l2t

p̃,

τrr = ρl2z
l2t

τ̃rr, τθθ = ρl2z
l2t

τ̃θθ , τzz = ρl2z
l2t

τ̃zz, τrz = ρl3z
lrl2t

τ̃rz, Γ = Γ∞Γ̃,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A3)

where the tilde denotes the corresponding dimensionless quantities. Hereafter the tilde is
dropped for brevity.

The continuity, momentum and constitutive equations (2.1)–(2.10) are non-dimensionalized
as

1
r

∂(rv)

∂r
+ ∂u

∂z
= 0, (A4)

∂v

∂t
+ v

∂v

∂r
+ u

∂v

∂z
= − 1

ε2
∂p
∂r

+ β

ε2

(
∂2v

∂r2 + 1
r

∂v

∂r
− v

r2

)
+ β

∂2v

∂z2

+ 1
ε2

(
∂τrr

∂r
+ ∂τrz

∂z
+ τrr − τθθ

r

)
,

(A5)

∂u
∂t

+ v
∂u
∂r

+ u
∂u
∂z

= −∂p
∂z

+ β

ε2

(
∂2u
∂r2 + 1

r
∂u
∂r

)
+ β

∂2u
∂z2 + 1

ε2
∂τrz

∂r
+ 1

ε2
τrz

r
+ ∂τzz

∂z
,

(A6)
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τzz = 1 − β

De

⎛
⎜⎝ Azz

1 − tr(A)

L2

− 1

⎞
⎟⎠ , (A7)

τrr = 1 − β

De

⎛
⎜⎝ Arr

1 − tr(A)

L2

− 1

⎞
⎟⎠ , (A8)

τθθ = 1 − β

De

⎛
⎜⎝ Aθθ

1 − tr(A)

L2

− 1

⎞
⎟⎠ , (A9)

τrz = 1 − β

De
Arz

1 − tr(A)

L2

, (A10)

De
(

∂Azz

∂t
+ v

∂Azz

∂r
+ u

∂Azz

∂z
− 2

ε2 Arz
∂u
∂r

− 2Azz
∂u
∂z

)
= 1 − Azz

1 − tr(A)

L2

, (A11)

De
(

∂Arr

∂t
+ v

∂Arr

∂r
+ u

∂Arr

∂z
− 2Arr

∂v

∂r
− 2Arz

∂v

∂z

)
= 1 − Arr

1 − tr(A)

L2

, (A12)

De
(

∂Aθθ

∂t
+ v

∂Aθθ

∂r
+ u

∂Aθθ

∂z
− 2Aθθ

v

r

)
= 1 − Aθθ

1 − tr(A)

L2

, (A13)

De
(

∂Arz

∂t
+ v

∂Arz

∂r
+ u

∂Arz

∂z
− Arr

∂u
∂r

− ε2Azz
∂v

∂z

)
= − Arz

1 − tr(A)

L2

, (A14)

where De = λc/lt and β = ηs/η0 = ηs/(ηs + ηp).
The non-dimensionalized advection–diffusion equation for the surfactant is

∂Γ

∂t
+ u

∂Γ

∂z
+ Γ

S
√

1 + ε2S′2

∂

(
S(u + ε2vS′)√

1 + ε2S′2

)
∂z

+ CΓ
v − uS′

√
1 + ε2S′2

= 1
Pe

1

S
√

1 + S′2

∂

(
SΓ ′

√
1 + ε2S′2

)
∂z

, (A15)

where Pe = l2z /Dslt and C = 1/S
√

1 + ε2S′2 − ε2S′′/(1 + ε2S′2)3/2.
The non-dimensionalized kinematic boundary condition at the surface r = S(z, t) has

the same form with the dimensional one, i.e.

v = ∂S
∂t

+ u
∂S
∂z

. (A16)
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Dynamics of surfactant-covered viscoelastic threads

The normal and tangential force balance at the surface is non-dimensionalized as

p − 1
1 + ε2S′2

[
2β

∂v

∂r
− 2βS′

(
ε2 ∂v

∂z
+ ∂u

∂r

)
+ 2βε2S′2 ∂u

∂z
+ ε2S′2τzz − 2S′τrz + τrr

]

= C
[
σ + (

Bκ∞κs − Bμ∞μs
) (

(Sut)
′

S
√

1 + ε2S′2 + Cun

)]

+ 2Bμ∞μs

1 + ε2S′2

[
S′ut + un

S2 − ε2S′′

1 + ε2S′2

(
∂(ut)

∂z
− ε2S′′un

1 + ε2S′2

)]
, (A17)

and

1(
1 + ε2S′2)

[
2ε2βS′

(
∂v

∂r
− ∂u

∂z

)
+ β

(
1 − ε2S′2

) (
ε2 ∂v

∂z
+ ∂u

∂r

)]

+ 1
(1 + ε2S′2)

[ε2(τrr − τzz)S′ + (1 − ε2S′2)τrz]

= ε2 ∂σ

∂z
+ ε2 ∂

∂z

[
(Bκ∞κs − Bμ∞μs)

(
(Sut)

′

S
√

1 + ε2S′2

)
+ Cun

]

+ ε2
√

1 + ε2S′2

S
∂

∂z

[
2Bμ∞μsS
1 + ε2S′2

(
∂ut

∂z
− ε2S′′un

1 + ε2S′2

)]

− 2ε2Bμ∞μsS′
√

1 + ε2S′2

[
S′ut + un

S2 − ε2S′′

1 + ε2S′2

(
∂ut

∂z
− ε2S′′un

1 + ε2S′2

)]
, (A18)

where Bκ∞ = κs∞/lrη0 with κs∞ the surface dilatational viscosity at Γ = Γ∞, Bμ∞ =
μs∞/lrη0 with μs∞ the surface shear viscosity at Γ = Γ∞ and σ = 1 + E ln(1 − Γ ) with
E = RgTΓ∞/σ0.

Expand the quantities into Taylor series of εr

u(r, z, t) = u0(z, t) + u2(z, t)
(εr)2

2
+ · · · , (A19)

v(r, z, t) = − r
2

∂u0

∂z
− ε2r3

8
∂u2(z, t)

∂z
+ · · · , (A20)

p(r, z, t) = p0(z, t) + p2(z, t)(εr)2 + · · · , (A21)

τrr(r, z, t) = τrr0(z, t) + τrr2(z, t)(εr)2 + · · · , (A22)

τzz(r, z, t) = τzz0(z, t) + τzz2(z, t)(εr)2 + · · · , (A23)

τθθ (r, z, t) = τθθ0(z, t) + τθθ2(z, t)(εr)2 + · · · , (A24)

rτrz(r, z, t) = τrz0(z, t) + τrz2(z, t)(εr)2 + · · · . (A25)

Arr(r, z, t) = Arr0(z, t) + Arr2(z, t)(εr)2 + · · · , (A26)

Azz(r, z, t) = Azz0(z, t) + Azz2(z, t)(εr)2 + · · · , (A27)

Aθθ (r, z, t) = Aθθ0(z, t) + Aθθ2(z, t)(εr)2 + · · · , (A28)

rArz(r, z, t) = Arz0(z, t) + Arz2(z, t)(εr)2 + · · · . (A29)
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F. Li and D. He

Substituting the expansions (A19)–(A29) into the kinematic condition (A16), the leading
order yields

v0(S, z, t) = ∂S
∂t

+ u0
∂S
∂z

= −S
2

∂u0

∂z
. (A30)

Thus
∂(S2)

∂t
+ ∂(S2u0)

∂z
= 0. (A31)

Substituting the expansions (A19)–(A29) into (A4)–(A14), we have τrz0 = 0, τrr0 =
τθθ0, Arz0 = 0, Arr0 = Aθθ0 and

∂u0

∂t
+ u0

∂u0

∂z
= −∂p0

∂z
+ β

(
2u2 + ∂2u0

∂z2

)
+ 2τrz2 + ∂τzz0

∂z
, (A32)

τzz0 = 1 − β

De

⎛
⎜⎝ Azz0

1 − tr(A0)

L2

− 1

⎞
⎟⎠ , (A33)

τrr0 = 1 − β

De

⎛
⎜⎝ Arr0

1 − tr(A0)

L2

− 1

⎞
⎟⎠ , (A34)

De
(

∂Azz0

∂t
+ u0

∂Azz0

∂z
− 2Azz0

∂u0

∂z

)
= 1 − Azz0

1 − tr(A0)

L2

, (A35)

De
(

∂Arr0

∂t
+ u0

∂Arr0

∂z
+ Arr0

∂u0

∂z

)
= 1 − Arr0

1 − tr(A0)

L2

, (A36)

where tr(A0) = Azz0 + 2Arr0.
The surfactant conservation equation (A15) at O(1) gives

∂Γ

∂t
+ u0

∂Γ

∂z
− CΓ

2S
∂(S2u0)

∂z
= 1

Pe
1
S

∂(SΓ ′)
∂z

. (A37)

The normal force balance (A17) at O(1) gives

p0 = τrr0 − β
∂u0

∂z

+ C
[
σ + Bκ∞κs − Bμ∞μs

S

(
∂(u0S)

∂z
− C

2
∂(u0S2)

∂z

)]
− Bμ∞μs

S
∂u0

∂z
. (A38)

The derivative of (A38) with respect to z is

−∂p0

∂z
= −∂τrr0

∂z
+ β

∂2u0

∂z2

− ∂

∂z

[
C

(
σ + Bκ∞κs − Bμ∞μs

S

(
∂(u0S)

∂z
− C

2
∂(u0S2)

∂z

))]
+ Bμ∞

∂

∂z

[
μsu′

0
S

]
.

(A39)
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Dynamics of surfactant-covered viscoelastic threads

The tangential force balance (A18) at O(ε2) gives

βu2 + τrz2 = 3βS′

S
∂u0

∂z
+ β

2
∂2u0

∂z2 − S′

S
(τrr0 − τzz0)

1
S

{
∂σ

∂z
+ ∂

∂z

[
Bκ∞κs − Bμ∞μs

S

(
∂(u0S)

∂z
− C

2
∂(u0S2)

∂z

)]}

+ 2Bμ∞
S2

∂(μsSu′
0)

∂z
+ Bμ∞μs

S2
∂u0

∂z
S′. (A40)

Substituting (A39) and (A40) into (A32) yields

∂u0

∂t
+ u0

∂u0

∂z
= 3β

S2

∂(S2u′
0)

∂z
+ 1

S2
∂[S2(τzz0 − τrr0)]

∂z

− ∂

∂z

{
C

[
σ + Bκ∞κs − Bμ∞μs

S

(
∂(u0S)

∂z
− C

2
∂(u0S2)

∂z

)]}

+ 2
S

{
∂σ

∂z
+ ∂

∂z

[
Bκ∞κs − Bμ∞μs

S

(
∂(u0S)

∂z
− C

2
∂(u0S2)

∂z

)]}

+ 5Bμ∞
S2

∂(μsSu′
0)

∂z
. (A41)

Equations (A31), (A33)–(A37) and (A41) constitute the 1-D model. Dropping the
subscript 0, we have

∂S2

∂t
+ ∂(S2u)

∂z
= 0, (A42)

ρ

(
∂u
∂t

+ u
∂u
∂z

)
= 3ηs

S2

∂
(
S2u′)
∂z

+ 1
S2

∂
[
S2 (τzz − τrr)

]
∂z

− ∂

∂z

{
C

[
σ + κs − μs

S

(
∂(uS)

∂z
− C

2
∂(uS2)

∂z

)]}

+2
S

{
∂σ

∂z
+ ∂

∂z

[
κs − μs

S

(
∂(uS)

∂z
− C

2
∂(uS2)

∂z

)]}

+ 5
S2

∂

∂z

(
μsS

∂u
∂z

)
, (A43)

τzz = ηp

λc

⎛
⎜⎝ Azz

1 − tr(A)

L2

− 1

⎞
⎟⎠ , (A44)

τrr = ηp

λc

⎛
⎜⎝ Arr

1 − tr(A)

L2

− 1

⎞
⎟⎠ , (A45)

∂Azz

∂t
+ u

∂Azz

∂z
− 2

∂u
∂z

Azz = 1
λc

⎛
⎜⎝1 − Azz

1 − tr(A)

L2

⎞
⎟⎠ , (A46)

966 A35-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.456


F. Li and D. He

∂Arr

∂t
+ u

∂Arr

∂z
+ ∂u

∂z
Arr = 1

λc

⎛
⎜⎝1 − Arr

1 − tr(A)

L2

⎞
⎟⎠ , (A47)

∂Γ

∂t
+ 1

S
∂(SuΓ )

∂z
− CΓ

2S
∂(S2u)

∂z
= Ds

1
S

∂(SΓ ′)
∂z

, (A48)

where tr(A) = Azz + 2Arr and C, κs, μs and σ are given in (2.13) and (2.17a,b)–(2.18),
respectively.
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