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PLASTICITY SOLUTION FOR A GLACIER SNOUT 
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ABSTRACT. The flow near the end of a glacier in a steady state is investigated by using a theoreti ca l model : 
a plasti c- r ig id materia l with a constant flow stress resting on a rough horizontal bed. Starting from an 
appropria tely chosen slip-line far from the end, the slip-line field is constructed numerically and continued to 
the end of the g lacier. T he field rapidly settles down to a form independent of the precise sta rting conditions. 
In the region of small surface slope it agrees with the approximate a na lyt ica l solution reported ea rl ier (Nye, 
195 1) . To avo id a breakdown in the method it is found necessary to modify the bed by a trivia l amount over 
the final 3 m. In prac tice the ice can lose con tact with the bed very near the end, a nd the effect of th is on the 
so lu tion is discussed. 

The velocity field is computed for a uniform a bla tion-rate. Other distributions of a bla tion-ra te could be 
accommodated, but there a ppears to be a cri tica l g rad ient of a blation-rate beyond which the slip-lin e 
fi eld fail s. 

R EsUME. Solution de plasticite pour la langue terminale d'un glacier. L'ecou lement pn:s de I'extremite d 'un g lacier 
en etat sta tionna ire est etudie it I'a ide d 'un modele theorique : un materiau plastique- rig ide avec une 
con trainte d' ecoulement consta nt sur un li t rugueux hori zonta l. Pa rtant d 'une ligne de g lissement choisie 
d'une ma niere a ppropriee lo in de I'extremite, le champ d e lignes de g lissement est construit numeriquement 
et continue jusqu 'a I'extremite du g lacier. Ce cha mp prend rapidement une forme independante d es conditions 
precises d e depa r t. Dans la region d 'une fa ible p ente superfi c ielle , il y a accord avec la solution analytique 
approchee publiee a nteri eurement (Nye, 195 1) . Pour eviter la non application de la methode, il s'est avere 
necessaire de modifier le lit d ' une grossiere va leur dans les 3 derniers metres. En pratique, la glace peut 
perdre le contact avec le lit tres pres de I'ex tremite et son effet sur la solu tion est discute. 

Le champ des vitesses est calcule pour une vitesse uniforme d e I'ablation. D'autres distributions de la 
vitesse d'ablation p euvent ctre u ti lisees, ma is il y a un grad ient cri tique de la vitesse d 'ablation en-dessous 
duquel le champ d e lignes de g lissement est faux. 

ZUSAMMENFASSUNG . Plastizitiitsl6sung fiir eine Cletscherzullge. Die E isbewegung na he am Ende eines 
stationaren G letschers wird mit Hilfe e ines theoretischen Modelles untersucht: plastisch- starres Materi a l 
unter konstanter Fliess-Spannung, das auf rauhem, hori zonta lem U ntergrund a ufliegt. Ausgehend von einer 
passend gewahlten G leit lin ie mit g rossem Zungenabstand wi rd das G leitl inienfeld numerisch konstruiert und 
bis zur G letscherzunge fortgesetzt. Das Feld nimmt rasch eine Gesta lt a n, d ie von d en genauen Ausgangs­
bedingungen una bhangig ist. Im Gebiet mit geringer Oberflachenneigung stimmt es m it der fruher mitge­
teil ten a na lytischen Naherungslosung (Nye, 195 1) uberein. Um ein Versagen d er Methode zu vermeiden , 
erweist sich e ine Abanderung des Bettes um einen unbedeutenden Betrag a uf d en letzten 3 m a ls notwendig. 
I n d er Wi rkli chkeit kann das E is sehr na he a m Ende den K onta kt mit dem Untergrund verli eren ; del' 
E influss diesel' Erscheinung a uf di e Losung wird untersucht. 

Das Geschwindigkeitsfeld wird fur g le ichformige Ablation berechnet. Andere Abla tionsverteilungen 
konnten berucksichtigt werden , doch scheint es einen kritischen Ablationsgrad ien ten zu geben , uber dem das 
G leitlin ienfeld versagt. 

J. THE PROBLEM 

The flow in the region close to the bottom end of a glacier is not adequately d escribed by 
present theory. The theoretical treatments of glacier flow are a ll based on the approximation, 
which is valid far from the end , that the top a nd bottom surfaces of the g lacier are almost 
para llel. If a model based on this approximation is extended towards the end , the top surface 
becom es more and more steeply inclined to the bed, and the approximation becom es useless 
before the end is reached . 

To pose the problem more precisely, let us consider a glacier fl owing down a uniform 
inclined plane in a state of plane strain, so that there is no component of velocity transverse 
to the main flow. Let some suitable boundary condition be imposed a t the up-stream end 
and let us assume a definite distribution of rate of ablation (wastage by melting and evapora­
tion ) on the top surface; this could be specified as a function either of a ltitude or of the 
horizontal co ordinate. W e may presume that a steady state will eventuall y be reached, and 
we m ay ask what is the form of the steady-state profile and what is the distribution of stress 
and velocity. The problem is not completely posed until the properties of the material and 
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the boundary condition on the bed have been specified. To choose these sufficiently realisti­
cally and at the same time have a tractable problem is a major difficulty. In these circum­
stances it seems useful to try to solve the problem for a plastic- rigid material with a constant 
flow stress (Hill, 1950, p. 128) and for a perfectly rough bed. This has the advantage of 
promising an exact (numerical ) solution to a definite problem. A refinement would be to 
assume a more general flow law for the material (say a power law) and some more realistic 
boundary condition at the bed (perhaps based on Weertman's theory of sliding), but the 
present paper does not go beyond plasticity with constant flow stress, although it does at the 
end consider some relaxation of the rough bed condition. W e assume a horizontal bed, for 
the sake of definiteness; there is possibly no difficulty in introducing a sloping bed, but this 
has not yet been investigated in detail. An earlier but unsuccessful attempt to solve the same 
problem was made by Lliboutry (1956) . 

2. METHOD 

We do not know, a priori, whether a solution exists in which the material is plastic right 
up to the end, as in Figure I a . For example, Figure I b shows another possibility where the 
material is d eforming plastically up to a limiting slip-line and behaves rigidly beyond. 
Possibilities of this sort will be looked at later (p. 710-12 ) ; meanwhile we tentatively assume 
the existence of a solution that is everywhere plastic. 

~, ~ 
P R 

a b 
Fig. J. Hypothetical states at the end of the glacier 

Take the origin at the end (Fig . 2) with O x horizontal and Oy vertical. Orowan ( 1949) 
has shown that at points far from the end an approximate profile may be found from elementary 
equilibrium considerations, as follows. Far enough to the left the surface slope is small and the 
h ydrostatic pressure is large compared with k, the maximum shear stress. So the normal 
pressure acting across PQ increases linearly from approximately zero at P to approximately 
pgh at Q, where p is the density, assumed uniform, a nd where PQ = h. For unit thickness 
perpendicular to the diag ram the force is then tpgh2. This must be balanced , since the m o tion 
is quasi-static, by the shear force kx acting across o Q, where oQ = x. H ence 

t pg!z2 = ki, 
or !z> = 2hox, ( I) 

where ho = k/pg. The constant ho, which is a characteristic length , has the order of magnitude 
10 m. The condition for the surface slope to be small and for k to be small compared with 
pg!z is the same, namely h ~ !zo. The parabolic profile ( I) is thus a valid approximation far 
from the origin. 

When the stress and velocity distribution corresponding to this approximate parabolic 
profil e is considered in more d eta il (Nye, 195 I), it is found that there are two possible approxi­
mate stress solutions in the plastic state, one corresponding to a compressive stress and strain­
rate in the top surface (compressing flow ) and the other to a tensile stress and strain-rate 
(ex tending flow) . Both approximate solutions give a slip-line field consisting of parts of cycloids 
(Fig. 3a, b ) . The corresponding approximate velocity solutions are such that a vertical line 
becom es distorted after a small interval into a quadrant of an ellipse. In compressing flow 
(Fig. 3a) the flow lines diverge, and so there is an outward normal component of veloci ty at 
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Fig. 2. Curve A: Orowan's parabolic profile. Curve B: improved parabolic profile 

the top surface. For a steady profile there must therefore be ablation at the top surface. In 
extending flow (Fig. 3b) the flow lines converge. If the convergence is large enough there will 
be an inward normal component at the top surface, which, for a steady profi le, must be 
compensated by accumulation (snowfall ) . If, on the other hand, the convergence were so small 
that the top flow line dipped less than the surface, extending flow could be associated with 
ablation . At the end of a glacier there is ablation- and, choosing between the two fields, it 
seems reasonable to start with that of Figure 3a (compressing flow) and to try to ex tend it to 
the right. However, as a numerical procedure this is not quite satisfactory, because the fie ld 
of Figure 3a is not known exactly, but only to a first approximation in which the higher-order 
terms in ho/h are neglected. The fie ld is only known exactly in the limit h --+ w. 

To meet this difficulty we first take note of the close analogy (Nye, 195 I) between the 
present problem and a classical problem in plasticity theory, namely the weightless plastic 
material deformed between rough parallel plates . The slip-line field for this problem is shown 
in Figure 4 (Hill and others, 195 1; Hill, 1950, p. 228). The two plates are forced together 
and the material squeezes out sideways to left and right. Two rigid wedges are left at the 
centre. Now it is easy to show that the sam e sli p-line field is valid for the reverse problem 
where, in addition to the pressure on the plates, an excess pressure is applied to the ends o[ the 
block so as to force the plates apart. The material then flows inwards towards the centre, and 
all the velocities, shear stresses and pressure gradients are reversed in sign. ow allow the 
material to have weight. Any solution in the theory o[ plasticity [or a weightless material may 
be transformed into a solution for a material with weight by leaving the velocities unchanged 
and by adding to the stresses at each point a hydrostatic tension pg)l, where p is the d ensity, g 
is the gravitational acceleration, andy is the height of the point above a fixed horizontal p lane 
(see e.g. Nye, 1951 , p. 556) . The analogy we a re trying to set up is between the slip-line field 
of Figure 3a and the region o[ the field in Figure 4 that is outlined by a broken line, with the 

a b 

Fig. 3. Approximate cycloidal slip-line .fields and veloci~y distributions/or (a ) compressing flow and (b) extending .flow 
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material in this region moving from left to right. For the weightless material of Figure 4 
there is an approximately linear decrease in pressure along AB . If AB is suitably inclined to the 
horizontal, when the transformation is made to the material with weight, the added hydro­
static tension, which also varies linearly along AB, just cancels the pressure; so AB, which is 
a lready free from shear stress, by symmetry, also becomes free from normal stress. It thus 
becomes the free top surface of Figure 3a. The two slip-line fields are not exactly the same, 
because while AB is exactly straight and parallel to the other boundary the top surface of the 
glacier is not. Nevertheless, the correspondence is close enough to suggest how the field of 
Figure 3a may be ex tended . 

I~ C E F 

Fig. 4. Shp-line field for a plastic material diformed between rough, parallel plates. Only one half rif the block is shown. G is the 
centre. Shaded areas are undiforming 

In computing the field of Figure 4 Hill and others deduced, by consideration of velocities, 
that the slip-line C D was straight and that the slip-lines in CDE were radii and arcs of circles. 
They then extended the field to the right by a small-arc numerical process. They found that 
the field rapidly approached an asymptotic configuration in which successive slip-lines have 
the sam e shape ; this is the well-known cycloidal slip-line field of Frontard (I g22) and Prandtl 
(1923). The approach is accompanied by discontinuities of diminishing strength; discon­
tinuities propaga ting along the slip-lines are a llowed by the h yperbolic natureof the equations, 
but they are very severely damped at each reflex ion a t the plates. Hill and others likened the 
behaviour to the operation of Saint-Venant's principle in elasticity (a lthough in elasticity 
there a re no propagating discontinuities because the equations are elliptic) . To solve the 
glacier problem we copy this procedure. We start with a field of radii and arcs of circles and 
extend it to the right. The expectation is that, so long as the fi eld is started in a way consistent 
wi th the plasticity equations, the details of how it is started will not matter- it will quickly 
settle down to the approximately cycloidal fi eld of Figure 3a. We can then continue the numerical 
computation to find the field in the tip region of the glacier, where the cycloidal field is no 
longer even approximately valid. 

Accordingly, the problem is set up as in Figure 5. The material obeys the equations of 
plasticity with constant flow stress k, and is weightless. On the horizontal plane y = 0 we 
assume Txy = k. On the upper surface, whose shape is to be ca lculated , there is no shear 
traction but there is a normal pressure proportional to a ltitude pgy (p being the density when 
we later transform to a material having weight) . The left-hand boundary CA is taken as straight 
with the a ngle ACO = ! 7T - CXO , where CXo is a constant to be fixed later. On CA a shear traction 
k is applied in the sense shown; CA is then a slip-l ine. Since the top surface must meet CA at 
an angle of ! 7T its downward slope at A must be CXo. The normal pressure on CA is chosen to be 
uniform to satisfy the plasticity equations, and we give it the value pgH+ k to keep the stress 
continuous at A, where H is the y coordinate of A (the principal stresses at A are - pgH and 
- pgH- 2k) . On transforming to a material of density p we add a hydrostatic tension pgy 
everywhere. This frees the top surface of stress, as required , and gives a pressure on AC of 
pg (H - y )+k. 

The normal velocity on the lower surface is taken to be zero. On the upper surface the 
outward normal velocity is prescribed to be positive and is given as a function of x or y. In the 

https://doi.org/10.3189/S002214300001995X Published online by Cambridge University Press

https://doi.org/10.3189/S002214300001995X


PLA ST ICITY SOLUTION FOR A GLACIER SNOUT 699 

y 

...... 1· ---------of--! ---rr-----t-I ~. -ill ~ 
Fig. 5. The slip-line field is started as radii and circular arcs in CAB and extended by a small-arc process to the end of the glacier. 

Only selected slip-lines are shown. The profile and slip-lines are to scale (drawn by the computer) for a starting height AK 

of f oho ( ~100 m. ), this rather small starting height being chosen for clarity ill the figure .. larger starting heights and 
therefore longer glaciers were used for the computations rejJorted ill the paper. The boundaries shown between fields I, II 
and III are not of course sharp 

actual computation reported here it was taken as uniform with the value U/ y2, where U is 
a constant. If the rate of ablation were also uniform and equal to U/ y2, there would be a 
steady state. The normal velocity across CA will be determined later. 

The left-hand boundary and the conditions on it have been chosen to satisfy the plasticity 
equations . Since the shear stress on the bed and on CA is k, C is a stress singularity. The slip-line 
field is begun as radii and circular arcs in CAB. The sense of the shear tractions on CA and CB 

shows that the radii are a-lines and the arcs a re ,B-lines (Hill, r 950, p. r 34) . In continuing the 
field we expect, by analogy with the parallel-plate problem , to find three regions. A field (I ), 
analogous to the edge field in the parallel-plate problem , will be followed by an approximately 
cycloidal field (11 ), described by the approximate analytical solution valid for small surface 
slopes . As the solution is further extended the surface slope will become large and we enter the 
tip region (Ill) . Field I is of no particular interest ; it depends on the left-hand boundary 
conditions which were chosen arbitrarily in order to start the solution in a simple way. Field 11 
should agree with calculation and so checks the m ethod. Field III is the objective of the 
computation. 

The value of ao and the length of CA, which we denote by r, a re thus far arbitrary. r must 
be chosen fairl y large, say > roho, for otherwise field Il will not be a ttained before field III 
sets in ; a nd in this case field III would depend on the starting conditions, which we do not 
want to happen . Apart from this, the length of CA ought not to matter so far as field III is 
concerned. The choice of ao is more difficult. If ao is chosen very far from the values that the 
surface slope will take in fi eld 11 we can expect severe oscill ations in field 1. W e want to choose 
ao so as to make the transition from I to Il reasonably smooth . If CA is large enough, field In 
should not depend on the precise value of ao . H owever, it turns out, as we now show, that there 
are other restrictions on exo that may be found by considering the small-arc process for calculat­
ing the slip-lines . 

R eferring to Figure 5, EF is a typical ,B-line; suppose the field to the left of this slip-line is 
known ( EF could be, in particular, the circular arc AB ) . If EH is a small arc we can find the 
position of G (Appendix A) by using the plasti city equations and the top boundary condition. 
By the usual small-arc process the slip-line G M may then be found , where M is on the ex-line 
through F. Obviously M must lie on or above the lower boundary or the process will fail. SO 
FM, which is tangential to the bed at F, must not curve downwards. The necessary and sufficient 
condition for this is that HG should not be concave downwards, by H encky's first theorem 
(Hill , r 950, p. 136) . (The theorem shows that the change in the angle of the slip-lines between 
Hand G is the same as the change between F and M. ) In the critical case FM, and therefore HG, 

are straight. Let us see what this implies. 
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On the top boundary the principal stresses for the weightless problem are - pgy, - pgy - 2k. 
So on the boundary the mean compressive stress P equals pgy + k. By the plasticity relations 
along the slip-lines (Hill, I950, p. I35) 

Sp = -2kS4> on an ex-line, 

on a ,a-line, 

where 4> is the angle of the ex-line to O x measured anticlockwise. Applying these relations to 
the arcs, HG and HE (Fig. 5 inset) and eliminating PH we find 

PE - PG = 2k(Sa</> + op</», 

where Sa 4> and Sp 4> are the increments in 4> along HG and HE. Using the boundary values 
of p and putting YE - YG = t1 and ho = kl pg, this becomes 

t1 = 2ho( S" </> + Sp</». (4) 

In the limit of small arcs HE = HG = 0, say. Divide equation (4) by I) to give 

S" </> t1 Sp </> 
- S- = 2ho S - - S- , 

or, in the limit, 
I SIn ex I 

R = , /2ho + S ' 
where ex is the surface slope and R, S are the radii of curvature of the slip-lines, d efined in the 
usual senses by 

R - as,,' S - asp· 

The condition for the small-arc process to work may now be written as I IR ? 0 or, by (5), as 

SIn ex I 

V2ho ? - S· (6) 

We shall m ake two applications of this condition, one now and one later. At A in Figure 5, 
S = - r where CA = r. So (6) gives 

Thus, if exo is chosen too small, zero for instance, the initial ex-element PQ will curve downwards 
a nd the process will fail. If, on the other hand , exo is chosen much too large, PQ will curve 
upwards rather sharply. It seems likely that, in this case, the next or a later element of the 
ex-lines will curve downwards, thus transferring the breakdown to a later step- but this has 
not been studied . T o avoid such oscillation and consequent breakdown exo was chosen so as to 
satisfy the eq uality sign in (7) . It is readily shown that, in terms of H (=YA ) rather than r, 
condi tion (7) may be written 

ho 
tan exo ? H + ho. (8) 

The length of the glacier is known a priori if we assume that the shear traction k is main­
tained on the horizontal bed right up to the end. (We sha ll find later that this assumption 
may not be true, but it still provides a convenient practical way of fixing an origin of x in 
advance.) A balance of horizontal forces (Appendix B) then gives 

Lho = t H 2 + Hho, (9) 

where L = K O (Fig. 5), which is essentially the sam e as equation ( I ) except for the last term . 
It is of interest that (9) is independent of how exo is chosen. A formula for co rather than KO 

would not have this property. 
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Small-arc process. Having chosen rand exo the numerical process is started at A in Figure 5, 
and is designed to find the next ,B-line to AB . I t is then repeated to find successive ,B-lines. The 
details are given in Appendix A. The computations were programmed in ALGOL for an 
Elliot 503 computer (Computer Unit, Bristol University) . H was taken as 20ho (L = 220ho) 
and the arc AB was divided into at first 20 intervals and later into 40 intervals. Further 
computations were made for H = 20 ,hho (L ~ 428ho) to check that field III was indepen­
dent of H. exo was fixed by the equality sign in (8) . The first ex-element PQ is then straight 
in the limit of small arcs . With the finite arcs used it did in fact curve upwards slightly (for 
20 intervals and H = 20ho, <PA = 0 ' 7378, <p p = 0'7194, <PQ = 0 ·7225 ). This difference 
between <pp and <PQ is preserved exactly down to the bottom elem ent BS, so S is slightly 
above the bottom, as required. 

The procedure computed the slip-lines in fields I and 11 satisfactorily. For 20 intervals 
the computation time was between o· 2 and 1 sec. for each ,B-line (depending on how much 
information was placed in the backing-store for later use) . 

Break-down near the terminus. N ear the terminus the computation of the slip-line field breaks 
down because the typical arc HG (Fig. 5) begins to curve downwards. FM therefore curves 
downwards too and the computation must stop. W e can see that this is inevitable, as follows. 

First we show that the curva ture of the ,B-line at F (Fig. 5) is infinite (Hill and others, 
195 1, p . 52 ) . vVith origin at F the ex-line through F is, say, 

y = axn + bx n+ I + 

The curva ture of the ,B-line at F is then 

. dy /dx nax n- I + .. . 
hm - - = hm -----­
x .... 0 Y 0 axn+ ... ' 

which is infinite whatever the value of n. 
Now, by H encky's second theorem (Hill, 1950, p. (38), as one passes along an ex-line the 

radius of curvature of the successive intersecting ,B-lines changes by the distance traversed. 
Since the radius of curvature of the ,B-line at F is zero, the radius of curva ture of the ,B-line 
at J is FJ, where FJ is the a rc length . So criterion (6) for the ex-line through J to curve upwards 
may be written 

sIn ex 1 
-- :::>- ­
Y 2ho "'" FJ 

(S being negative) . As we approach the origin ex --+ i1T, because assuming the m a terial is 
plastic up to the end this is the only value that is compa tible with a free top surface and a 
bed which is a surface of maximum shear stress. So the criterion becom es 

Y2ho 
FJ ;;::, - .-- ;;::, 2ho. 

sIn ex 

But from Figure 5 it is clear that FJ must continually d ecrease; so when FJ becomes less than 
2ho, if not before, we must expect the computa tion to fail on the ,B-line through J. It does so 
in fact when x at J is - 0 ' 3ho, that is about 3 m . from the end . The break-down thus occurs 
extremely close to the end , in a region where the resul t of the computation may not be of 
physical interest- for in real glaciers factors outside those in the present model m ay dominate 
the scene within a few m etres of the ice edge (irregulari ties in the rock bed and in ablation ra te, 
and melting on the bottom surface) . Nevertheless, the failure cannot be dismissed , because 
while the slip-line fi eld remains open-ended we cannot be sure that it is part of a valid 
solution to any physical problem. 

The difficulty may be met by modifying the lower boundary. One way is arbitrarily to 
make the lower boundary foll ow the last valid ex-line, or any preceding ex-line. But we can 
solve a problem closer to the one originally posed if we continue the slip-line field further to 
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the right in the following way. When the point is reached in the computation at which the 
element FM (Fig. 5) curves downwards, instead of declaring the method to have broken down, 
we redefine the lower boundary to follow this slip-line. Thus, in Figure 6, AB curves upwards 
and a new point C is taken as the beginning of a new a-line. But CD is found to curve down­
wards, so the bed, which is horizontal up to c, is made to follow the slip-line. Clearly, there is 
one less arc element in FD than in EC; so as successive ,B-lines are computed elements are lost, 
one for each step, and the field finally terminates at G. This procedure results in a full solution 
to a problem that is very close to, but not identical with, the original one. The y-coordinate of 
G is - 0 ' 00336ho (see Table I ) ; thus the bed curves down by 3 cm. over the final 3 m . of its 
length. For all practical purposes, but not in theory, the problem has been solved for a 
horizontal bed. 

TABLE I. VALUES AT EXTREMITY OF GLACIER 

H n y G cp G j Eo 
(radians) 

20ho 20 - 0'00338 3ho - 0 ' 06087 177 3' 46 U/ho 
20Y 2ho 20 - 0'003378ho - 0 ' 06084 233 3 ' 35U/ho 

20ho 40 - o· 003367ho - 0' 06084 354 3 ' 22U/ho 
20Y 2ho 40 - o · 003362ho - 0 ' 06080 466 

(H = starting height ; n = number of interva ls on first ,B-line ;yG, cp G are values 
ofy and cp at end point ; j = number of in tervals a long surfa ce; '0 = surface 
compressive strain-rate a t end point. ) 

The lower boundary of the plastic region is an envelope of slip-lines up to C (Fig. 6), but 
is a slip-line from C to the end; the field in the parallel-plate problem (Fig. 4) behaves in just 
the same way, EF being an envelope and FG a slip-line. 

Velocities. The velocity field is computed from right to left as in the corresponding parallel­
plate problem. The boundary condition on the top surface is that the outward normal 

I r 

H 

~ 
-lm. 

y 

~========~=============B~==~~~~ ___ X AL- C 0 J H G 

Fig. 6. Computed slip-line field (to scale) very near the end rif the glacier. Only selected slip-lines are shown. C is the critical 
point at which the bed ceases to be horizontal. Inset : final triangular element, not to scale 
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component of velocity is Uhh, a constant; or, in terms of the velocity components u, v 
parallel to the slip-lines, 

u+ v = U. ( IQ) 

On the lower boundary v = o. The fundamental equations govermng the variation of u 
and v along the slip-lines are (Hill, 1950, p. 136) : 

du - v dcp = 0 on an ex-line, (I I) 

dv + udcp = 0 on a ,B-line. ( 12 ) 

At G in Figure 6 the boundary conditions give u = U, v = o. Since v = 0 on the ex-line CG, 

it follows from ( 11 ) that du = 0, and therefore u = U on CG. In particular UH = U, VH = o. 
At I we have, from ( 12) applied to HI, 

Vr-VH + t(Ur + UH) (cpr-CPH) = 0 

and, from the boundary condition, 
Ur + VI = U. 

The cp values being known, these two simultaneous equations may be solved for UI and VI. 

In a similar way the velocities are computed at ], K and L, and so on for successive ,B-lines, 
up to the line CB ... E . The next point A is computed by using (I I) along AB together with 
v A = o. And so the computation continues up to the circular arc AB in Figure 5. Within 
CAB (Fig. 5) the ex-lines are straight. So, from ( I I), U is constant a long the ex-lines. Therefore 
u = u( cp ). Introducing this relation in ( 12) with v = 0 on CB, shows that, within CAB, 

v = v( cp ). Therefore v is constant on CA. The functions u( cp ) and v( cp ) are known from the 
values ofu and v on AB. In particular, the constant value of v on CA is found from the computed 
value of v at A. Thus, to maintain the outward flow across the top surface of the glacier, 
material has to be fed in across CA at a uniform rate whose component normal to CA is -VA . 

The direction of motion of material just after crossing CA (on a radial line through c) is 
uniform and not, in general, parallel to the bed. C is a velocity singularity. 

In the para llel-plate problem of Figure 4 the normal velocity across CD has to be compatible 
with a rigid-body motion of the material to the left of CD. That is why CD is straight- because 
then the normal velocity across it comes out to be uniform and therefore compatible with 
rigid-body motion. In the glacier problem (Fig. 5) CA was chosen straight and the normal 
velocity across it likewise comes out to be uniform, as we have just seen. We could then, if 
we wanted to, have rigid material to the left of CA. But whereas in the parallel-plate problem 
this feature is essential, in the glacier problem the conditions to the left of CA are left unspecified. 
The left-hand boundary condition in the model is not supposed to represent reality; it is 
merely a mathematical device for starting the slip-line field, and therefore further discussion 
of how it might be realized physically would be academic. 

The computation described was made for a uniform normal velocity on the top surface, 
corresponding to a uniform ablation rate in the steady state. But the same slip-line field 
should be valid even when this velocity is allowed to be non-uniform. The velocity field could 
be computed by an identical method, except that U in equation ( IQ) would be a function of 
position. There is, however, a further condition to be satisfied : that the sign of the plastic 
work should be everywhere positive. For U uniform there is no reason to suspect that the 
computed solution does not meet this condition; but if U is non-uniform it could be violated­
as may be seen as follows. A discontinuity in U in the sense shown in Figure 7 would lead to a 
discontinuity in u across an ex-line as indicated. The sense of the discontinuity in u is opposite 
to the sense of the shear stress, and so negative work is done. The slip-line field is therefore 
invalid for such a distribution of U. (A discontinuity of the opposite sense is compatible with 
the slip-line field. ) If attention is confined to continuous variations there is presumably a 
critica l gradient of ablation rate beyond which the slip-line field is invalid. The critical case 
evidently occurs when ablation decreases with altitude- which is, of course, unfortunately, 
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the variation normally found . Very rough calculation shows that the solution is likely to fail 
when the ablation gradient exceeds about 1 0 per cent in o· I km. , measured along the glacier 
surface- so the solution appears to have a useful range of validity. 

Fig. 7. A discontinuity in ablation rate is associated with a discontinuity in velocity across an a-line 

3. R ESULTS 

(i) Profiles. Let us look first at the computed profile and compare it with the Orowan 
parabola of equation ( I ) . The lower curves in Figure 8a show h (computed) - h (Orowan) 
plotted against x for two different starting heights. The computed profiles oscillate at first in 
field I but, as expected , they rapidly settle down in field II to a single steady curve that lies 
about I' 5ho below the parabola. 

We can improve on the Orowan parabola as an analytical approximation by replacing 
the linear distribution of normal pressure on PQ (Fig. 2) by the more accurate distribution 
given by the cycloidal slip-line field (Nye, 195 1). The latter gives an average pressure on PQ 
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Fig. Ba. Curves A, A': h (computed)- h (Orowan) plotted against x for two different lengths qf glacier. Curves 
B, B': h (computed)- h (improved parabola) plotted against xfor two different lengths of glacier 
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of ! pgh+ t 7Tk, III contrast to the value of t pgh assumed before. Balancing horizontal forces 
then gives 

tpgh2+ t 7Tkh - ki = 0 , 

which , by making the substitutions 

h' = h+ t 7Tho, i' = i + t 7T2ho, ho = k/pg, 
m ay be written 

h'2 = 2ho i' . 

Thus the improved profile (13) is exactly the same parabola as tha t of equa tion ( I), but with 
its apex shifted downwards by ! 7Tho ~ 16 m . and to the right by }7T2ho ~ 12 m . (Fig. 2 ) . 

I t passes through the origin 0 with a slope of 2/7T ~ 0 ·64. 
By using this m odified parabola the agreem ent with the steady computed profile in field II 

is much improved (Fig. Ba, upper curves), the difference being typically 0·04ho ~ 0 ·4 m. 
The same argument provides an improvem ent on the well-known a pproximate formula 

obtained by considering the shear stress on the bed, namely 

k = pghex (ex small ), (14) 

where ex is the angle of the top surface. For, by considering the equilibrium of the material 
between x and x + dx, we have 

d 
dx (u x h) = k 

where Ux = - t pgh=F t7Tk, neglecting terms of order pgh(k /pgh)' . The upper sign refers to 
the case in hand (compressing flow ), and the lower sign to extending flow. Putting 
dh /dx = - tan ex and solving for k gives 

k = pghex ( I ± t7TCX) , ( 15) 
neglecting terms of order pghex3• 

The first approximation (14) leads on integration to the Orowan parabola ( I), while the 
second approximation (15) with the upper sign leads to (13). It will be seen that the formulae 
for the two types offlow differ in the second approximation but not in the first . When applied 
to the computed profile, the right-hand side of (14) gives va lues about IQ per cent too low in 
field 1I. This is the order of error expected (for the proportiona l error is of order ex and a t 
x = - l ooho, for example, ex ~ o· oB). On the other hand, formula ( 15) with the upper sign 
brings the error down to about I per cent in field II (Fig. Bb). (Figure Bb shows once again 
how the two different starting heights produce curves tha t oscillate in field I , but then settle 
down to a common steady curve.) 

It should be emphasized that formulae such as (14) and (15) cannot hold in all circum­
stances. For example, (15) is in error by 90 per cent in fi eld I , even though ex is less tha n 0·07. 
This is because there does not exist, in genera l, any unique rela tion between h and ex. On the 
contrary, both are d etermined a t each x by the bounda ry conditions. The fact that formulae 
(14) and (15) give definite rela tions between h and ex that are independent of x, and therefore 
independent of the proximity of the left- and right-hand boundaries (provided they are distant), 
is an unobvious result that is to be regarded ra ther in the sam e way as Sa int-V enant's principle 
in elasticity. The formulae hold when the steady field II conditions have become established . 

The same principle no doubt applies outside the realm of constant flow-stress plasticity. 
The generalization of field II to a more genera l flow law is car ried ou t in (Nye, 1957) . The 
a x distribution is no longer elliptical and the correction term in equation (15) will then need 
modification. Thus, the correction term in (15) is only applicable in constant flow-stress 
plasticity. The leading term, on the other hand, has a wider relevance if k is interpreted as 
the shear stress on the bed . 

(ii) Stresses. The computer was programmed to evalua te p, cp, U, v a t a ll the grid points of 
the slip-line field. It also evaluated the distribution of the Cartesian stress components a x, ay, T xy 
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Fig. 8b. T est of theoretical relation between h and Cl. The right-hand side of formula (15) is plotted against x for two different 
lengths of glacier (full Cl/rve : starting height 20 \1 2ho; broken curve : starting height 20ho) 

and velocity components u x, Vy for certain fixed values of x, by interpolation between grid 
points, and compared them with the values given by the approximate analytical solution. For 
example, Figure 9a shows the three stress components at x = - I ooho. (The difference between 
results for the two starting values H = 2oho and 2o Y 2ho is nowhere more than o · oo7k.) 
The approximate a nal ytical solution (Nye, 195 I , p. 558) is 

ay y-h 
----
k 

T x y 

k 

ha ' 

Y 
1 - -

h ' 

( 16) 

and neglects terms of order ho/h. The stresses predicted by (16) should therefore agree with 
the computed stresses to order (ho/h)k = o' 08k. This expectation is confirm ed; the two 
curves for ax and the two for ay are indistinguisha ble on the scale of the figure. Txy at the 
surface shows the greatest departure, being o' 140k compared with zero. 

Figure 9a to e show how the departure of the approximate solution (broken lines) from the 
computed solution (full lines) grows towards the terminus, until a t x = - 0 ' Iho there is no 
longer any resemblance. It is striking that ay and T xy, which are linear iny in the approximate 
solution, remain linear in y to high precision in the computed solution, even as close to the 
terminus as x = - ha and x = -0 ' Iho. ay is in fact very closely approximated by 

ay = pgy+ f (x) (17) 
throughout the entire range. In the equilibrium equation 

,(hxy Oay 

a~+ay = pg, 
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the first term is zero on y = 0 by the boundary condition Txy = k (we exclude the end 
region x > -0 · 3ho where the bed ceases to be horizontal) . So, near enough to y = 0, ay will 
necessarily be exactly represented by equation (17). But for the other y (17) cannot be exact 
because it would imply OTXY/OX = 0 for all y, which is by no means true. In other words, the 
non-linearity of ay with y, which is barely perceptible in the graphs, is essential for satisfying 
the equations. 

(iii) Velocities. Figure l oa to e show the Cartesian velocity components U x, Vy as computed 
(full lines), and as calculated (broken lines) from the approximate formulae (Nye, 1951 , 
p. 562) 

where V = _(dq 
_ it!!:.) 

dx hdx 

U = Un s/h, 

Un = V/v2, 

U x = U-!7TV+2V{I-(I -~rr I 
Vy 

Vy = h' 

( 18) 

(q = discharge, 0: = surface slope, Un = velocity normal to the surface, u = m ean ux, 
s = distance a long the surface from the end). The difference from the approximate analytical 
solution is quite small at x = - l ooho and grows towards the end, as expected. Nevertheless 
Vy remains approximately linear iny, so that the vertical strain-rate Eyy remains approximately 
uniform with y even down to x = - ho. (At x = - 0 · I ho, Vy becomes very small and negative 
to follow the downward sloping bed .) The variation of U x with y, which is initially elliptical, 
becomes more nearly linear towards the end, but even a t x = - 0· I ho it is still appreciably 
non-linear, so tha t hom ogeneous simple shear would not be a very good representa tion. 

(iv) Strain-rates. It is of interest to compute the rate of compression (i) along the bottom 
and (ii ) along the top surface. Both distributions (Fig. I la, b) show a discontinuity in field I 
that emanates from A in Figure 5 and propagates with diminishing intensity along the slip­
lines AB, BR, etc . In the approximate solution ( 18) the strain-rate component oux/ox at given 
x is independent of y, and in agreement with this the two curves in Figure I I a run close 
together in field H . In field IH the strain-rate on the bottom reaches a maximum compression 
of o · I I V /ho at about x = - 2· 7ho. (For example, if ho = 1 0 m. and V = 1 0 m ./yr., which 
corresponds to an ablation rate of 7· I m. /yr. , this is a compression of I I per cent per year 
at 27 m . from the end. ) In the extrem e tip region - 0 · 3ho ~ x ~ 0, where the bed has been 
mad e to follow a slip-line, the strain-rate on the bed is necessarily zero. 

The compressive strain-rate in the surface rises steadily (Fig. I I a, b ) in fields Hand IH 
and goes up very steeply near the end. Computed values of the surface compression-rate Eo 
at the extreme end are shown in Table I (p. 702 ). A value of about 3 ·2 V /ho is indicated in 
the limit as H --7 00 and n --7 co . 

Theoretically, it may be shown (Appendix C ) that Eo = - V /So, where So is the radius of 
curva ture of the final ,8-line (of infinitesimal length ) at the end. But in Figure 6 the radius 
of curvature of the ,8-line at C is zero, by the argument given previously, and hence, by H encky's 
second theorem, So is the a rc-length CG. Thus Eo = - V /CG . The computed value of Eo is 
consistent with this result. 

W e shall refer to observa tional evidence on the surface strain-rate at the end of a glacier 
in Section 5 (p . 7(2 ). 
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4. POSSIBLE END CONFIGURATIONS 
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Having d iscussed a particular solution in which the glacier deforms right up to the end , 
we may now consider some other possible terminations. Provided the upper and lower 
boundary conditions continue to hold, and provided the m a terial remains p lastic, the slip-line 
field must continue in the way we have described. One way of terminating it, as mentioned 
earlier, is arbitrarily to m ake the bed follow first the envelope of the ex-lines and then a 
particular ex-line of the solution. All boundary conditions are then automatically satisfied. The 
solution described is an example of this where the particular ex-line is the one passing through 
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the critical point C in Figure 6. But any other preceding ex-line, such as PQ in Figure I b, could 
just as well have been chosen as the bed.* 

A possible objection to solutions of this type is that they assume that the shear traction on 
the lower boundary remains equal to the critical value k right up to the end. It is commonly 
observed that at the end of a glacier the ice does not make contact with the rock bed over its 
whole area, presumably because the normal pressure is insufficient. But further up the glacier, 
as the normal pressure increases, the proportion of contact supposedly approaches 100 per cent. 
Within a metre or so of the ice edge the ice is often, but not always, completely out of contact 
with the bed; but we distinguish between this cantilevered region, which is considered further 
in Section 5, and the more extensive region where contact is less than 100 per cent. As a rough 
representation of the friction law that results in this latter region we may take 

~ __ p.p (p ~ kip.) } , 
' (19) 

k (p "):; kip.) 

where T is the shear traction and p is the normal pressure. p. is a coefficient of friction, but 
would not necessarily be equal to such a coefficient measured on a laboratory scale . 

Thus, if p falls below the critical value ki p. as the end of the glacier is approached, we 
cannot expect the full plastic friction to develop, and the boundary condition T = k on the 
bed must change. A detailed examination shows that it is not possible to extend the slip-line 
field beyond this critical point by going over to the boundary condition T = p.p. Therefore, 
beyond this point the material on the bed cannot deform plastically. According to a general 
theorem in plasticity theory, the deforming plastic region must be bounded by a slip-line 
(Hill, 1950, p. 151 ), across which the tangential component of velocity may be discontinuous. 
We shall find that there must be such a discontinuity, and therefore the bounding slip-line 
cannot be a ,B-line, because the condition v = 0 on the bed precludes a discontinuity there. 
It must be an ex-line, such as PQ in Figure I b, and P will be the point where p falls below the 
critical value ki p.. Now in the computed, fully plastic, solution with the almost horizontal bed, 
p falls as the end of the glacier is approached, reaches a minimum value at c in Figure 6 of 
0·875k (x = - 0·3ho), and then rises gradually to k. So if p. > 1/0·875, that is p. > 1·14, the 
normal pressure is always enough to produce T = k. We must then expect 100 per cent 
contact right up to the end (but see Section 5). The conclusion is that the solution described 
is valid under the friction law (19) provided p. > I· 14. Along other ex-lines, p never falls 
below o · 875k, and so for p. > I· 14 the bed can equally well be placed along anyone of them. 
(Incidentally, p is slightly less than k in a region that starts on the bed at x = - 0· 8629ho and 
extends to the end of the glacier; this means that the principal stress component approximately 
normal to the glacier surface is slightly tensile in this region.) 

If p. < 1·14, on the other hand, a point P is reached on the horizontal bed where the 
normal pressure becomes insufficient to maintain T = k, and the deforming plastic region 
must be terminated on the ex-line PQ. It is natural to suppose that the remainder of the glacier 
to the right of PQ moves rigidly, but this does not, in fact, provide a consistent solution, as 
can be seen as follows. Suppose the bed is exactly horizontal up to the end (as PR in Fig. Ib) 
and that the upper surface QR is subject to the same ablation rate as everywhere else. The 
velocity in PQR is then supposedly uniform and parallel to the bed, and, in order to maintain 
a steady profile, QR must be straight- but there may, in general, be a discontinuity in the 

* The solution for a strictly horizontal bed is found by first locating the ",-line whose intersection with the 
top surface lies on the x-axis. It begins between A and c in Figure 6 and curves first upwards and then downwards. 
The material between this ",-line and the x-axis is undeforming and moves with uniform velocity o· 955U parallel 
to the bed. There is no tangential discontinuity in velocity across the slip-line. Material thus passes into this 
undeforming region and then out again. The region, which is of length 0 ·47ho and maximum height 0 ·00I9ho, 

is probably stressed up to the yield point, but some or all of it could be below the yield point. The difference 
from the solution of Figure 6 is very slight. The slope of the ice surface at the end is 47·7 degrees. Note added ill 
proof. 
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slope of the profile at Q . It turns out on detailed examination that a balance of forces on the 
section PQR, both horizontal and vertical, now allows the angle PRQ to be determined (the 
tractions on PQ are known, and the average tangential traction on PR is fL times the average 
normal pressure) . The discontinuity in surface slope at Q is then calculable. Now v, the velocity 
along the ,B-lines, must be continuous at Q . The velocity normal to the surface is also continuous 
by the boundary condition. Therefore u, the velocity parallel to PQ, is discontinuous across PQ. 

Such a discontinuity across a bounding slip-line is usual in plasticity solutions, but it is, of 
course, necessary that its sense should be the same as that of the shear traction across the slip­
line, for otherwise negative work is done. The fact is that in the present problem the surface 
turns out to be re-entrant at Q, and the resulting discontinuity of u is then of the wrong sign. 
Therefore the postulate that PQR behaves entirely rigidly must be false. The correct solution 
for fL < I' '4 is unknown. Presumably there is at least one plastically deforming region 
within PQR. 

In brief, for fL > 1'14 we have a self-consistent solution for a bed which is for all practical 
purposes, but not exactly, horizontal.* For fL < 1'14 the complete solution is not known, but 
only up to the limiting slip-line PQ, which acts as a thrust plane. 

5. VALIDITY OF THE MODEL NEAR THE END 

On the bed within a few metres of the end of a glacier there will be melting because 
radiation can penetrate the ice and be absorbed at the ice- rock interface. This, and further 
melting by conduction of heat through the rock, cause the ice to lose contact with the bed, 
quite apart from the effect considered in the last section. Since our model ignores this effect 
(as well as the natural irregularities in the rock bed and the effects of moraine carried by the 
ice) it cannot be realistic within a few metres of the ice edge. 

At distances of more than a few tens of metres from the ice edge, however, it appears to be 
a useful representation. It might at first be thought that this cannot be so because the model 
gives a terminus angle of 45°, whereas the terminus angles of most temperate glaciers are 
considerably smaller, say 10° to 20° . But in Figure 12 the angle of the surface, cx, is plotted 
against distance from the end, taking ho = 10 m., and it will be seen that the angle diminishes 
rather quickly away from the end. If one excludes the last 10- 20 m., on the grounds that contact 
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with the rock bed is not complete, the angle of the surface takes values consistent with observa­
tion. One may also remark that m ost glaciers at present are retreating ; the terminus angles 
would probably be greater if they were stationa ry, as assumed in the model. 

The surface strain-rates shown in Figure [[ a and b may now be compared with Glen's 
observations ( Ig6 1) on Austerdalsbreen. H e found a fluctuating compressive strain-rate 
averaging o' I yr. - lover the last 220 m ., and noted that it was remarkable that the compression 
was m aintained down to his last m easured stake interval: over the interval 3 to I 9 m. from the 
end of the glacier there was still a compressive strain-rate of 0 ' 06 yr. - I. He concluded that 
strain occurred down to the point where the ice lost contact with the bed. * Figure I la and b 
shows that in the plastic model compressive strain-rates of o · 05 to o · 2 yr. - I occur in the 
surface in the range of x from - 200 m . to - 15 m. The Austerdalsbre results are therefore 
quite consistent in order of m agnitude with the conclusions of plasticity theory. The very high 
compression rates in the theoretical model , up to """'3 yr. - \ only occur within the last few 
m etres of the ice edge, and are not attained in practice if bottom melting frees the ice from the 
bed. It might be worth while looking for them at places where good contact is maintained. 
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APPENDIX A 

SMALL-ARC PROCESS 

In Figure 5 G is a typical top point of a ,8-line. The values of p, <p, x andy are assumed to 
be known at the points E and H. It is required to find them at G . 

Applying equation (2) to the arc HG we find 

PG+ 2k<PG = PH + 2k<PH, 

* Professor F. C. Frank points out (private communication ) that melting and drainage at grain boundaries 
caused by preferential absorption of radiation would give contraction of the ice even when it was out of contact 
with the bed. 
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where the right-hand side has a known value, say pgA. By the boundary condition at 0, 

PG = pgYG + k. (20) 
Eliminating PG we have 

c/>G = HA - ho- Yo ), (ho = k/pg ). 

The first-order expressions for the slopes of EO and HO give 

YG-YE = -(XO - XE ) tan {t7T - t(c/>E + c/>O)} 

and YO - _YH = (XO - XH ) tan t (c/>O + c/>H) . 

Equations (21 ), (22) and (23) are solved for Xo,Yo, c/>o by successive approximation. Starting 
with an approximate value of c/>o = C/>" say, the linear simultaneous equations (22 ) and (23) 
are solved for yo. Then c/>o is found from (2 1). If this value is c/>2 we have c/> 2 = 1 (c/>,), so that 
in this notation the equation to be solved has the standard form 

c/> = 1 (c/»· 
In fact in this case c/>: is a worse approximation than C/>" but if we use for a new trial value not 
~: but t(c/>I + c/>2) the process converges satisfactorily. c/>o being known, Xo andYG are readily 
found, and then Po from (20). 

Points on the ,B-line through 0 down to M are now found by a standard small-arc process 
(Hill, 1950, p . 14' , first method) . The bottom point N is d etermined by the equations 

c/>N = 0, (boundary condition) 

P N = PM - 2kc/>M, from (3) 

YN = 0, 

XN = XM +YM tan !c/>M. 

APPENDIX B 

ORIGIN FOR X 

Consider the horizontal forces on CAO in Figure 5. To the left they are 

!pgH' + k(L + CK), 
where AK = H and KO = L. To the right they are 

pgH2 + kH + kr cos (t7T -exo), 

where CA = r. But r cos (t7T - exo) = CK. SO balancing the forces gives 

Lho = tH' + Hho (ho = kjpg) 
as quoted in the text, equation (9). 

APPENDIX C 

SURFACE STRAIN-RATE AT THE END 

Figure 6 (inset) shows a small curvilinear triangle at the end of the glacier bounded by 
the surface 10, the bed HO, which is an ex-line, and a ,B-line HI. The velocity components at the 
vertices are as shown. By the boundary condition at I 

u+ v = u, (24) 
and by equation (12) applied to HI 

v+ t (u+ U)8c/> = 0, 
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where o<jJ is the increase in <jJ along HI. Eliminating u we find, to first order, 

v = - VS<jJ. 
If ~ is the length of IG, the rate of compression of IG is 

(u-v-V)/ V'2~ = - V'2v/ ~ 

= V'2VS<jJ / ~ 

= -V/So 
in the limit as ~ ---+ 0, where So is the limiting radius of curvature of the ~-line, which is the 
result quoted in the text. 
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