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AVERAGING FOR SLOW–FAST PIECEWISE DETERMINISTIC MARKOV
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Abstract

In this paper we consider the problem of averaging for a class of piecewise deterministic
Markov processes (PDMPs) whose dynamic is constrained by the presence of a bound-
ary. On reaching the boundary, the process is forced to jump away from it. We assume
that this boundary is attractive for the process in question in the sense that its averaged
flow is not tangent to it. Our averaging result relies strongly on the existence of densities
for the process, allowing us to study the average number of crossings of a smooth hyper-
surface by an unconstrained PDMP and to deduce from this study averaging results for
constrained PDMPs.
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1. Introduction

In this article we consider piecewise deterministic Markov processes (henceforth PDMPs),
introduced by Davis [7] in their Euclidean-mode setting. In this framework, a PDMP consists
of an ordered pair (X(t), Y(t))t≥0 on R

d × Y, where Y is, for us, a finite set. The motion of
the Euclidean variable X is the one described by a switching ordinary differential equation,
whose switches are parametrized by the mode process Y . This discrete Y-valued process Y
jumps between its possible states at X-dependent rates. We are interested in the interaction of
the X-component with a hypersurface B of Rd, when the dynamic of the underlying discrete
process Y is infinitely accelerated, resulting in a two time-scale process (Xε, Yε). The (small)
real ε indicates that the time-scale for Yε is of order ε while for Xε the time-scale remains of
order 1. We will also be interested in the averaging of the process when the X-component is
forced to jump, according to some boundary jump measure, when it reaches the hypersurface B
considered as a boundary. We are thus in the framework of averaging for constrained Markov
processes. A typical trajectory of the Euclidean variable is displayed in Figure 1.

Averaging for unconstrained Markov process, that is, without the presence of a boundary,
has been studied by several authors for decades and is well understood for a wide variety of
Markov processes. For instance, see [29] for continuous-time Markov chains, [23] for diffusion
processes, [15] for fractional Brownian motion, [9], [10], and [22] for piecewise deterministic
Markov processes, and [24] and references therein for a rich variety of other examples and
applications. The aim, when averaging the dynamic of the process, is to obtain a process that
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1440 A. GÉNADOT

FIGURE 1. A typical trajectory of the Euclidean variable Xε . The process starts at time 0 from Xε(0) = x0
and follows some flow parametrized by the initial mode Yε(0) = y0. At some random time, Yε jumps to
a new value y1, causing the flow of the Euclidean variable to change. On hitting the boundary B at time
TB

1 and at some point x1, the Euclidean variable jumps inside the domain delimited by B according to the
mode-parametrized jump measure νy1 (dx | x1). Then it continues its course according to the current flow.

And so on and so forth.

is simpler to study, but with properties that are qualitatively close to the initial model. This
explains the success of this method and why it has been, and still is, the object of so much
attention. For example, see [22] for applications of this method in neuroscience.

To the best of our knowledge, averaging for constrained Markov processes, i.e. with the
presence of a boundary, has not been the object of so much investigation, particularly in
the description of the averaging measure at the boundary. There is an intrinsic difficulty in
these problems which stems from the presence of two types of jumps: high-rate stochastic
jumps, those of the Y-component, whose dynamic is accelerated, and boundary-forced jumps,
those of the X-component. In [1], we adopted a standard approach to study a class of one-
dimensional and piecewise linear Markov processes with constraint. This approach is called
the ‘penalty method’, described in [20, Section 6.4]. This method consists in considering a
penalized process jumping at a fast rate when beyond the boundary rather than a process jump-
ing instantaneously at the boundary. Then a time change is performed in order to sufficiently
slow down the dynamic of the penalized process when beyond the boundary, allowing the
application of classical limit theorems for Markov processes. Let us also mention that the
authors of [5] set up a general method to study Markov processes with constraints. They called
this method the ‘patchwork martingale problem’. It has been successfully applied to reflected
diffusions [6].

Yet another approach is used in the present article to overcome the difficulty of handling
stochastic jumps at fast rates with the additional presence of forced jumps. As far as we know,
this approach is fairly original. For the first time, we circumvent the difficulty in studying the
interplay between the two time-scale PDMP and the hypersurface B without forced jumps.
For this purpose we use the study of the average number of crossings for piecewise smooth
processes performed in [1] and [3]. In these articles, Rice’s formula for the average number of
crossings of a hypersurface is obtained, and the so-called crossing measure at the boundary is
studied more specifically in [3]. One of the main assumptions in these articles is the existence
of densities for the process at any time. The problem of the existence of densities for PDMPs
has been extensively studied in [14] and [28]. In our setting, a set of sufficient assumptions
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Averaging for slow–fast PDMPs with an attractive boundary 1441

consists in supposing that the initial value of the process has a density, as well as the jump
measure at the boundary. Once the interplay between averaging and the crossing hypersurface
is described, we are able to handle the presence of forced jumps in the dynamic of the PDMP,
that is, to tackle the problem of averaging for a constrained PDMP.

Our main result is stated in Theorem 4, Section 3.2. We obtain the convergence in law
of the constrained two time-scale PDMP (Xε, Yε) towards an averaged process that is still a
constrained PDMP. However, this PDMP has only forced jumps at the boundary. The corre-
sponding averaged vector field and averaged jump measure governing its dynamic are fully
described. The averaged vector field corresponds, as in unconstrained averaging, to the vec-
tor field governing the dynamic of the Euclidean variable X averaged against the X-dependent
invariant probability measure π (X) associated to the mode process Y . The form of the aver-
aged jump measure at the boundary takes into account the interplay between the flow, the
boundary, and the jump measure. Indeed, the averaged jump measure corresponds to an
averaging of the mode-dependent jump measures (νy in Figure 1) against the measure π (X)
weighted by the strength of the collision of the Euclidean variable against the boundary B.
In the expression of these weights, this appears through the presence of the scalar product
between the outward normal vector of B and the vector field associated to the Euclidean
variable.

The present article is organized as follows. Section 2 is devoted to the study of PDMPs
without boundary. In Section 2.1 we present the construction of a PDMP in the Euclidean-mode
setting without boundary and recall an important averaging result obtained in this context.
Then, in Section 2.2, we make precise what this averaging result implies for the densities of
the process, when they exist. Section 3 is devoted to the description of averaging in interaction
with a hypersurface. The average number of crossings is considered and convergence results
for this number are presented in Section 3.1. These results are applied in Section 3.2 to obtain
an averaging result for a PDMP with the presence of a fully attractive boundary. An example
is considered in Section 4 along with two possible extensions of our results and an application
to a conductance-based neuron model. Section 5.3 is devoted to the proofs, and in particular to
the proof of our averaging theorem for PDMPs with an attractive boundary.

2. Averaging for a class of PDMPs without boundary

2.1. The model and its averaging

Notations and general assumptions. As usual, R is the set of real numbers, with R
∗+ the set of

positive real numbers. The space Rd, where d ≥ 2 is an integer, is endowed with the Euclidean
distance d with corresponding norm ‖ · ‖ and associated scalar product between points x and x̃
in R

d denoted by x · x̃. N is the set of positive integers. We let λd denote the Lebesgue measure
on R

d. In the following, Y = {y1, . . . , y|Y|} is a finite set of cardinal |Y|. The real T > 0 denotes
a finite time horizon.

Assumption A. The process that we consider is constructed from the following features.
Assumptions made about these characteristics are assumed to be true throughout the article.

A.1 For y ∈ Y, Fy is a continuously differentiable and bounded vector field on R
d. Moreover,

we assume that there exist constants κ1, κ2 > 0 such that

‖Fy(x)‖ ≤ κ1 + κ2‖x‖ for all x ∈R
d.
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1442 A. GÉNADOT

These hypotheses on the vector fields imply that for each y ∈ Y, the Cauchy problem

d

dt
x(t) = Fy(x(t))

with initial condition x(0) = x has a unique global solution generating a flow denoted
by φy(x, ·).

A.2 For (y, z) ∈ Y2, y �= z, the function qyz : x ∈R
d �→ qyz(x) ∈R

∗+ is continuously differen-
tiable and bounded. To this family of functions is associated a |Y| × |Y| jump intensity
matrix Q(x) (also called the transition rate matrix), for each x ∈R

d, defined, for each
(y, z) ∈ Y2, by

Qyz(x) :=
⎧⎨
⎩

qyz(x) if z �= y,

−qy(x) if z = y,

where qy(x) := ∑
z�=y qyz(x).

Description of the model. Let (�,F , (Ft)t∈[0,T], P) denotes a filtered probability space. We
define a PDMP in the Euclidean-mode setting as a càdlàg stochastic process (X(t), Y(t))t∈[0,T]
on the state space Rd × Y as follows. The continuous component, X, takes values in R

d and has
continuous paths, while the discrete one, Y , takes values in Y. The dynamic of the continuous
component is defined by the family of d-dimensional vector fields Fy indexed by y ∈ Y. The
behaviour of the discrete component is determined by the family of rate functions qyz for each
(y, z) ∈ Y2, describing the jumping rate between states y and z. The sample paths of a PDMP
(X(t), Y(t))t∈[0,T] are then constructed in the following way.

For any (x, y) ∈R
d × Y we define the survivor function

S(x,y)(t) := e− ∫ t
0 qy(φy(x,s)) ds, t ≥ 0.

This is the survivor function of a non-negative random variable. Let τ0 = σ0 = 0 and
(X(0), Y(0)) = (X0, Y0) be a R

d × Y-valued random variable. Assume that the process is built
until time τn−1, for n ∈N. Then we can define a random variable σn, the inter-jump time,
satisfying

P(σn > t | (Xn−1, Yn−1) = (x, y)) = S(x,y)(t), t ≥ 0.

We define the nth jump time by

τn := τn−1 + σn

and we set

(X(t), Y(t)) :=
⎧⎨
⎩

(φYn−1 (Xn−1, t − τn−1), Yn−1) for τn−1 ≤ t< τn,

(Xn, Yn) for t = τn.

The nth post-jump location (Xn, Yn) is a R
d × Y-valued random variable such that

Xn = φYn−1 (Xn−1, τn − τn−1)

and

P(Y(τn) = z | Y(τ−
n ) = y) = qyz(X(τn))

qy(X(τn))
.

We have thus constructed the trajectory up to the time horizon T .
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The following theorem states that the described process is a strong Markov process and
characterizes its extended generator.

Theorem 1. (Theorem 26.14 of [7].) Suppose that Assumption A holds. There exists a filtered
probability space such that a standard PDMP (X(t), Y(t))t∈[0,T] as constructed above is a
homogeneous strong Markov process. The extended generator A of the process is given by

A f (x, y) := Fy(x) · ∇x f (x, y) +
∑
z∈Y

qyz(x)( f (x, z) − f (x, y))

for functions partially differentiable with respect to the variable x and belonging to the domain
D(A), which is the set of all measurable functions f : Rd × Y →R, such that t �→ f (φy(x, t), y)
is absolutely continuous on R+ for all (x, y).

Averaging. Let us accelerate the dynamic of the component Y of the process by considering
a transition rate matrix Qε proportional to 1/ε, with ε > 0. In an equivalent way, one can also
consider that the Y-component evolves on a faster time-scale than the X-component by setting,
for t ∈ [0, T],

Yε(t) := Y

(
t

ε

)
.

This accelerated process is denoted by (Xε(t), Yε(t))t∈[0,T]. The PDMP (Xε, Yε) constructed as
described above now has two distinct time-scales. The variable Yε jumps on a fast time-scale
of order ε between the states of Y according to the Xε-dependent transition matrix Qε(Xε), and
between the jumps, the variable Xε evolves on a slow time-scale of order 1 according to the
system of ordinary differential equations

d

dt
Xε(t) = FYε(t)(Xε(t)), t ∈ [0, T].

The averaging problem consists in the study of the behaviour of the process when ε goes
to zero, that is, when the dynamic of the discrete component is infinitely accelerated. For this
purpose, this discrete process needs to possess some kind of asymptotic stability as considered
in the following assumption; see [9].

Assumption B. For any x ∈R
d, the time-homogeneous Markov chain on Y with generator

Q(x) is ergodic, that is, it visits with positive probability any state in Y, for any starting point.
We let π (x) denote its unique invariant probability measure on Y.

Assumption B implies that with x held fixed, the time-homogeneous Markov chain with
generator Q(x) admits a unique invariant measure π (x) to which the Markov chain converges
as time goes to infinity. Moreover, πy(x)> 0 for each y ∈ Y. We call π (x) the quasistationary
measure associated to the component Y (when X is held fixed to x). As proved in [9], the
quasistationary measure inherits the analytical properties of the vector fields and intensity rate
functions. For instance, here, the quasistationary measure π (x) is continuously differentiable
in x under Assumption A.

The acceleration of the dynamic of the Y-component will induce an averaging of the com-
ponent of the process with respect to the quasistationary measure π . We introduce the averaged
vector field F : Rd →R

d defined as

F(x) :=
∑
y∈Y

πy(x)Fy(x).
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Note that this averaged vector field is also continuously differentiable and bounded, thanks to
Assumption A.1. In this context, the following averaging result holds.

Theorem 2. (Theorem 2.2 of [9].) Suppose that Assumptions A and B hold. Given (x0, y0) ∈
R

d × Y, we let X denote the unique solution of the Cauchy problem

d

dt
X(t) = F(X(t)), t ∈ [0, T]

with initial condition X(0) = x0. Then, for any δ > 0, y ∈ Y and for any continuous function
f : [0, T] →R, we have

lim
ε→0

P
(∣∣∣∣
∫ T

0
f (t)1y(Yε(t)) dt −

∫ T

0
f (t)πy(X(t)) dt

∣∣∣∣≥ δ
)

= 0

and

lim
ε→0

P
(

sup
t∈[0,T]

‖Xε(t) − X(t)‖ ≥ δ
)

= 0.

This theorem states that the occupation measure associated to the fast component Yε con-
verges in probability towards a measure having for density the X-dependent quasistationary
probability associated to Yε. In the meantime, there is also uniform convergence within the
considered time window of the slow component Xε, in probability, towards its averaged version
X. Faggionato et al. [9] also obtained a large deviation principle associated to the considered
process. We will not need this refinement in the present article.

2.2. Densities and averaging

We begin with a fairly intuitive result about the existence of densities for the class of PDMPs
considered. For this purpose we define a measure γ on R

d × Y by

γ (dx, dy) := λd(dx)
|Y|∑
i=1

δyi(dy).

We will require the initial value of the process to have a density with respect to γ .

Theorem 3. (Corollary 5.4 of [28].) Suppose that Assumption A holds and that the initial
value (X(0),Y(0)) of the PDMP has a density f0 with respect to the measure γ . This density is
assumed to be continuous in x. Then, for any t ∈ [0, T], the pair (X(t),Y(t)) has a density ft with
respect to the measure γ , continuous in both x and t.

We will provide some details of this theorem. Before that, for convenience, we state the
hypothesis about the existence of a density with respect to ε.

Assumption C. The initial value (Xε(0), Yε(0)) of the PDMP possesses a density f0,ε with
respect to the measure γ . This density is assumed to be continuous in x and with supremum
norm uniformly bounded in ε.

In general, if they exist, the densities ( ft)t∈[0,T] of a PDMP satisfy a transport equation as
stated in equations (2.26) and (2.27) in [14]. Indeed, according to Theorem 1, the Dynkin for-
mula implies that for all bounded and measurable function g on R

d × Y, let us say continuously
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differentiable in x, we have∫
Rd×Y

g(x, y) ft(x, y)γ (dx, dy) −
∫
Rd×Y

g(x, y) f0(x, y)γ (dx, dy)

=
∫ t

0

∫
Rd×Y

∇xg(x, y) · Fy(x) fs(x, y)γ (dx, dy) ds

+
∫ t

0

∫
Rd×Y

∑
z∈Y

qyz(x)[g(x, z) − g(x, y)]fs(x, y)γ (dx, dy) ds.

This is a weak formulation for the following transport equation in conservative form:

∂tft(x, y) + div(Fy(x) ft(x, y)) =
∑

z∈Y\{y}
qzy(x) ft(x, z), t ∈ [0, T], (x, y) ∈R

d × Y. (1)

Assumption A as well as the continuity of the initial condition implies that the Cauchy problem
associated to (1) has a unique solution continuous in space and time; see for example [8,
Chapter III] or [25, Proposition 6.2]. From now on, we let ft,ε(x) denote this solution in the
two time-scale setting, as soon as Assumptions A and C hold. Depending on the shape of the
vector fields and intensity rate functions, the transport equation (1) is more or less difficult to
solve explicitly. For our purpose, we do not need such an explicit formula but will instead use
some properties of the solution. Let us give a simple example.

Example 1. Assume that Fy(x) and qyz(x) do not depend on x. Then, if Y is independent of
X(0),

ft(x, y) = E
(

f0

(
x −

∫ t

0
FY(s) ds

)
1y(Y(t))

)
,

where f0 denotes the density of X(0) with respect to the Lebesgue measure on R
d. We see that

if f0 is continuous and bounded in x, then so is ft(·, y) for any (t, y) ∈ [0, T] × Y.

This example emphasizes that ft transports the properties of f0 with respect to x over time,
as expected for the solution of a well-posed transport equation. In the context of averaging,
the behaviour of this regularity with respect to the parameter ε is of particular interest. To give
the following result, we need to define the density associated to the average process X. This
density at time t, denoted by f t, satisfies the following transport equation in conservative form:⎧⎨

⎩
∂tf t(x) + div(f t(x)F(x)) = 0, x ∈R

d, t ∈ [0, T],

f 0(x) = u0(x), x ∈R
d,

(2)

where u0 is the density of X(0), assumed to be continuous. Then, since divF is continuously
differentiable on R

d thanks to Assumption A.1, the Cauchy problem (2) has a unique solution
which is continuous in time and space; see for example [25, Theorem 6.3].

Proposition 1. (Proposition 2.1 of [22].) Suppose that Assumptions A, B, and C hold, and
moreover that for ε ∈ (0, 1] the density f0,ε does not depend on ε, that is, f0,ε(x, y) := f0(x, y).
Then we have

lim
ε→0

ft,ε(x, y) = f t(x)πy(x),
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1446 A. GÉNADOT

for any (x, y, t) ∈R
d × Y × [0, T], uniformly for x in any compact of Rd, where f t(x) is defined

via the Cauchy problem (2) with u0 = f0.

Remark 1. The above result implies that for any t ∈ [0, T] and any compact K of Rd, there
exists ε0 such that we have the following uniform bound:

sup
ε∈(0,ε0]

sup
x∈K

|ft,ε(x)|<∞.

As emphasized in the following example, continuing Example 1, Proposition 1 is fairly
intuitive when the processes Xε and Yε are fully decoupled.

Example 2. Assume that Fy(x) and qyz(x) do not depend on x as in Example 1. Then, if Yε is
independent of Xε(0) (whose density f0 does not depend on ε),

ft,ε(x, y) = E
(

f0

(
x −

∫ t

0
FYε(s) ds

)
1y(Yε(t))

)
.

If f0 is continuous, then the dominated convergence and ergodic theorems give

lim
ε→0

ft,ε(x, y) = f0

(
x − t

∑
y∈Y

πyFy

)
πy,

as required.

3. Averaging interaction with a crossing hypersurface and application to PDMPs with
boundary

3.1. A C1-hypersurface and its crossings

We will consider the interplay of the process (Xε, Yε) with B, a compact and connected
C1-hypersurface in R

d. As such, this hypersurface borders a connected and bounded domain
which we denote by D. The C1-defining function associated to D is denoted by ρ; see [19,
Section 1.2]. We write

nB(x) := ∇ρ(x)

‖∇ρ(x)‖
for the outward unit normal of B at x ∈ B. Moreover, for any δ > 0, we define the δ-tube around
B by

Tδ(B) := {x ∈R
d; d(x,B) ≤ δ}.

The Lebesgue surface measure associated to B is denoted by σB.

Assumption D. The hypersurface B may satisfy the following assumptions.

D.1 We assume that for any x ∈ B and y ∈ Y,

Fy(x) · nB(x) �= 0.

This implies that the trajectories of the flow are not tangents to the hypersurface B.
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D.2 We assume that for any x ∈ B,

F(x) · nB(x)> 0.

In other words, under this assumption, if it starts from a point in D, the hypersurface B
is fully attractive for the averaged process X.

D.3 We assume that for any x ∈ B and y ∈ Y,

Fy(x) · nB(x)> 0.

In other words, under this assumption, if the Euclidean component starts in D,
the hypersurface B is fully attractive for X whatever the value of the discrete
component Y.

Remark 2. Since B is compact and the vector fields and outward normals are continuous
functions, Assumptions D.2 and D.3 imply that there exists δ > 0 such that

inf
(x,y)∈Tδ(B)×Y

Fy(x) · nB(x)> 0

and

inf
x∈Tδ(B)

F(x) · nB(x)> 0.

Of course, Assumption D.3 implies Assumption D.2 (which implies Assumption D.1).

We proceed with the definition of the number of crossings of a hypersurface by a continuous
process.

Definition 1. (Number of crossings.) Let Z be a process in C([0, T],Rd). We say that Z crosses
the hypersurface B at time s ∈ (0, T) if Z(s) ∈ B and there is ε > 0 such that Z(u) /∈ B for u ∈
(s − ε, s + ε) \ {s}. For t ∈ [0, T], we let NB([0, t], Z) denote the number of crossings of the
hypersurface B by the process Z within the time window [0, t]. If the process Z is associated to
another process Y valued in Y, we let NB,y([0, t], Z) denote the number of crossings of B by Z
when Y(s) = y for any crossing time s.

Remark 3. Using the defining function ρ, under Assumption D.1, a crossing of B for the
Euclidean variable X is a crossing of 0 for the real-valued process ρ ◦ X.

The average number of crossings can be computed thanks to Rice’s formula as stated in the
following proposition.

Proposition 2. (Rice’s formula and averaging) Suppose that Assumptions A, B, C, and D.1
hold. Then we have, for each y ∈ Y,

E(NB,y([0, t], (Xε, Yε))) =
∫

B
|Fy(x) · nB(x)|

∫ t

0
fs,ε(x, y) dsσB(dx). (3)

Moreover,

lim
ε→0

E(NB,y([0, t], (Xε, Yε))) =
∫

B
|Fy(x) · nB(x)|πy

∫ t

0
f s(x) dsσB(dx). (4)

Proof. We have already noticed that under the stated assumption, the process has a density
at any time, continuous in both space and time and uniformly bounded in ε; see Theorem 3,
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Proposition 1, and Remark 1. The process Xε is continuous and piecewise continuously dif-
ferentiable, and the densities are continuous in both space and time, so we can apply [3,
Theorem 2.3] or [1, Corollary 2.11] to obtain the formula (3). Then, using Proposition 1 and
the dominated convergence theorem, we obtain (4). �

Remark 4. The above result does not imply that

lim
ε→0

E(NB([0, t], Xε)) = E(NB([0, t], X)

even if the family {Xε}ε∈(0,1] is a family of continuous processes. Indeed, consider for example
the case when d = 1. In this case the hypersurface reduces to a level B = {b}. The measure σB
is simply the counting measure and the normal to the surface can be taken to be 1. Continuing
Example 1, we have in this case, for t ∈ [0, T] and y ∈ Y,

E(NB,y([0, t], (Xε, Yε))) = |Fy|
∫ t

0
E
(

f0

(
b −

∫ s

0
FYε(u)du

)
1y(Yε(t))

)
ds.

This converges to

|Fy|πy

∫ t

0
f0

(
b − s

∑
y∈Y

πyFy

)
ds,

meaning that the probability that the Euclidean process crosses the level b when the mode is
equal to y is proportional to πy|Fy|. Consider now that Y = {−1, 1}, π−1 = π1 = 1/2, Fy = y,
and b = 0. Then

E(NB,1([0, t], (Xε, Yε))) =
∫ t

0
E
(

f0

(
−
∫ s

0
Yε(u) du

)
11(Yε(t))

)
ds

and also

E(NB,−1([0, t], (Xε, Yε))) =
∫ t

0
E
(

f0

(
−
∫ s

0
Yε(u) du

)
1−1(Yε(t))

)
ds

such that

E(NB([0, t], Xε)) =
∫ t

0
E
(

f0

(
−
∫ s

0
Yε(u) du

))
ds.

This converges to tf0(0), which is not equal to E(NB([0, t], X)) = 0 since X(t) = X0 for any t ∈
[0, T]. The problem here is that the times between two crossings, one up and one down, cannot
be uniformly minimized in epsilon. Assumptions D.2 and D.3 will prevent this phenomenon
from happening.

Remark 5. The quantity ∫ t

0
fs,ε(x, y) ds

that appears in Rice’s formula can be interpreted as the expectation of the local time spent by
the process around (x, y) ∈ B × Y, within the time window [0, t]; see [1].
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Remark 6. Assume that the law of Xε(0) is supported in D. Then, for ε ∈ (0, 1], we can
consider the number of up-crossings, denoted by N+

B,y([0, t], (Xε, Yε)), and the number of

down-crossings, denoted by N−
B,y([0, t], (Xε, Yε)), of the set B × {y} by the process (Xε, Yε).

Suppose that Assumptions A, B, C, and D.1 hold. Then we have, for each y ∈ Y,

E
(
N+

B,y([0, t], (Xε, Yε))
)=

∫
B

(Fy(x) · nB(x))+
∫ t

0
fs,ε(x, y) dsσB(dx)

and

E
(
N−

B,y([0, t], (Xε, Yε))
)=

∫
B

(Fy(x) · nB(x))−
∫ t

0
fs,ε(x, y) dsσB(dx),

where x+ = max (x, 0) and x− = − min (x, 0) for any real x.

We will now explain what the results of Proposition 2 imply about the behaviour of the
slow–fast process around the crossing hypersurface. Let TB

ε , for ε ∈ (0, 1], denote the first time
of crossing of B by Xε:

TB
ε := inf{t ≥ 0; Xε(t) ∈ B}

with the usual convention that inf ∅ = +∞.

Proposition 3. Suppose that Assumptions A, B, C, and D.3 hold. Then, for each y ∈ Y,

lim
ε→0

P
(
Yε
(
TB
ε

)= y; TB
ε ∈ [0, T]

)=
∫

B
Fy(x) · nB(x)πy(x)

∫ T

0
f s(x) dsσB(dx). (5)

More generally, for any measurable and bounded function h in R
d × Y,

lim
ε→0

E
(
h
(
Xε
(
TB
ε

)
, Yε

(
TB
ε

))
1[0,T]

(
TB
ε

))

=
∫

B

∑
y∈Y

h(x, y)Fy(x) · nB(x)πy(x)
∫ T

0
f s(x) dsσB(dx). (6)

Proof. The proof is postponed to Section 5.1. �

When considering Assumption D.1 instead of D.3, only the up-crossings of the hypersurface
will play a role.

Proposition 4. Suppose that Assumptions A, B, C, and D.2 hold. Assume that the law of Xε(0)
is supported in D. Then the results of Proposition 3 hold. More precisely, for each y ∈ Y,

lim
ε→0

P
(
Yε
(
TB
ε

)= y; TB
ε ∈ [0, T]

)=
∫

B
(Fy(x) · nB(x))+πy(x)

∫ T

0
f s(x) dsσB(dx).

More generally, for any measurable and bounded function h in R
d × Y,

lim
ε→0

E
(
h
(
Xε
(
TB
ε

)
, Yε

(
TB
ε

))
1[0,T]

(
TB
ε

))

=
∫

B

∑
y∈Y

h(x, y)(Fy(x) · nB(x))+πy(x)
∫ T

0
f s(x) dsσB(dx).

Proof. The proof is postponed to Section 5.2. �
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3.2. Averaging result for a class of piecewise deterministic process with boundary

The model. We are going to construct a PDMP (X, Y) = (X(t), Y(t))t∈[0,T] as in Section 2.1,
but constraining the Euclidean component X to stay in the domain D by making it jump when
it reaches the boundary B. The Euclidean component becomes a D-valued piecewise con-
tinuous and deterministic process with only forced jumps when it hits the boundary B. The
Y-component is, as before, a Y-valued piecewise constant process with purely stochastic jump
times.

For (x, y) ∈ D × Y, we define the hitting time of the boundary by the flow φy(x, ·) as

tB(x, y) := inf{t> 0; φy(x, t) ∈ B}.
For any (x, y) ∈ D × Y we also define the survivor function

S(x,y)(t) := 1[0,tB(x,y))(t) e− ∫ t
0 qy(φy(x,s)) ds, t ≥ 0.

This is the survivor function of a non-negative random variable. We proceed to the construction
of the process by recursion, as in Section 2.1. The only difference is the formulation of the
post-jump locations. Let τ0 = σ0 = 0 and (X(0), Y(0)) = (X0, Y0) be a D × Y-valued random
variable. Assume that the process is built until time τn−1, for n ∈N. Then we can define a
random variable σn, the inter-jump time, satisfying

P(σn > t | (Xn−1, Yn−1) = (x, y)) = S(x,y)(t), t ≥ 0.

We define the nth jump time by

τn := τn−1 + σn

and we set

(X(t), Y(t)) =
⎧⎨
⎩

(φYn−1 (Xn−1, t − τn−1), Yn−1) for τn−1 ≤ t< τn,

(Xn, Yn) for t = τn.

The nth post-jump location (Xn, Yn) is a D × Y-valued random variable such that with X̃n =
φYn−1 (Xn−1, σn), the distribution of Xn on D is given by

νy(dw | X̃n)1B(X̃n) + δX̃n
(dw)1Bc(X̃n)

where, for (x, y) ∈ B× ∈ Y, νy(· | x) is a probability measure on D. The distribution of Yn on Y
is given by

δYn−1 (dy)1B(X̃n) +
∑

z∈Y\Yn−1

qYn−1,z(X̃n)

qYn−1 (X̃n)
δz(dy)1Bc (X̃n).

That is to say, either X or Y jumps at the jump times, but not both. As in Section 2.1, the
component Y is a jump process that may jump at X-dependent rates. The component X evolves
according to a family of vector fields parametrized by Y and has only forced jumps when it
reaches the boundary, if it does so. Indeed, let us define the times of these forced jumps. We
set TB

0 := 0, and for i ∈N,

TB
i := inf

{
t> TB

i−1; X(t−) ∈ B
}
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with X(t−) := lims↗t X(s−). By construction of the process, P-a.s., we have

dX(t)

dt
= FY(t)(X(t)), t ∈ [TB

i−1, TB
i

)
, i ∈N.

The process X satisfies a switching ordinary differential equation with jumps at the boundary.
A detailed example is provided in Section 4.

Definition 2. Let t ∈ [0, T]. The number of jumps of X until time t is

pB(t) =
∞∑

i=1

1[0,t]
(
TB

i

)
.

The counting process pB counts the number of jumps from the boundary of the process X.

Proposition 5. Suppose that Assumption A holds and that

E(pB(T))<∞.

Then the process (X, Y) is well-defined.

Proof. See [7, Assumption 24.4 and Proposition 24.6]. �

Remark 7. The assumption

E(pB(T))<∞
is satisfied if, for instance, the jump measure has support in D far enough from B. Indeed, in
such a case, the process X can only reach the boundary a finite number of times over a finite
time horizon almost surely. More precisely, assume that there exists δ > 0 such that, for any
(x, y) ∈ B × Y, the jump measure at the boundary νy(· | x) has support outside the semi-tube
Tδ(B) ∩ D. Then, in this case, the number of times the process can reach the boundary B is at
most �Tδ−1 sup(x,y)∈D×Y ‖Fy(x)‖�, where �·� stands for the floor function.

Acceleration. Replacing the intensity operator Q by 1
ε
Q in the construction of the process, we

obtain a two time-scale process (Xε(t), Yε(t))t∈[0,T] as in Section 2.1. Its counting measure at
the boundary will be denoted by pB,ε. Our aim is still to study its behaviour when ε goes to
zero, that is, when the dynamic of the discrete component is infinitely accelerated.

Definition 3. (Averaged jump measure at the boundary and averaged field.) Suppose that
Assumptions D and D.2 hold. Recall that the averaged field is defined, for x ∈ D, by

F(x) :=
∑
y∈Y

Fy(x)πy(x).

For (x, y) ∈ B × Y, we define

μB
y (x) := πy(x)(Fy(x) · nB(x))+∑

z∈Y πz(x)(Fz(x) · nB(x))+
,

where π is defined in Assumption B. The averaged jump measure at the boundary is given by

ν̄(dx̃ | x) :=
∑
y∈Y

νy(dx̃ | x)μB
y (x).
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Remark 8. Note that, thanks to Assumption D.2, this average field is positive around the
boundary and that for each y, μB

y is well-defined.

The averaged jump measure at the boundary is thus a weighting of the boundary jump
measures at the boundary, with the weights taking into account both the invariant measure
associated with the process Y and the interactions between the flows and the boundary, as can
be expected from the crossing formula given in Proposition 2.

Assumption E. For any (x, y) ∈ B × Y, the measure νy(· | x) is absolutely continuous with
respect to the Lebesgue measure on D, with bounded and continuous density. Moreover, we
assume that the supports of these densities are in {x ∈ D; d(x,B) ≥ δ} for some δ > 0.

According to Remark 7, Assumption E implies that the number of jumps of this PDMP is
finite almost surely.

All the processes that we consider are càdlàg R
d-valued processes defined on [0, T], that is,

they belong to the Skorokhod space D([0, T],Rd). We consider this space endowed with the so-
called J1 topology; see [16] and the references therein. With these notations and assumptions
we obtain the following result.

Theorem 4. Suppose that Assumptions A, B, C, D.2, and E hold. Assume moreover that Xε(0)
converges in law towards some random variable X0, when ε goes to zero. Then the process
(Xε(t))t∈[0,T] converges in law, when ε goes to zero, towards the averaged process (X(t))t∈[0,T]
starting at X0 and the following hold.

1. The process X is piecewise continuously differentiable with jumps at times
(
T

B
i

)
i∈N such

that, for i ∈N,

T
B
i := inf

{
t> T

B
i−1; X(t−) ∈ B

}
with the conventions that T

B
0 := 0.

2. In between two jumps, for i ∈N and t ∈ [TB
i−1, T

B
i

)
the process X satisfies the equation

d

dt
X(t) = F(X(t)),

with initial condition X
(
T

B
i−1

)
.

3. At jump times, for i ∈N, X
(
T

B
i

)
is distributed according to the jump measure ν

(· |
X
(
T

B,−
i

))
.

Proof. The proof is postponed to Section 5.3. �

4. Examples and possible extensions

We start this section in Section 4.1 with an academic example showing what kind of situa-
tion our main result can be applied to. We then go on to discuss some possible extensions of
our main result in Section 4.2. In Section 4.2.3 we discuss the application of our main result to
the reduction of a conductance-based neuron model.
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4.1. A constrained centrifugal motion in dimension two

Consider the unit circle

B := {x ∈R
2; ‖x‖ = 1}

with the unit open disc

D := {x ∈R
2; ‖x‖< 1}

as corresponding domain, and outward normal nB(x) = x. For a finite set of angles Y in
(−π/2, π/2), such as

Y :=
{
−π

2
+ k

n
π ; k ∈ {1, . . . , n − 1}

}

with n ∈N, n ≥ 3, we define the rotation matrices

Ry :=
(

cos (y) − sin (y)

sin (y) cos (y)

)
for all y ∈ Y.

For y ∈ Y, the vector field is given by

Fy(x) := λRyx for all x ∈ D

with λ> 0. These vector fields satisfy Assumption A.1. Due to the fact that Y ⊂ (−π/2, π/2),
the motion of the X-component will be centrifugal until it reaches the boundary. Indeed, for
any (x, y) ∈ D × Y, x �= 0,

Fy(x) · nB(x) = λ cos (y)‖x‖2 > 0.

Assumption D.3 is thus satisfied.
The transition rate functions are defined, for (y, z) ∈ Y2, y �= z and x ∈ D, by

Qyz(x) := 1

2
(1 + ‖x‖2)1|y−z|=π/n.

These transition rates functions satisfy Assumption A.2. When x is held fixed, the associated
invariant probability π (x) is the uniform probability on Y: Assumption B is verified. For x ∈ B
and y ∈ Y, the jump measure νy(dw | x) at the boundary, has the same law as

Ux + (1 − U)(x − 2 cos (�y)R�yx),

where

• U is a Beta law supported by [1/4, 3/4] and with parameter (2, 2); its density is denoted
by fU;

• �y is a Beta law supported by [min(0, y),max(0, y)] if y is not equal to zero and
[−π/(2n); π/(2n)] when y = 0, always with parameter (2, 2); its density is denoted
by f�y .
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The random variables U and �y are assumed to be independent. This jump measure means
that when it hits the boundary, the process is rejected further into the centre of the domain, in a
random direction between the direction of the normal to the contact point and the direction of
the velocity vector at the contact point (which therefore depends on y). By change of variables,
we have

νy(dw | x) = fU(ψ1(w | x)) f�y(ψ2(w | x)) | detJψ (w | x) | dw

where, for w such that x · w �= 1,

ψ(w | x) := (ψ1(w | x), ψ2(w | x))

:=
(

1 − 1

2

‖x − w‖2

1 − x · w
, tan−1

(
x · w⊥

1 − x · w

))

with

w⊥ =
(−w2

w1

)
.

Note that if w satisfies x · w = 1, then w is not in the support of νy(· | x). Indeed,

x · w = 1 ⇔ x · (w − x) = 0,

so that w is on the tangent line to B at the point x. Assumption E is satisfied for this family of
jump measures.

Therefore, if the initial value of the Euclidean process has a density with respect to the
Lebesgue measure on D and this is continuous, we can apply Theorem 4. For x ∈ D, the average
vector field is given by

F(x) =
(

λ

n − 1

n−1∑
k=1

R− π
2 + k

nπ

)
x = λ

(n − 1) tan (π/(2n))
x

and the averaged measure at the boundary by

ν(dw | x) =
∑
y∈Y

f�y(ψ2(w | x))μB
y (x)fU(ψ1(w | x)) | detJψ (w | x) | dw,

with

μB
y (x) = tan

(
π

2n

)
cos (y),

which is independent of x. Two trajectories of the process are displayed in Figure 2, for two
different ε, showing the effect of acceleration.

4.2. Two possible extensions

In this section we present two natural extensions of Theorem 4. To show them we require
only minor modifications of the convergence proof presented in Section 5.3.

https://doi.org/10.1017/jpr.2023.8 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.8


Averaging for slow–fast PDMPs with an attractive boundary 1455

FIGURE 2. (a) Trajectory of the process with λ= 0.1, n = 10 and ε= 1 up to the horizon time
T = 300. The initial condition is distributed as a pair of two independent Beta distributions supported
by [ − 1/2, 1/2] with parameters (2, 2) for the X-component and is equal to 5 for the Y-component. We
coloured each piece of the trajectory between two forced jumps with a different colour. (b) The same but

with ε= 0.001. For the simulation of piecewise deterministic Markov processes, we refer to [26].

4.2.1. Change of domain after a forced jump. In this variant, it is assumed that the X-
component of the process can change domain after each forced jump. Let (Di)i≥0 be a sequence
of domains in R

d with a corresponding sequence of smooth boundaries (Bi)i≥0. The random
variable X0 is valued in D0. Then, as before,

TB1
1 := inf{t> 0; X(t−) ∈ B0},

but the measure

νY(TB,−
1 )

(· | X
(
TB,−

1

))
is now valued in the domain D1. This should be emphasized by writing

ν1,Y(TB,−
1 )

(· | X
(
TB,−

1

))
.

And so on and so forth. Our assumptions, in particular Assumptions D.3, B, C, and E, must be
adapted accordingly. For example, Assumption D.2 becomes as follows, taking into account
the successive and possibly different boundaries.

Assumption 1. (Attractive boundary) For any i ≥ 1, we assume that

F(x) · nBi (x)> 0 for all x ∈ Bi.

We could also change the form of the flow after each forced jump by indexing the vector
fields via the successive domains. This change of domain framework is the one considered in
[7] for the definition of a general PDMP.

4.2.2. Slow–fast discrete process. Another natural framework is the one where the discrete
component itself exhibits a slow–fast dynamic. In this case, the transition rate matrix is of the
form

Q(S) + 1

ε
Q(F),
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where S and F stand for slow and fast. We assume that there exists a partition (Yj)1≤j≤N , with
N ≥ 2, of the discrete space Y such that the transitions in between the classes are given by
the transition rate matrix QS and inside a specific class j by the bloc Q(F)

j of the transition rate

matrix Q(F); see [29, Section 3.6].
This multi-scale framework is a natural fit for some applications, such as conductance-based

neuron models in neuroscience [22]. This framework is fully developed in [29] in the case of
continuous-time Markov chains, where other kinds of applications are considered.

In contrast to the extension presented in the previous section, Assumption B requires further
reformulation in order to deal with this multi-scale case. We follow [22].

Assumption 2. We assume that for x ∈ D and i ∈ {1, . . . ,N} there exists a unique probability
π (i)(x) on Yi which is the solution of π (i)(x)Q(F)

i (x) = 0.

In this multi-scale setting, the averaged process is still a switching ordinary differential
equation (X, Y) with jumps at the boundary where the state belonging to fast transition clusters
have been averaged. Namely, the process Y is valued in {1, . . . ,N} and jumps at x-dependent
rates Qij(x) such that for i �= j,

Qij(x) =
∑

(y,z)∈Yi×Yj

Q(S)
yz (x)π (i)

y (x).

The averaged Euclidean component X evolves according to a family of averaged vector fields
given, for x ∈ D and i ∈ {1, . . . ,N}, by

Fi(x) =
∑
y∈Yi

Fy(x)π (i)
y (x).

Assumption D.2 becomes, for i ∈ {1, . . . ,N},
Fi(x) · nB(x)> 0 for all x ∈ B.

Then, when X hits the boundary, it jumps according to the averaged jump measure at the
boundary given, for x ∈ B and i ∈ {1, . . . ,N}, by

νi(· | x) =
∑

y∈Yi
νy(· | x)π (i)

y (x)(Fy(x) · nB(x))+∑
y∈Yi

π
(i)
y (x)(Fy(x) · nB(x))+

.

4.2.3. Reduction of conductance-based neuron models: the case of the Morris–Lecar model.
The Morris–Lecar model is a conductance-based biological neuron model for the generation of
an action potential that was proposed in 1981 [21] and has continued to be used and studied to
this day; see for example [2]. We consider a hybrid version of this model, where the membrane
potential of the neuron, denoted by v, and the proportion of open potassium ion channels,
denoted by w, follow a differential equation given by

d

ds
x(s) = Fy(x(s)), s ∈ [0, T],

with

x =
⎛
⎜⎝

v

w

t

⎞
⎟⎠
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and

Fy(x) =

⎛
⎜⎜⎝

1
C (I − gCay(v − vCa) − gKw(v − vK) − gL(v − vL))

(1 − w)αK(v) − βK(v)w

1

⎞
⎟⎟⎠.

The definitions of the various functions and constants that appear in the model are given in
Appendix A. The reason for including time t explicitly as a variable should become clear
later on. The variable y accounts for the proportion of open calcium channels throughout the
neuronal membrane. We assume, in this hybrid version of the model, that

y = 1

N

N∑
i=1

yi,

where, for an integer N ≥ 2 and i ∈ {1, . . . ,N}, yi ∈ {0, 1} is the current state of a process Yi

that jumps between 0 and 1 at v-dependent rates αCa(v) and βCa(v) given in Appendix A. Thus
the state space for the mode-component of the process is

Y =
{

k

N
; k ∈ {0, . . . ,N}

}
.

It is very common (see [21], [22]) to take advantage of the different speeds of the dynamics of v
and w on the one hand, and of y on the other hand, in order to simplify the Morris–Lecar model.
Indeed, the ratio between the time-scales of w and y is of the order of a tenth. It is therefore
natural to accelerate the dynamic of y to obtain a reduced model, perhaps easier to study.
Another way of simplifying, also very common in theoretical neuroscience, is to simplify the
dynamics of the action potential by considering that when v reaches a certain threshold vth,
an action potential is triggered: the variables v and w are then instantly brought back to some
resting levels vrest and wrest. Moreover, a refractory period is often added, preventing the neuron
from spiking before some possibly random time tr in order to mimic the qualitative properties
of real neurons. These mechanisms correspond to that of the integral and fire models, for which
the reference [4] can be consulted.

In this setting and with appropriate initial conditions, the variable x = (v w t)T evolves in a
physiological domain which is a rectangular box [v−, vth] × [0, 1] × [0, T]; see [27, Section
3.4.3]. Of course, this box does not have a C1-boundary. In order to apply Theorem 4 and
obtain an appropriate reduced model, we need to consider an auxiliary C1-boundary B whose
projection on the (v w)-phase space coincides with the rectangle [v−, vth] × [0, 1] on {vth} ×
[0, 1], such as the one represented in Figure 3. The jump measure at the boundary is given, for
any x = (v w t)T ∈ B and y ∈ Y, by

νy(dx̃ | x) = f (x̃ | x) dx̃,

where the density f is given in Appendix A. We have depicted the projection of the sup-
port of this measure in the (v w)-phase space in Figure 3. The interested reader can check
that Assumptions A, B, C, D.2, and E are fulfilled for the described model. Applying
Theorem 4, the reduced and constrained Morris–Lecar model follows the dynamic given by
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FIGURE 3. The projection of the physiological domain on the (v w)-phase space is shown in light grey.
The support of the corresponding jump measure is in dark grey. The projection of a possible auxiliary
mathematical domain B is indicated by bold black lines. An instance of the normal vector field n (v w) is

also represented.

the averaged vector field

F(x) =

⎛
⎜⎜⎝

1
C (I − gCay∞(v)(v − vCa) − gKw(v − vK) − gL(v − vL))

(1 − w)αK(v) − βK(v)w

1

⎞
⎟⎟⎠

where

y∞(v) = αCa(v)

αCa(v) + βCa(v)
.

As for the averaged jump measure, it remains unchanged: ν(dx̃ | x) = f (x̃ | x) dx̃. In Figure 4 we
display the course of the action potential through the simulations of the Morris–Lecar model
in its two time-scale and averaged versions. We also display this course for the determin-
istic Morris–Lecar model for comparison. The numerical constants used for the simulations
are given in Appendix A. Of course, the hybrid and constrained models, for both the mul-
tiscale and averaged versions, differ qualitatively from the deterministic model. However,
an important part of the information carried out by a neural cell lies in the distribution of
the interspike intervals or in the distribution of the time to first spike; see [13]. In this con-
text, the hybrid and constrained as well as the reduced models are certainly interesting to
study.
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FIGURE 4. Course of the action potential (in mV) against time (in ms) according to three different ver-
sions of the Morris–Lecar model. Thin black lines indicate the course of the action potential for the
deterministic Morris–Lecar model; see [21]. Red lines show this course for the hybrid and constrained
model with two time-scales (ε= 1). Blue lines show the averaged version of the latter model. Two pulses,
at time 0 and 100 (in ms), have been injected into the system in order to induce two action potentials by

shifting the current up to −17.2 mV at these time points.

5. Proofs

This section is devoted to the proofs of the main results of the present article.

5.1. Proof of Proposition 3

For any ε > 0 and each y ∈ Y, we have

P
(
Yε
(
TB
ε

)= y; TB
ε ∈ [0, T]

)= P(NB,y([0, T], (Xε, Yε)) = 1),

since under Assumption D.3, the process Xε may cross the hypersurface at most once. We then
remark that

P(NB,y([0, T], (Xε, Yε)) = 1) = E(NB,y([0, T], (Xε, Yε))),

and apply Proposition 2 to get equation (5). To get the formula (6) in the proposition, we need
to show that for any measurable and bounded function h and for any ε > 0, we have

E
(
h
(
Xε
(
TB
ε

)
, Yε

(
TB
ε

))
1[0,T]

(
TB
ε

))=
∫

B

∑
y∈Y

h(x, y)Fy(x) · nB(x)
∫ T

0
fε,s(x, y) dsσB(dx).

For this purpose, note that under the stated assumptions (see [3])

E
(
h
(
Xε
(
TB
ε

)
, Yε

(
TB
ε

))
1[0,T]

(
TB
ε

))
= E

(
lim
δ→0

1

2δ

∫ T

0
h(Xε(s), Yε(s))FYε(s)(Xε(s)) · nB(Xε(s))‖∇ρ(Xε(s))‖

1[−δ,δ](ρ(Xε(s))) ds

)
.
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Since we have the following uniform-in-δ bound (recall that we have at most one crossing),

1

2δ

∫ T

0
h(Xε(s), Yε(s))FYε(s)(Xε(s)) · nB(Xε(s))‖∇ρ(Xε(s))‖1[−δ,δ](ρ(Xε(s))) ds

≤ sup
(x,y)∈Rd×Y

|h(x, y)|,

the dominated convergence theorem yields

E
(
h
(
Xε
(
TB
ε

)
, Yε

(
TB
ε

))
1[0,T]

(
TB
ε

))
= lim
δ→0

E
(

1

2δ

∫ T

0
h(Xε(s), Yε(s))FYε(s)(Xε(s)) · nB(Xε(s))‖∇ρ(Xε(s))‖

1[−δ,δ](ρ(Xε(s))) ds

)
.

Using the densities to express the expectation we obtain, using Fubini’s theorem,

E
(
h
(
Xε
(
TB
ε

)
, Yε

(
TB
ε

))
1[0,T]

(
TB
ε

))
= lim
δ→0

1

2δ

∫
Rd

∑
y∈Y

h(x, y)Fy(x) · nB(x)
∫ T

0
fs,ε(x, y) ds‖∇ρ(x)‖1[−δ,δ](ρ(x)) dx.

Then, since B is a bounded C1-hypersurface and ρ its C1-defining function,

lim
δ→0

1

2δ

∫
Rd

∑
y∈Y

h(x, y)Fy(x) · nB(x)
∫ T

0
fs,ε(x, y) ds‖∇ρ(x)‖1[−δ,δ](ρ(x)) dx

=
∫

B

∑
y∈Y

h(x, y)Fy(x) · nB(x)
∫ T

0
fs,ε(x, y) dsσB(dx).

The result follows using the dominated convergence theorem and Proposition 1.

5.2. Proof of Proposition 4

For the proof of Proposition 3 to still be valid when Assumption D.3 is replaced by
Assumption D.2, the number of crossings of the hypersurface by Xε must be uniformly
bounded in ε, at least for small ε. This is the case thanks to Assumption D.2. To see this,
we proceed by contradiction. Let us assume that there exists a sequence (εk) going to zero
such that for any k large enough we have NB([0, T], Xεk ) ≥ 3. By Theorem 2 and Skorokhod’s
representation theorem, one can assume that (Xεk ) converges to X uniformly on [0, T] almost
surely. The fact that, for any k large enough, Xεk crosses B at least three times implies that
X crosses B, and does it exactly once by Assumption D.2. Note that this also implies, for
all sufficiently large k, that the number of up-crossings of B by Xεk is equal to the number
of down-crossings of B plus one. In between the first down-crossing Tdown,εk of B and the
last up-crossing Tlast,εk , the increasing and decreasing phases of ρ(Xεk ( · )) must compensate.
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That is to say, for k large enough,

E

(∑
y∈Y

∫
B

(Fy(x) · nB(x))+
∫ Tlast,εk

Tdown,εk

fs,εk (x, y) dsσB(dx)

)

= E

(∑
y∈Y

∫
B

(Fy(x) · nB(x))−
∫ Tlast,εk

Tdown,εk

fs,εk (x, y) dsσB(dx)

)
.

We then have, for k large enough,

E

(∑
y∈Y

∫
B

Fy(x) · nB(x)
∫ Tlast,εk

Tdown,εk

fs,εk (x, y) dsσB(dx)

)
= 0

and therefore, when k goes to infinity, by dominated convergence,

E

(∑
y∈Y

∫
B

Fy(x) · nB(x)πy(x)f
T

B (x)σB(dx)

)
= 0,

where T
B

is the crossing time of B by X. The last equality is

E
(∫

B
F(x) · nB(x)f

T
B (x)σB(dx)

)
= 0. (7)

Under Assumption D.2 we have

F(x) · nB(x)> 0 for all x ∈ B.

Moreover, since X crosses B, we also have f
T

B(x)> 0 in some neighbourhood of B. These two
facts are in contradiction to equation (7).

For small enough ε, there is thus at most one crossing of B by Xε, and we can apply the
same reasoning as in the proof of Proposition 4.

5.3. Proof of Theorem 4

We follow the programme initiated by Prokhorov (see [16]): in Section 5.3.1 we prove that
the family {Xε, ε ∈ (0, 1]} is tight in D([0, T],Rd), and in Section 5.3.2 we identify the limit.

5.3.1. Tightness. The proofs of tightness for slow–fast processes with boundary under general
conditions could be complicated because of the presence of fast stochastic jumps combined
with the presence of instantaneous jumps at the boundary, that is, the presence of forced jumps.
One standard technique used to overcome this difficulty is the penalization method as described
in [11] and [20]. Here Assumption C allows for the use of a more direct and simple approach:
the existence of a density for the process at any time allows us to control the probability that
this one is in any set by the size of this precise set.

We use the tightness criterion presented in [18, Theorem 16.11]. For ε > 0, since the process
Xε evolves in D, which is bounded, there exists a constant C such that

sup
ε∈(0,1]

sup
t∈[0,T]

‖Xε(t)‖ ≤ C, P-a.s.
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Let δ and M be two positive reals. For any ε > 0, let t ∈ [0, T] and h> 0 be such that t + h ≤ T .
Thanks to Assumptions A and E, there is at most one forced jump between times t and t + h
for h small enough. Indeed, Assumptions A and E imply that at any time, the time needed to
reach the boundary is bounded from below by a strictly positive time, independently of Xε, Yε,
and ε. This implies that we can take h small enough so that we can reach the boundary at most
once in a time window of size h. Thus we write

‖Xε(t + h) − Xε(t)‖ ≤ h sup
(x,y)∈D×Y

‖Fy(x)‖ + diam(D)1∃s∈(t,t+h], Xε(s−)∈B.

Under Assumptions C and E, [14, Theorem 2.5 and Section 5.1] implies that for all ε > 0, the
random variable Xε(t) has a density with respect to the Lebesgue measure for any t ∈ [0, T]
that is uniformly bounded in ε. Therefore

P(∃s ∈ (t, t + h], Xε(s
−) ∈ B) ≤ P(Xε(t) ∈ Tsup(x,y)∈D×Y ‖Fy(x)‖h(B)) = O(h),

uniformly in ε ∈ (0, 1], where the definition of the tube Tsup(x,y)∈D×Y ‖Fy(x)‖h(B) is given in

Section 3.1. The family {Xε; ε ∈ (0, 1]} is thus tight in D([0, T],Rd), endowed with the
Skorokhod topology.

5.3.2. Identification of the limit. Let X be an accumulation point of the tight family {Xε; ε ∈
(0, 1]}. We consider a real-valued and measurable function h on D such that the following hold.

• The functions t �→ h(φy(x, t)) are absolutely continuous on [0, tB(x, y)[ for any (x, y) ∈
D × Y.

• For any ε > 0, there is some sequence of stopping time (tn) going to infinity such that

E

(∑
s≤T

|h(Xε(s ∧ tn)) − h(Xε(s ∧ t−n ))|
)
<∞,

the same being true if we replace Xε with X.

Our aim is to show that we have

E(h(X(t))) = E(h(X(0))) + E
(∫ t

0
F(X(s)) · ∇h(X(s)) ds

)

+ E
(∫ t

0

∫
D

[
h(w) − h(X(s−))

]
ν(dw | X(s−))pB(ds)

)
,

for any t ∈ [0, T], as this will characterize the law of X, as stated in [7, Theorem 26.14]. We
will still let (Xε)ε denote a sequence converging towards X in the Skorokhod topology. By
convergence in the Skorokhod topology, we have, for any point of continuity t ∈ [0, T] of X,

E(h(X(t))) = lim
ε→0

E(h(Xε(t))).

Following [7, Theorem 26.14], we also know that for any ε ∈ (0, 1] and t ∈ [0, T],

E(h(Xε(t)) = E(h(Xε(0))) + E
(∫ t

0
FYε(s)(Xε(s)) · ∇h(Xε(s)) ds

)

+ E
(∫ t

0

∫
D

[h(w) − h(Xε(s
−))]νYε(s−)(dw | xε(s

−))pB
ε (ds)

)
.
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We begin with the limit of the two first terms on the right-hand side of the above expression,
as they do not present any difficulty.

Proposition 6. We have

lim
ε→0

E(h(Xε(0))) = E(h(X(0))),

and for any t ∈ [0, T],

lim
ε→0

E
(∫ t

0
FYε(s)(Xε(s)) · ∇h(Xε(s)) ds

)
= E

(∫ t

0
F(X(s)) · ∇h(X(s)) ds

)
.

Proof. The first equality holds by assumption: there is convergence in law at time zero. For
the second one, since the counting measure of the forced jumps does not appear in the expres-
sion considered, this is a direct consequence of the convergence in the Skorokhod topology
of (Xε) towards X and of standard averaging techniques for piecewise deterministic Markov
processes without forced jumps, as presented in [22]. �

It remains to show that

lim
ε→0

E
(∫ t

0

∫
D

[h(w) − h(Xε(s
−))]νYε(s−)(dw | xε(s

−))pB
ε (ds)

)

= E
(∫ t

0

∫
D

[h(w) − h(X(s−))]ν(dw | X(s−))pB(ds)

)

Since we cannot expect the convergence of the stopping times in the Skorokhod topology, we
need to take a different route to show this convergence. To proceed, observe that we have, for
ε ∈ (0, 1] and t ∈ [0, T],

E
(∫ t

0

∫
D

[h(w) − h(Xε(s
−))]νYε(s−)(dw | Xε(s

−))pB
ε (ds)

)

=
∞∑

i=1

E
(
�
(
Xε
(
TB,−

i,ε

)
, Yε

(
TB,−

i,ε

))
1TB

i,ε≤t

)
,

where, for (x, y) ∈ B × Y,

�(x, y) :=
∫

D
[h(w) − h(x)]νy(dw | x).

Since Assumption E holds, note that the sum over i is finite, P-a.s. We are going to show that
for any i ∈N,

lim
ε→0

E
(
�
(
Xε
(
TB,−

i,ε

)
, Yε

(
TB,−

i,ε

))
1TB

i,ε≤t

)= E
(
�
(
X
(
T

B,−
i

)
1

T
B
i ≤t

)
,

with, for x ∈ B,

�(x) :=
∑
y∈Y

�(x, y)μB
y (x)

where μB is defined in Definition 3. The proof will rest on two main ingredients.
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1. The first one is the consideration of companion processes that follow the law of (Xε, Yε)
but stop jumping after the ith collision of the boundary.

2. These companion processes allow us to make the link with the second main ingredient:
Rice’s formulas to count the average number of continuous crossings of a hypersurface
for a piecewise smooth process, as presented in Proposition 3.

We move on to the definition of these companion processes.

Definition 4. (Companion processes.) For i ∈N and ε ∈ (0, 1], we let (V (i)
ε ,W(i)

ε ) denote the
process constructed as (Xε, Yε) until the ith collision of the boundary by V (i)

ε at time T (i),B
i,ε .

Then, if T (i),B
i,ε is finite, for t ≥ T (i),B

i,ε ,

d

dt
V (i)
ε (t) = F

W(i)
ε (s)

(V (i)
ε (s))1D∪Tδ(B)(V

(i)
ε (s)),

with δ > 0 chosen as in Remark 2.

In particular, for V (i)
ε , there is no forced jump after the (i − 1)th forced jump, the process V (i)

ε

remaining continuous after this time. Usual averaging results allow us to consider, for example,
the limit of the first companion process.

Proposition 7. (Averaging principle when there are no forced jumps.) Under Assumptions A
and B, the family of continuous processes (V (1)

ε )ε∈(0,1] converges in law towards a process

V
(1)

on C([0, T],Rd) endowed with the uniform topology. The process V
(1)

is such that for
t ∈ [0, T],

V
(1)

(t) = X0 +
∫ t

0
F(V

(1)
(s)) ds,

where F is given in Definition 3.

Proof. Under the assumptions made, the result is given by Theorem 2. �

Remark 9. When i ≥ 2, the same result holds true for the processes (V (i)
ε )ε∈(0,1] when far from

the boundary. Indeed, for i ≥ 2, we can show that the family (V (i)
ε )ε∈(0,1] is tight in D([0, T],Rd)

exactly as for (Xε)ε∈(0,1], and that for almost every t ∈ [0, T], in fact for all t except at the jump
times,

d

dt
V

(i)
(t) = F(V

(i)
(t)).

We are in a position to show that for any i ∈N and t ∈ [0, T],

lim
ε→0

E
(
�
(
Xε
(
TB,−

i,ε

)
, Yε

(
TB,−

i,ε

))
1TB

i,ε≤t

)= E
(
�
(
X
(
T

B,−
i

))
1

T
B
i ≤t

)
,

We begin with the first term, where i = 1.

Proposition 8. We have

lim
ε→0

E
(
�
(
Xε
(
TB,−

1,ε

)
, Yε

(
TB,−

1,ε

))
1TB

1,ε≤t

)= E
(
�
(
X
(
T

B,−
1

))
1

T
B
1 ≤t

)
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and for any t ∈ [0, T],

lim
ε→0

P
(
TB,−

1,ε ≤ t
)= P

(
T

B,−
1 ≤ t

)
.

Proof. Let us remark that the probability that Xε has its first jump with Yε equal to y is equal
to the probability that the companion process V (1)

ε crosses B for the first time with W(1)
ε equal

to y. The result is then a direct consequence of Proposition 4. �

Proposition 9. For i = 2,

lim
ε→0

E
(
�
(
Xε
(
TB,−

2,ε

)
, Yε

(
TB,−

2,ε

))
1TB

2,ε≤t

)= E
(
�
(
X
(
T

B,−
2

))
1

T
B
2 ≤t

)
.

Proof. Following the same idea as in the proof of the Proposition 8, for ε ∈ (0, 1] and t ∈
[0, T], we have

P
(
Yε
(
TB,−

2,ε

)= y; TB
2,ε ≤ t

)= E
(
NB,y

([
TB,(2),−

1,ε , t
]
, V (2)

ε

)
1

TB,(2)
1,ε ≤t

)
,

where TB,(2)
1,ε is the time of the first forced jump for the second companion process. It has

the same law as TB
1,ε or TB,(1)

1,ε , the first crossing time of the boundary for the first companion
process. Conditioning on the last forced jump time, we observe that

E
(
NB,y

([
TB,−,(2)

1,ε , t
]
, V (2)

ε

))= E
(
E
(
NB,y

([
TB,(2),−

1,ε , t
]
, V (2)

ε

) |F
TB,(2),−

1,ε

)
1

TB,(2)
1,ε ≤t

)

=
∫ t

0
E
(
NB,y

(
[s, t], V (2)

ε

)) d

ds
P
(
TB,(2)

1,ε ≤ s
)

ds

=
∫ t

0
E
(
NB,y

(
[s, t], V (2)

ε

)) d

ds
P
(
TB,(1)

1,ε ≤ s
)

ds,

where we have used the fact that the two first companion processes have the same law until the
first forced jump of the second companion process. In the above formula, we have

d

ds
P
(
TB,(1)

1,ε ≤ s
)=

∑
y∈Y

∫
B

(Fy(x) · nB(x))+fs,ε(x, y)σB(dx).

At the limit when ε goes to 0, we obtain, by dominated convergence,

lim
ε→0

E
(
NB,y

([
TB,−

1,ε , t
]
, V (2)

ε

))

=
∫ t

0

∫
B

(Fy(x) · nB(x))+πy(x)
∫ t

s
fX(u)(x) duσB(dx)

d

ds
P
(
T

B
1 ≤ s

)
ds.

We can then proceed as in the proof of Proposition 3 to generalize this formula to �:

lim
ε→0

E
(
�
(
Xε
(
TB,−

2,ε

)
, Yε

(
TB,−

2,ε

))
1TB

2,ε≤t

)

=
∫ t

0

∫
B

∑
y∈Y

�(x, y)(Fy(x) · nB(x))+πy(x)
∫ t

s
fX(u)(x) duσB(dx)

d

ds
P
(
T

B
1 ≤ s

)
ds.

This last expression is precisely E
(
�
(
X
(
T

B,−
2

))
1

T
B
2 ≤t

)
, as required. �
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TABLE 1. Parameters for numerical integration and stochastic simulation.

v1 v2 v3 v4 gCa gK gL

0 mV 15 mV 10 mV 10 mV 4 mS cm−2 8 mS cm−2 2 mS cm−2

vCa vK vL C λ wrest vrest

100 mV −70 mV −50 mV 20 mF cm−2 0.1 0.022314 −35 mV

Reproducing the reasoning of the proof of Proposition 9, we obtain by recurrence that for
any i ∈N,

lim
ε→0

E
(
�
(
Xε
(
TB,−

i,ε

)
, Yε

(
TB,−

i,ε

))
1TB

i,ε≤t

)= E
(
�
(
X
(
T

B,−
i

))
1

T
B
i ≤t

)
.

The proof of Theorem 4 is thus complete.

Appendix A. Functions and constants for the Morris–Lecar model

The auxiliary functions of the Morris–Lecar model [21] used in the present article are

αCa(v) = 1

2
λ cosh

(
v − v1

2v2

)(
1 + tanh

(
v − v1

v2

))
,

αK(v) = 1

2
cosh

(
v − v3

2v4

)(
1 + tanh

(
v − v3

v4

))
,

βCa(v) = 1

2
λ cosh

(
v − v1

2v2

)(
1 − tanh

(
v − v1

v2

))
,

βK(v) = 1

2
cosh

(
v − v3

2v4

)(
1 − tanh

(
v − v3

v4

))
.

The values of the parameters and initial conditions used for the numerical integration and
stochastic simulations are given in Table 1. The initial potential is v0 = −17.2 mV and the
initial proportion of open potassium channels is w0 = 0.022314. For the hybrid model, the
number of calcium ion channels has been taken to be N = 100. The initial number of open
channels is 10. For the constrained models, we have set vth = 15.

The density of the jump measure at the boundary is given, for any x = (v w t)T ∈ B, x̃ =
(ṽ w̃ t̃)T ∈ D, by

f (x̃ | x) = f1(ṽ) f2(w̃) f3(t̃ | t),

where f1 and f2 are the densities of Beta laws supported by [−38,−32] and [wrest − 0.1,wrest +
0.1] respectively, while f3(· | t) is the density of a Beta distribution supported by [t + tr −
10, t + tr + 10] with tr = 30 ms.
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