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We use an established discrete element method (DEM) Reynolds-averaged Navier–Stokes
(RANS)-based numerical model to simulate non-suspended sediment transport across
conditions encompassing almost seven orders of magnitude in the particle–fluid density
ratio s, ranging from subaqueous transport (s = 2.65) to aeolian transport in the
highly rarefied atmosphere of Pluto (s = 107), whereas previous DEM-based sediment
transport studies did not exceed terrestrial aeolian conditions (s ≈ 2000). Guided by
these simulations and by experiments, we semi-empirically derive simple scaling laws
for the cessation threshold and rate of equilibrium aeolian transport, both exhibiting a
rather unusual s1/3-dependence. They constitute a simple means to make predictions of
aeolian processes across a large range of planetary conditions. The derivation consists
of a first-principle-based proof of the statement that, under relatively mild assumptions,
the cessation threshold physics is controlled by only one dimensionless control parameter,
rather than two expected from dimensional analysis. Crucially, unlike existing models,
this proof does not resort to coarse-graining the particle phase of the aeolian transport
layer above the bed surface. From the pool of existing models, only that by Pähtz et al.
(J. Geophys. Res.: Earth, vol. 126, 2021, e2020JF005859) is somewhat consistent with
the combined numerical and experimental data. It captures the scaling of the cessation
threshold and the s1/3-dependence of the transport rate, but fails to capture the latter’s
superimposed grain size dependence. This hints at a lack of understanding of the transport
rate physics and calls for future studies on this issue.
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1. Introduction

Aeolian (wind-driven) transport of non-suspended grains, including sand, ice and snow,
is a ubiquitous phenomenon that leads to a rich variety of multiscale bedforms on Earth
and other planetary bodies (Bourke et al. 2010; Kok et al. 2012; Diniega et al. 2017).
As suggested by the presence of wind streaks and dunes, it may even occur in the very
rarefied atmospheres of Neptune’s moon Triton (Sagan & Chyba 1990), Pluto (Telfer et al.
2018) and the comet 67P/Churyumov-Gerasimenko (Thomas et al. 2015; Jia, Andreotti &
Claudin 2017).

Driven by fluid drag and gravity, most transported sand-sized and larger grains regularly
interact with the bed surface as flow turbulence is too weak to suspend them. For
denser fluids, such as water and most other liquids, this near-surface grain motion occurs
in the form of rolling, sliding and small hops (bedload), whereas for lighter fluids,
like most gases, grains move in more energetic hops (saltation). At equilibrium, the
deposition of transported grains on the bed is exactly balanced by the entrainment of
bed grains into the transport layer. The rate at which equilibrium aeolian transport takes
place and the threshold wind speed below which it ceases constitute the two arguably
most important statistical transport properties in the context of bedform formation and
evolution in natural environments (Kok 2010a; Durán Vinent et al. 2019). In particular,
in natural environments, topography inhomogeneities, strong turbulent fluctuations and a
variety of wind-unrelated mechanisms to generate airborne grains, along with very long
natural sediment fetches, can plausibly initiate transport and lead to equilibrium transport
above the cessation threshold (Pähtz et al. 2020, § 3.3.3.4). This may even be true in
environments where the aeolian transport initiation threshold for an idealised flat sediment
bed is much larger than the cessation threshold, like potentially on Mars (Kok 2010a), Pluto
(Telfer et al. 2018) and Saturn’s moon Titan (Comola et al. 2022), as well as in Antarctica.
In fact, although Antarctica’s surface is covered by very cohesive (Pomeroy & Gray 1990)
old snow and ice (cohesion increases the initiation threshold probably much more than the
cessation threshold (Comola et al. 2019b, 2022; Pähtz et al. 2021; Besnard et al. 2022)),
aeolian snow and ice transport occurs there even at relatively low wind speeds that are
likely much below the initiation threshold (Leonard et al. 2011).

Since the highly random, collective motion of bed and transported grains eludes a
rigorous analytical description, existing physical models of equilibrium aeolian transport
have relied on drastically coarse-graining the particle phase of the aeolian transport layer
above the bed surface (Ungar & Haff 1987; Andreotti 2004; Claudin & Andreotti 2006;
Kok & Renno 2009; Kok 2010b; Durán, Claudin & Andreotti 2011; Berzi, Jenkins &
Valance 2016; Berzi, Valance & Jenkins 2017; Lämmel & Kroy 2017; Pähtz & Durán
2018a, 2020; Andreotti et al. 2021; Pähtz et al. 2021; Comola et al. 2022; Gunn &
Jerolmack 2022). The most common modelling approach is to represent the grain motion
by a single or multiple saltation trajectories. Depending on the number and kind of
considered trajectories and the assumed outcome of grain–bed collisions, such models can
yield fundamentally different scaling laws for the cessation threshold and/or equilibrium
transport rate, with predictions varying by about an order of magnitude when applied to
Martian-pressure atmospheric conditions (Pähtz et al. 2020; Gunn & Jerolmack 2022).

One reason for the strong variability of both existing cessation threshold and equilibrium
transport rate predictions is a lack of consensus on the physical picture behind the cessation
threshold. On the one hand, it has been modelled as an ‘impact entrainment threshold’
(Pähtz et al. 2020), the smallest wind velocity at which random captures of saltating grains
by the bed can be compensated by the splash of bed grains due to grain–bed impacts
(Andreotti 2004; Claudin & Andreotti 2006; Kok & Renno 2009; Kok 2010b; Andreotti
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et al. 2021; Comola et al. 2022). On the other hand, it has been modelled as a ‘rebound
threshold’ (Pähtz et al. 2020), the smallest wind velocity required to replenish the energy
saltating grains lose when rebounding with the bed, independent of grain capture and
splash (Berzi et al. 2017; Pähtz et al. 2021; Gunn & Jerolmack 2022). We previously
proposed and supported the hypothesis that both these dynamic thresholds play a role in
saltation dynamics: the former as the dynamic threshold of continuous and the latter as the
dynamic threshold of intermittent saltation and therefore as the actual cessation threshold
(Pähtz & Durán 2018a; Pähtz et al. 2020; Pähtz et al. 2021). If true, this could have the
unintended consequence that measurements of one are mistaken for the other dynamic
threshold. For example, Pähtz et al. (2021) proposed that the recent dynamic-threshold
measurements in a low-pressure wind tunnel by Andreotti et al. (2021) may constitute
data of the continuous-transport threshold, and not of the cessation threshold as the
experimenters claimed. This would be problematic as these data have been used to develop
new cessation threshold models and compare their predictive capabilities with those of
older ones (Andreotti et al. 2021; Gunn & Jerolmack 2022).

Here, we show that, under relatively mild assumptions, one can obtain insights into
the physics of the cessation threshold without resorting to coarse-graining the particle
phase of the aeolian transport layer above the bed surface. In detail, if the bed surface
can be considered as a flat boundary, with scale-free boundary conditions describing
the outcome of grain–bed collisions, and the driving wind as a smooth inner turbulent
boundary layer flow that interacts with grains via Stokes drag, then the threshold shear
velocity, appropriately non-dimensionalised, is a function of only one dimensionless
control parameter, rather than two expected from dimensional analysis (§ 3). We confirm
this prediction, and therefore its underlying assumptions, with numerical simulations
using an existing discrete element method (DEM)-based numerical model (Durán,
Andreotti & Claudin 2012, introduced in § 2) of equilibrium transport of cohesionless
non-suspended sediments. The simulated transport conditions encompass almost seven
orders of magnitude in the particle–fluid density ratio s, ranging from subaqueous
transport (s = 2.65) to aeolian transport in the highly rarefied atmosphere of Pluto (s =
107), whereas previous DEM-based sediment transport studies did not exceed terrestrial
aeolian conditions (s ≈ 2000). We also use the simulation data to semi-empirically derive
simple scaling laws for the cessation threshold and equilibrium transport rate, and to
test existing models (§ 3). The derived scaling laws are consistent with experimental
data, except the dynamic-threshold measurements by Andreotti et al. (2021), in line with
the aforementioned hypothesis that the latter constitute data of the continuous-transport
threshold rather than the cessation threshold (discussed in more detail in § 4).

2. Numerical model

We use the numerical model of Durán et al. (2012), which couples a continuum
Reynolds-averaged description of hydrodynamics with a DEM for the grain motion under
gravity, buoyancy and fluid drag. The drag force is given by Fd = 1

8ρf πd2Cd|ur|ur, where
ρf is the fluid density, d the median grain diameter, ur the fluid–grain velocity difference
and

Cd =
(√

Rec

|ur|d/ν
+
√

C∞
d

)2

(2.1)

the drag coefficient, with ν the kinematic viscosity. Most simulations are carried out
using the parameter values Rec = 24 and C∞

d = 0.5, close to those for spherical grains
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(Camenen 2007), while a few simulations are carried out using different values (specified
when done so) to test the effect of drag modifications, which may for example occur
in very-low-pressure atmospheres due to drag rarefaction (Crowe et al. 2012). Spherical
grains (104–105) with mild polydispersity are confined in a quasi-two-dimensional domain
of length ≈ 103d, with periodic boundary conditions in the flow direction, and interact via
normal repulsion (restitution coefficient e = 0.9) and tangential friction (contact friction
coefficient μc = 0.5). The bottom-most grain layer is glued on a bottom wall, while the
top of the simulation domain is reflective but so high that it is never reached by transported
grains. The Reynolds-averaged Navier–Stokes (RANS) equations are combined with
a semi-empirical mixing length closure that accounts for the viscous sublayer of the
turbulent boundary layer and ensures a smooth hydrodynamic transition from high to low
particle concentration at the bed surface:

dlm
dz

= κ

[
1 − exp

(
−
√

uxlm
7ν

)]
, (2.2)

where lm(z) is the height-dependent mixing length, κ = 0.4 the von Kármán constant
and ux(z) the mean flow velocity field. This parametrisation quantitatively reproduces
measurements of ux(z) in the absence of transport. Simulations with this numerical model
are insensitive to e and, therefore, insensitive to viscous damping (Pähtz & Durán 2018a,b).
The simulations reproduce measurements of the rate and cessation threshold of terrestrial
aeolian transport, and viscous and turbulent subaqueous transport (figures 1 and 3 of
Pähtz & Durán (2018a) and figure 4 of Pähtz & Durán (2020)), height profiles of relevant
equilibrium transport properties (figure 2 of Pähtz & Durán (2018a) and figure 6 of Durán,
Andreotti & Claudin (2014a)) and aeolian ripple formation (Durán, Claudin & Andreotti
2014b).

2.1. Average of simulated quantities
We define two types of averages of a particle property Ap. Based on the spatial
homogeneity of the simulations, the mass-weighted average of Ap over all particles within
an infinitesimal vertical layer (z, z + dz) and all time steps (after reaching the steady state)
is (Pähtz & Durán 2018b)

〈A〉(z) =
∑

zp∈(z,z+dz)

mpAp

/ ∑
zp∈(z,z+dz)

mp, (2.3)

where mp and zp are the particle mass and elevation, respectively. We also define the
average of a vertical profile 〈A〉(z) over the transport layer as (Pähtz & Durán 2018a)

Ā =
∫ ∞

0
ρ〈A〉 dz

/∫ ∞

0
ρ dz, (2.4)

where ρ is the local particle concentration. The bed surface elevation z = 0 is defined
as the elevation at which pg d〈vx〉/dz is maximal (Pähtz & Durán 2018b), where 〈vx〉 is
the average grain velocity in the streamwise direction and pg(z) = − ∫∞

z ρ〈az〉 dz′ the
normal-bed granular pressure, with a the acceleration of grains by non-contact forces.
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2.2. Calculation of transport rate and cessation threshold
We calculate the sediment transport rate Q as (Pähtz & Durán 2018b)

Q =
∫ ∞

−∞
ρ〈vx〉 dz. (2.5)

When Q vanishes, the grain-borne shear stress at the bed surface τg(0) also vanishes,
with τg(z) = ∫∞

z ρ〈ax〉 dz′ the grain-borne shear stress profile. We therefore extrapolate
the cessation threshold value τt of the fluid shear stress τ at which Q vanishes using the
approximate relation (Pähtz & Durán 2018b)

τg(0) = τ − τt, (2.6)

where we treat τt as a fit parameter.

2.3. Dimensionless control parameters and rescaling of physical quantities
The average properties of equilibrium sediment transport are mainly determined by a few
grain and environmental parameters: the grain and fluid density (ρp and ρf , respectively),
median grain diameter (d), kinematic fluid viscosity (ν), fluid shear velocity (u∗ ≡ √

τ/ρf )
and gravitational constant (g) or its buoyancy-reduced value g̃ ≡ (1 − ρf /ρp)g (for air,
g̃ 
 g). Physical quantities with a superscript ‘+’ are rescaled using units of ρp, g̃ and ν.
For example,

d+ = g̃d/(g̃ν)2/3, (2.7)

u+
∗ = u∗/(g̃ν)1/3, (2.8)

Q+ = Q/(ρpν). (2.9)

As we show, this rescaling is well suited to describe the relevant physical processes
underlying the cessation threshold scaling. A given environmental condition is fully
determined by the values of three dimensionless numbers (Pähtz & Durán 2020):

s ≡ ρp/ρf = 1/ρ+
f , (2.10)

Ga ≡
√

sg̃d3/ν = √
sd+3/2, (2.11)

Θ ≡ u2
∗/(sg̃d) = u+2

∗ /(sd+). (2.12)

Numerical simulations are carried out for various combinations of the particle–fluid
density ratio s and Galileo number Ga, exceeding previously simulated conditions by
almost four orders of magnitude in s (table 1), and for Shields numbers Θ ranging from
weak conditions near its cessation threshold value Θt to intense conditions far above Θt.

2.4. Sediment transport regimes for near-threshold conditions
Since the mixing length-based Reynolds-averaged description of hydrodynamics used
in the numerical model neglects turbulent fluctuations around the mean turbulent flow,
simulated sediment transport is always non-suspended. Near the cessation threshold
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s Ga

2.65 [0.1†, 0.5†, 2†, 5†, 10†, 20†, 50†, 100†]
1 × 101 [20, 50]
2 × 101 [20, 50, 100]
5 × 101 [2, 5, 10, 20, 50, 100]
1 × 102 [0.1†, 0.5†, 2†, 5†, 10†, 20†, 50†, 100†]
2 × 102 20
5 × 102 [2, 5, 10, 20, 50, 100]
1 × 103 10
2 × 103 [0.1†, 0.5†, 1, 1.5, 1.7, 1.8, 2†, 5†, 10†, 20†, 50†, 100†]
5 × 103 [2, 5]
1 × 104 [2, 5]
2 × 104 [1, 2, 5]
5 × 104 [0.1, 0.5, 2, 3, 5, 10, 20, 50, 100]
2.5 × 105 1 (simulations with larger Ga are unstable∗)
1 × 107 0.2 (simulations with larger Ga are unstable∗)

Table 1. Simulated particle–fluid density ratios s and Galileo numbers Ga. ∗The condition s = 2.5 × 105,
Ga = 1 corresponds to a typical transport environment on Mars (d ≈ 100 μm) and s = 107, Ga = 0.2 to a
hypothetical transport environment on Pluto (d ≈ 200 μm). Simulations with significantly larger respective
values of Ga are unstable for these large-s conditions. We have been unable to fix this issue and do not know
whether it has numerical or physical causes. The asterisk symbol, †, indicates conditions simulated in our
previous studies (Pähtz & Durán 2018a, 2020).

(subscript t), non-suspended transport occurs as either bedload or saltation (see the
introduction), which we distinguish through the criterion (Pähtz & Durán 2018a)

Transport regime =
{

bedload if v2
z t/g̃ < d,

saltation if v2
z t/g̃ � d.

(2.13)

The quantity v2
z /g̃ describes the contribution of hopping grains to the characteristic

transport height of all transported grains z̄, where the latter also include those that role and
slide. In particular, for saltation near the cessation threshold, v2

z t/g̃ 
 z̄t, whereas v2
z t/g̃ is

significantly smaller than z̄t for bedload transport (figure 1). Henceforth, v2
z /g̃ and z̄ are

termed hop height and transport layer thickness, respectively, for simplicity.

3. Results

This section is organised as follows. First, it shows the data and scaling laws of the
cessation threshold and equilibrium transport rate obtained from the simulations for the
saltation regime (§ 3.1). Second, it presents semi-empirical physical justifications of these
laws, including a first-principle-based proof of the statement that, under relatively mild
assumptions, the rescaled cessation threshold u+∗t is a function of only one dimensionless
control parameter (§ 3.2). Third, it tests existing models from the literature against the
numerical data (§ 3.3). Fourth, it provides semi-empirical generalisations of the scaling
laws that bridge between the saltation and bedload regimes (§ 3.4) and shows how they are
affected by modifications of the drag law (§ 3.5), which may occur, for example, in highly
rarefied atmospheres due to drag rarefaction.
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Figure 1. Transport layer thickness z̄t versus hop height v2
z t/g̃, both relative to the grain size d. Symbols

correspond to numerical simulations near the cessation threshold for various combinations of the density ratio
s and Galileo number Ga (see table 1), with open and filled symbols indicating bedload and saltation conditions,
respectively.

3.1. Simulation data and scaling laws for saltation

3.1.1. Cessation threshold
Of the physical parameters affecting the shear velocity at the cessation threshold u∗t, the
surface air pressure P varies most strongly with the planetary environment. Furthermore,
for a given planetary environment, the grain size d is the most strongly varying relevant
physical parameter. To isolate the effect of P on u∗t, we normalise u∗t in terms of relevant
parameters that do neither depend on P nor on d, U∗t ≡ u∗t/(μg/ρp)

1/3 (using that the
dynamic viscosity μ = ρf ν does not depend on P), and compare it with the density ratio
s, which incorporates the effect of P isolated from that of d.

For saltation, the simulations reveal a lower bound for U∗t scaling as s1/3 (figure 2, filled
circles). This is distinct from the classical scaling of the saltation initiation threshold with
s1/2 (Greeley et al. 1976, 1980; Iversen & White 1982; Greeley et al. 1984; Burr et al. 2015,
2020; Swann et al. 2020) (figure 2, gray crosses), which follows from a balance between
flow-induced and resisting forces or torques acting in bed surface grains (Pähtz et al. 2020).
Roughly the same s1/2-scaling was also found for the dynamic-threshold measurements
by Andreotti et al. (2021) carried out in a low-pressure wind tunnel (figure 2, black
crosses). As mentioned in the introduction and discussed in more detail in § 4, these
measurements may constitute data of the continuous-transport threshold rather than the
cessation threshold.

In addition to its s1/3-scaling, U∗t varies with the normalised median grain diameter
D∗ ≡ √

sd+ = √
sdg̃/(g̃ν)2/3, described by the following relationship between the

rescaled cessation threshold u+∗t (note that u+∗t = U∗t/(s − 1)1/3) and D∗:

u+
∗t = u+min

∗t max

[(
D∗

Dmin∗

)−1/2

,

(
D∗

Dmin∗

)1/2
]

. (3.1)

It contains the parameters Dmin∗ and u+min∗t , which denote the location and magnitude,
respectively, of the minimum of the function u+∗t(D∗), corresponding to the lower
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Figure 2. Cessation threshold shear velocity normalised using air-pressure- and grain-size-independent natural
units U∗t ≡ u∗t/(μg/ρp)

1/3 versus density ratio s. Symbols that appear in the legend correspond to initiation
(Greeley et al. 1976, 1980; Iversen & White 1982; Greeley et al. 1984; Burr et al. 2015, 2020; Swann, Sherman
& Ewing 2020) and cessation threshold measurements for aeolian transport of quartz (Bagnold 1937; Martin
& Kok 2018; Zhu et al. 2019), clay loam (Chepil 1945) and snow at sea level (Sugiura et al. 1998) and high
altitude (Clifton, Rüedi & Lehning 2006, HA). The dynamic-threshold measurements by Andreotti et al. (2021)
may constitute data of the continuous-transport threshold rather than the cessation threshold (discussed in § 4).
Symbols that do not appear in the legend correspond to numerical simulations for various combinations of s
and the Galileo number Ga (see table 1 and figure 1), with open and filled symbols indicating bedload and
saltation conditions, respectively (see figure 1 for the definition). The solid line corresponds to U∗t ∝ s1/3 and
represents the lower bound for cessation and initiation thresholds of saltation.

bound of U∗t for saltation in figure 2. Equation (3.1) is consistent with the simulations
(figure 3a) and experiments (figure 3b) for the saltation regime, though with slightly
different parameter values: (Dmin∗ , u+min∗t ) = (16, 1.6) versus (Dmin∗ , u+min∗t ) = (18, 2.3),
respectively. The associated relative change of u+∗t by 2.3/1.6 
 1.4 is well within
the typical systematic uncertainty of cessation threshold measurements. For example,
Creyssels et al. (2009) reported Θt = 0.009 for their terrestrial wind tunnel experiments
(d = 242 μm), obtained from extrapolating transport rate measurements to vanishing
transport using the transport rate model of Ungar & Haff (1987), whereas Pähtz & Durán
(2020) reported Θt = 0.0035 for the very same data using a different transport rate model
for the extrapolation, resulting in a relative change of

√
0.009/0.0035 
 1.6.

3.1.2. Equilibrium transport rate
The simulations of saltation and experiments reasonably collapse on the master curve
(figure 4)

Q+/d+3/2 = 1.7s1/3(Θ − Θt) + 12s1/3(Θ − Θt)
2 (3.2)

if Ga
√

s > 81. The vast majority of planetary transport occurring in nature and most of the
simulated saltation conditions satisfy this criterion. Note that Ga

√
s can be interpreted as

a Stokes-like number (Berzi et al. 2016), encoding the importance of grain inertia relative
to viscous drag forcing, and controls the transition to viscous bedload (Pähtz et al. 2021).

963 A20-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

34
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.343


Planetary sediment transport from DEM-RANS simulations

100 101 102
0

1

2

3

C
es

sa
ti

o
n
 t

h
re

sh
o
ld

, 
u+ ∗t

4

5

6

100 101 102 103
0

2

4

6

8

10

Normalised median grain diameter, D∗ Normalised median grain diameter, D∗

Bagnold (1937, quartz)
Chepil (1945, clay loam)

Martin & Kok (2018, quartz)
Zhu et al. (2019, quartz)

Sugiura et al. (1998, snow)

Clifton et al. (2006, snow, HA)

(a) (b)

Figure 3. Rescaled cessation threshold shear velocity u+∗t versus normalised median grain diameter D∗ ≡√
sd+. Symbols in (a) correspond to numerical simulations of saltation (see figure 1 for the definition) for

various combinations of the density ratio s and Galileo number Ga (see table 1 and figure 1). Symbols
in (b) correspond to experimental cessation threshold data (see legend) for terrestrial aeolian saltation of
quartz (Bagnold 1937; Martin & Kok 2018; Zhu et al. 2019), clay loam (Chepil 1945) and snow at sea level
(Sugiura et al. 1998) and high altitude (Clifton et al. 2006, HA). The solid lines correspond to (3.1), with
(Dmin∗ , u+min∗t ) = (16, 1.6) in (a) and (Dmin∗ , u+min∗t ) = (18, 2.3) in (b).
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Figure 4. Normalised sediment transport rate s−1/3Q+/d+3/2 versus Shields number in excess of the cessation
threshold Θ − Θt. Symbols in (a) correspond to numerical simulations of saltation (see figure 1 for the
definition) for various combinations of the density ratio s and Galileo number Ga (see table 1 and figure 1)
with Ga

√
s > 81, and Shields number Θ . Symbols in (b) correspond to measurements for different grain sizes

(indicated in the legend) for terrestrial aeolian saltation of minerals (Creyssels et al. 2009; Ho et al. 2011; Ho
2012; Martin & Kok 2017; Ralaiarisoa et al. 2020) and snow (Sugiura et al. 1998). The values of Θt in (b) for a
given experimental data set are obtained from extrapolating (3.2) to vanishing transport. Note that Ralaiarisoa
et al. (2020) reported that transport may not have been completely in equilibrium in their experiments. The
solid lines correspond to (3.2).
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3.2. Physical justifications of saltation scaling laws

3.2.1. First-principle-based proof that u+∗t is a function of only D∗
In general, the shear velocity at the cessation threshold u∗t is a function of the five control
parameters ρp, ρf , ν, g̃ and d (Claudin & Andreotti 2006). These parameters involve three
units (mass, length and time). According to the Π theorem (Barenblatt 1996), the physical
system, and therefore any dimensionless system property such as u+∗t, is then controlled
by two dimensionless numbers, for example the density ratio s and the normalised median
grain diameter D∗:

u+
∗t = f (s, D∗). (3.3)

To determine the function f in (3.3), existing cessation threshold models have made various
idealisations of the fluid–particle system (Claudin & Andreotti 2006; Kok 2010b; Berzi
et al. 2016, 2017; Pähtz & Durán 2018a; Andreotti et al. 2021; Pähtz et al. 2021; Gunn &
Jerolmack 2022). In particular, they all drastically coarse-grain the particle phase of the
aeolian transport layer above the bed surface, either by representing the entire grain motion
by identical periodic saltation trajectories (Claudin & Andreotti 2006; Kok 2010b; Berzi
et al. 2016, 2017; Pähtz & Durán 2018a; Andreotti et al. 2021; Pähtz et al. 2021; Gunn &
Jerolmack 2022) or by an average motion behaviour (Kok 2010b; Pähtz & Durán 2018a)
that is mathematically equivalent to an identical periodic trajectory representation (Pähtz
et al. 2020).

Here, in contrast to previous models, we do not resort to any such coarse-graining.
Instead, we idealise the system in the following comparably mild manner.

(i) We consider only buoyancy and Stokes drag as fluid–grain interactions, neglecting
form drag contributions. This would be justified if relatively fast saltating grains
dominated the near-threshold grain dynamics, since comparably faster grains exhibit
comparably lower fluid–particle velocity differences and, thus, comparably less form
drag relative to Stokes drag.

(ii) Due to the typically relatively small shear Reynolds numbers associated with
planetary transport near the cessation threshold, Ga

√
Θt � 10, we consider a

smooth inner turbulent boundary layer mean flow velocity profile ux(z), neglecting
hydrodynamically rough contributions (and turbulent fluctuations, which are also
neglected in the numerical simulations).

(iii) Since vanishingly few grains are in motion sufficiently close to the cessation
threshold, we neglect the feedback of the grain motion on the flow.

(iv) Since saltation trajectories are typically much larger than the grain size, we consider
an idealised flat bed and assume that the zero level of the flow velocity coincides
with the grain elevation at grain–bed impact (z = 0), neglecting the effect of the
flow very near the bed surface to the overall grain motion.

(v) While we do not specify the distribution of grain lift-off velocities f↑ and grain
impact velocities f↓, we assume that the boundary conditions mapping f↓ to f↑ in
the steady state are scale-free, as for grain–bed rebounds (Beladjine et al. 2007),
neglecting the potential effect of

√
g̃d on grain–bed collisions. Most grains ejected

by the splash of a grain impacting the bed with velocity v↓ exhibit a velocity on
the order of

√
g̃d and only the few grains corresponding to the upper-tail end of

the distribution exhibit an ejection velocity proportional to |v↓| (Lämmel et al.
2017). Hence, this assumption effectively means that grain–bed rebounds and/or rare
extreme ejection events dominate the saltation dynamics relevant for the cessation
threshold scaling.
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Under the above assumptions, the equations of motion for a given grain are (Pähtz et al.
2021)

v̇+
z = −1 − v+

z /v+
s , (3.4)

v̇+
x = (u+

x − v+
x )/v+

s , (3.5)

u+
x = u+

∗ fu(u+
∗ z+), (3.6)

where v+ is the rescaled grain velocity, v+
s = 4sd+2/(3Rec) the rescaled Stokes settling

velocity (obtained from the high-viscosity limit of (2.1)), and fu(X) denotes a function
describing ux/u∗ for an undisturbed smooth inner turbulent boundary layer. It obeys
fu(X) = X within the viscous sublayer of the turbulent boundary layer (X � 5) and
fu(X) 
 κ−1 ln(9X) within its log-layer (X � 30). Extrapolated into the transitional buffer
layer in between, both profiles would intersect at about X = 11, which is why δν = 11ν/u∗
is termed viscous-sublayer thickness.

Parametrised by v+
s and u+∗ , (3.4)–(3.6) map f↑ to f↓. Combined with the scale-free

boundary conditions, mapping f↓ back to f↑, they imply that the grain motion is fully
determined by v+

s and u+∗ . For a given v+
s , the cessation threshold u+∗t then corresponds to

the smallest value of u+∗ for which a solution of the combined system exists (Pähtz et al.
2021). This implies that there is a function f mapping D∗ =

√
18v+

s (valid for Rec = 24,
the standard case of non-rarefied drag) to u+∗t:

u+
∗t = f (D∗). (3.7)

In summary, the above assumptions simplify the general two-parametric dependence of
u+∗t in (3.3) to the one-parametric dependence in (3.7), in agreement with (3.1).

3.2.2. Semi-empirical model of cessation threshold scaling
While the above analysis explains why u+∗t = f (D∗) in (3.1), it does not yield the function
f itself. Here, we derive the expression for f in (3.1) guided by the simulations. The latter
show that the minimum u+min∗t for saltation occurs when the hop height v2

z t/g̃ is about equal
to the viscous-sublayer thickness δνt = 11ν/u∗t near the cessation threshold (figure 5a).
This can be explained using the empirical, yet physically reasonable, simulation-supported
proportionality between the average fluid velocity uxt and (v2

z )
1/2
t near the cessation

threshold (figure 5b). In fact, averaging (3.6) over all grain trajectories and the transport
layer, using the approximation fu(u+∗tz+)t 
 fu(u+∗tz+t), and using this proportionality

approximately yields for saltation (z+t 
 v+2
z t, see figure 1):

u+
∗t ∝

⎡
⎣ u+∗tv

+2
z t

f 2
u

(
u+∗tv

+2
z t

)
⎤
⎦

1/3

. (3.8)

Within the viscous sublayer (u+∗tv
+2
z t � 5), this relation simplifies to u+∗t ∝ (u+∗tv

+2
z t)

−1/3

and within the log-layer approximately to u+∗t ∝ (u+∗tv
+2
z t)

1/3, neglecting the logarithmic

term. The crossover between the two power laws occurs about at u+∗tv
+2
z t = 11, that is,

when the hop height exceeds the viscous-sublayer thickness (v2
z t/g̃ = δνt). Hence, the
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Figure 5. (a) Rescaled threshold shear velocity u+∗t versus ratio between hop height v2
z t/g̃ and viscous-sublayer

thickness δνt = 11ν/u∗t near the cessation threshold. (b) Rescaled transport layer-averaged fluid velocity u+
x t

versus (v+2
z )

1/2
t near the cessation threshold. (c) Plot of u+∗tv

+2
z t versus v+

s . Symbols correspond to numerical
simulations of saltation (see figure 1 for the definition) for various combinations of the density ratio s and
Galileo number Ga (table 1 and figure 1). The solid lines in (a), (c) and (b) correspond to (3.9), (3.10) and

u+
x t = 6(v+2

z )
1/2
t , respectively.

parabolic law

u+
∗t = u+min

∗t max

⎡
⎣
(

v2
z t

g̃δνt

)−1/3

,

(
v2

z t
g̃δνt

)1/3
⎤
⎦ (3.9)

fits the saltation data reasonably well (solid line in figure 5a).
Following from the analysis we have used to deduce (3.7), the grain kinematics near

the cessation threshold, and thus v+2
z t, should be controlled by u+∗t or v+

s . Indeed, the
simulations of saltation suggest the empirical relation (figure 5c)

u+
∗tv

+2
z t = 1.5v+3/4

s , (3.10)

which leads to (3.1) with Dmin∗ = √
18(11/1.5)2/3 
 16.

According to the above model, the grain size scaling of u+∗t in (3.1), despite being
mathematically equivalent to the well-known cohesive (u∗t ∼ d−1/2, left branch) and
cohesionless (u∗t ∼ d1/2, right branch) limits of the saltation initiation threshold (Shao
& Lu 2000), follows purely from hydrodynamics rather than the onset of cohesion at small
grain sizes.

3.2.3. Physics behind equilibrium transport rate scaling
Analytical, physical models of the equilibrium transport rate Q for aeolian saltation
typically separate it into the mass of transported sediment per unit area of the bed M
and its average streamwise velocity V through Q = MV . In most models, it is reasoned
that the scaling of V is in one way or another linked to grain–bed collisions, and since
the average outcome of grain–bed collisions should be roughly independent of the wind
speed at equilibrium, V is taken as equal to its near-threshold value Vt (Ungar & Haff
1987; Durán et al. 2011; Kok et al. 2012; Berzi et al. 2016). However, it has been
shown that, for sufficiently intense saltation, midair collisions significantly disturb grain
trajectories (Carneiro et al. 2013; Pähtz & Durán 2020; Ralaiarisoa et al. 2020), leading to
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an additional additive term increasing as M+/d+ (Pähtz & Durán 2020):

Q+ = M+V+
t (1 + cMM+/d+), (3.11)

where cM is a constant parameter. It is not trivial to evaluate the scalings of M+ and V+
t

with the simulation data, since extracting M and V from DEM-based numerical transport
simulations is ambiguous (Durán et al. 2012; Pähtz & Durán 2018b). One possible way is
to define M as the mass M0 of grains moving above the bed surface (z = 0) per unit bed
area and V as their average streamwise velocity (Pähtz & Durán 2018b):

M ≡
∫ ∞

0
ρ dz = M0, (3.12)

V ≡

∫ ∞

0
ρ〈vx〉 dz∫ ∞

0
ρ dz

= vx. (3.13)

This definition uses that most (but not all) sediment transport occurs at elevations z > 0,
especially for saltation and, therefore, M0vx = ∫∞

0 ρ〈vx〉 dz 
 ∫∞
−∞ ρ〈vx〉 dz = Q (Pähtz

& Durán 2018b). Alternatively, one can define V as the mass flux-weighted average vx
q of

the streamwise velocity of all grains and Mq, the associated value of M, as Mq ≡ Q/vx
q

(Durán et al. 2012):

M ≡

(∫ ∞

−∞
ρ〈vx〉 dz

)2

∫ ∞

−∞
ρ〈v2

x 〉 dz
= Mq, (3.14)

V ≡

∫ ∞

−∞
ρ〈v2

x 〉 dz∫ ∞

−∞
ρ〈vx〉 dz

= vx
q, (3.15)

where ·̄q ≡ (1/Q)
∫∞
−∞ ρ〈vx·〉 dz.

For the above two definitions of M and V , the simulations are roughly described
by scaling laws in which a comparably small part of the s1/3-scaling factor in (3.2)
goes into M+/d+ and a comparably large part into V+

t /
√

d+ (figure 6). However, the
exact partitioning of s1/3 depends on the chosen definition (figures 6(a) and 6(b) versus
figures 6(c) and 6(d)):

M+
0 ∝ s1/12d+(Θ − Θt), v+

x t ∝ s1/4
√

d+, (3.16a,b)

M+
q ∝ d+(Θ − Θt), v+

x
q
t ∝ s1/3

√
d+. (3.17a,b)

The latter scaling is consistent with the prediction M+ ∝ d+(Θ − Θt) from physical
models (Ungar & Haff 1987; Durán et al. 2011; Berzi et al. 2016; Pähtz & Durán 2020)
and with (3.2) when combined with (3.11). However, it means that V+

t ∝ s1/3
√

d+, which
is a highly unusual scaling, different from the existing models V+

t ∝ √
d+ (Ungar & Haff

1987; Berzi et al. 2016) and V+
t ∝ u+∗t (Durán et al. 2011; Kok et al. 2012; Pähtz & Durán

2020).
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Figure 6. (a,c) Normalised transport loads s−1/12M+
0 /d+ and M+

q /d+, using the definitions (3.12) and

(3.14), respectively, of M; and (b,d) normalised average streamwise grain velocities s−1/4v+
x /

√
d+ and

s−1/3v+
x

q
/
√

d+, using the definition (3.13) and (3.15), respectively, of V versus Shields number in excess of
the cessation threshold Θ − Θt. Symbols correspond to numerical simulations of saltation (see figure 1 for the
definition) for various combinations of the density ratio s and Galileo number Ga (see table 1 and figure 1)
with Ga

√
s > 81, and Shields number Θ . The solid lines in (a,b) correspond to the left equations in (3.16a,b)

and (3.17a,b), respectively.

3.3. Test of existing models against simulations of saltation

3.3.1. Test of cessation threshold models
The most important assumption that led to the simulation-supported statement that the
rescaled cessation threshold u+∗t is solely controlled by the normalised median grain
diameter D∗ in § 3.2.1 is that of scale-free boundary conditions. The only existing cessation
threshold model with scale-free boundary condition is that of Pähtz et al. (2021), which
we here compare with the most recent alternative, that of Gunn & Jerolmack (2022). The
latter’s most important feature is that it superimposes a Ga-dependent damping on the
scale-free laws describing grain–bed rebounds, where the damping function is essentially
fitted to agreement with experimental cessation threshold data. We find that, while the
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Figure 7. Evaluation of the cessation threshold models of (a) Pähtz et al. (2021) and (b) Gunn & Jerolmack
(2022), where the latter’s drag and lift laws have been modified to those employed in the simulations for a fair
comparison. Rescaled cessation threshold u+∗t versus normalised median grain diameter D∗ ≡ √

sd+. Symbols
correspond to numerical simulations of saltation (see figure 1 for the definition) for various combinations of
the density ratio s and Galileo number Ga (see table 1 and figure 1). The solid lines indicate the respective
model predictions. Their color characterises s in accordance with the symbol color.

model of Pähtz et al. (2021) captures the simulation data very well, the model of Gunn
& Jerolmack (2022), with its drag and lift laws being modified to those employed in the
simulations (i.e. (2.1) and no lift) for a fair comparison, is in very strong disagreement
(figure 7). This is discussed in § 4.

3.3.2. Test of equilibrium transport rate models
The simulations of saltation are not or not well captured by the two most widely used
physical models of the equilibrium aeolian transport rate: the model of Ungar & Haff
(1987) and others (e.g. Jenkins & Valance 2014; Berzi et al. 2016), Q+/d+3/2 = f1(Θ −
Θt) (figure 8a) and the model of Durán et al. (2011) and others (Kok et al. 2012; Pähtz &
Durán 2020), Q+/(d+u+∗t) = f2(Θ − Θt) (figure 8b).

3.4. Generalised scaling laws across saltation and turbulent bedload
It is possible to semi-empirically generalise (3.1) to also include turbulent bedload
conditions, defined by s � 10 and D∗ � Dmin∗ (equivalent to Gas1/4 � 64, which ensures
that transported grains significantly penetrate the log-layer; Pähtz & Durán 2020).
Turbulent bedload includes not only hopping grains but also rolling grains. The threshold
shear velocity required to sustain a pure, very slow rolling motion along the bed surface
scales as u∗t ∝ √

sg̃d (Pähtz et al. 2021), which corresponds to u+∗t ∝ s1/4 at the cessation
threshold minimum D∗ = Dmin∗ . We find that the empirical relation u+∗t = √

fsu+min∗t , with
fs ≡ (1 + √

10/s)−1, captures the transition from u+∗t ∝ s1/4 for s � 10 to u+∗t = u+min∗t for
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Figure 8. Evaluation of the physically based functional relationships for the sediment transport rate by
Ungar & Haff (1987) and Durán et al. (2011). Normalised sediment transport rate (a) Q+/d+3/2 and
(b) Q+/(d+u+∗t) versus Shields number in excess of the cessation threshold Θ − Θt. Symbols correspond to
numerical simulations of saltation (see figure 1 for the definition) for various combinations of the density ratio
s and Galileo number Ga (see table 1 and figure 1) with Ga

√
s > 81, and Shields number Θ .

s � 10 at D∗ = Dmin∗ . The resulting generalised cessation threshold equation is

u+
∗t =

√
fsu+min

∗t max

[(
D∗

Dmin∗

)−1/2

,

(
D∗

Dmin∗

)1/2
]

. (3.18)

It is consistent with the simulations and experiments across aeolian and fluvial transport
conditions with Ga

√
s � 81 (figure 9).

Furthermore, an empirical generalisation of (3.2) to turbulent bedload conditions is
given by

Q+/d+3/2 = 1.7s1/3(Θ − Θt) + 13fss1/3(Θ − Θt)
2, (3.19)

consistent with the simulations and experiments across aeolian and fluvial transport
conditions with Ga

√
s � 81 (figure 10).

Put together, (3.18) and (3.19) can be used to predict the equilibrium transport rate for
arbitrary combinations of the density ratio s, Galileo number Ga and Shields number
Θ with Ga

√
s � 81 for non-rarefied drag. When compared with the simulations, these

equations perform significantly better than the unified model of the cessation threshold
and equilibrium transport rate of Pähtz et al. (2021) (figure 11). While the latter captures
the s1/3-dependence of Q+, it fails to capture the d+-dependence of Q+/s1/3 observed in
the simulations.

3.5. Effect of drag law and generalisation to drag in rarefied atmospheres
The analysis in § 3.2.1 suggests that the normalised median grain diameter D∗ ≡ √

sd+ in
(3.1) and (3.18) should be redefined as D∗ ≡

√
18v+

s = √
24s/Recd+ (from (2.1)), which

is equal to
√

sd+ only in the case of non-rarefied drag (Rec = 24). To test this prediction
as well as the effect of the form drag coefficient C∞

d , we carried out additional simulations
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Figure 9. Bedload-corrected rescaled cessation threshold shear velocity u+∗t/
√

fs versus normalised median
grain diameter D∗ ≡ √

sd+. Symbols in (a) correspond to numerical simulations for various combinations of
the density ratio s and Galileo number Ga (see table 1 and figure 1) with Ga

√
s > 81, where open and filled

symbols indicate bedload and saltation conditions, respectively (see figure 1 for the definition). Symbols in
(b) correspond to experimental cessation threshold data (see the legend) for terrestrial aeolian saltation of
quartz (Bagnold 1937; Martin & Kok 2018; Zhu et al. 2019), clay loam (Chepil 1945) and snow at sea level
(Sugiura et al. 1998) and high altitude (Clifton et al. 2006, HA), and a compilation of experimental threshold
data for subaqueous bedload (Buffington & Montgomery 1997). Only data with Ga

√
s > 81 are shown. The

solid lines correspond to (3.1), with (Dmin∗ , u+min∗t ) = (16, 1.6) in (a) and (Dmin∗ , u+min∗t ) = (18, 2.3) in (b).

using C∞
d = 0 and Rec = [6, 24, 96] for a few saltation conditions. We find that these

simulations, indeed, still satisfy (3.18) and therefore (3.1) when the redefined D∗ is used
(figure 12a). They also still satisfy (3.19) and therefore (3.2), which are not affected by the
redefinition of D∗ (figure 12b).

In rarefied atmospheres, the mean free path λ of the air molecules becomes comparable
to the median grain diameter d, or the Knudsen number Kn ≡ λ/d = √

πk/2s/(c+d+)

(Crowe et al. 2012), with c+ = c/(g̃ν)1/3 the rescaled speed of sound and k the adiabatic
exponent, comparable to unity. This leads to a Kn-dependent correction fKn ≡ 1 +
Kn[2.49 + 0.84 exp(−1.74/Kn)] (Crowe et al. 2012) of Stokes drag via Rec = 24/fKn.
Note that typically fKn 
 1 for s � 106. Hence, the results in figure 12 support that the
following generalised definition of D∗ should be used for highly rarefied atmospheres
(s � 106):

D∗ ≡
√

fKn
√

sd+. (3.20)

4. Discussion

4.1. Choice of dynamic-threshold measurements for evaluation of cessation threshold
models

Equilibrium saltation becomes intermittent below the continuous-transport threshold,
characterised by alternating periods of equilibrium saltation and periods of rest (Martin
& Kok 2018). The cessation threshold is therefore the wind strength at which equilibrium
saltation would cease if extrapolated from the continuous-transport regime, that is, as the
zero-point of equilibrium transport equations such as (2.6) or (3.2). It is also the threshold
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Figure 10. Bedload-corrected normalised sediment transport rate fss−1/3Q+/d+3/2 versus bedload-corrected
Shields number in excess of the cessation threshold fs(Θ − Θt). Symbols in (a) correspond to numerical
simulations for various combinations of the density ratio s and Galileo number Ga (see table 1 and figure 1) with
Ga

√
s > 81, and Shields number Θ , where open and filled symbols indicate bedload and saltation conditions,

respectively (see figure 1 for the definition). Symbols in (b) correspond to measurements for different grain
sizes (indicated in the legend) for terrestrial aeolian saltation of minerals (Creyssels et al. 2009; Ho et al.
2011; Ho 2012; Martin & Kok 2017; Ralaiarisoa et al. 2020) and snow (Sugiura et al. 1998), and subaqueous
bedload (Meyer-Peter & Müller 1948; Smart & Jaeggi 1983; Capart & Fraccarollo 2011). We corrected the raw
laboratory data by Smart & Jaeggi (1983) and Capart & Fraccarollo (2011) for sidewall drag using the method
described in § 2.3 of Guo (2015) and for steep bed slopes using u2∗|corrected = u2∗/fα , with fα ≡ 1 − tan α/0.63
(Pähtz et al. 2021). The values of Θt in (b) for a given experimental data set are obtained from extrapolating
(3.19) to vanishing transport. Note that Ralaiarisoa et al. (2020) reported that transport may not have been
completely in equilibrium in their experiments. The solid lines correspond to (3.19).
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Figure 11. Predicted versus simulated sediment transport rate Q+. (a) Predictions by (3.1) with
(Dmin∗ , u+min∗t ) = (16, 1.6) and (3.19). (b) Predictions by the model of Pähtz et al. (2021). Symbols correspond
to numerical simulations for various combinations of the density ratio s and Galileo number Ga (see table 1
and figure 1) with Ga

√
s > 81, where open and filled symbols indicate bedload and saltation conditions,

respectively (see figure 1 for the definition). The solid lines indicate perfect agreement. The dashed lines
indicate a deviation by a factor of two.
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Figure 12. (a) Bedload-corrected rescaled cessation threshold shear velocity u+∗t/
√

fs versus normalised
median grain diameter, here redefined as D∗ ≡

√
18v+

s = √
24s/Recd+. (b) Bedload-corrected normalised

sediment transport rate fss−1/3Q+/d+3/2 versus bedload-corrected Shields number in excess of the cessation
threshold fs(Θ − Θt). Non-yellow symbols correspond to numerical simulations, carried out using the standard
drag law parameters Rec = 24 and C∞

d = 0.5, for various combinations of the density ratio s and Galileo
number Ga (see table 1 and figure 1) with Ga

√
s > 81 and Shields number Θ , where open and filled

symbols indicate bedload and saltation conditions, respectively (see figure 1 for the definition). Yellow symbols
correspond to additional simulations with modified drag law parameters as indicated in the legend.

of intermittent saltation (Martin & Kok 2018). To evaluate the cessation threshold scaling
law in (3.1), we have therefore chosen exclusively measurements that either extrapolate
continuous saltation in some manner to vanishing transport (Clifton et al. 2006; Zhu
et al. 2019) or directly measure the cessation of intermittent saltation (Bagnold 1937;
Chepil 1945; Sugiura et al. 1998; Martin & Kok 2018; Zhu et al. 2019). Both methods
require that equilibrium transport conditions can at least temporarily be established during
the experiments (Pähtz et al. 2020), usually by feeding sufficient sediment when the test
section is too short for transport to reach equilibrium. This requirement was probably not
satisfied in all of the above-cited measurements. The snow drift wind tunnel by Clifton
et al. (2006), who did not feed snow at the tunnel entrance, was probably too short to
establish equilibrium conditions for their beds of old and therefore cohesive snow, since
cohesion can dramatically increase the fetch required to reach equilibrium (Comola et al.
2019a). For this reason, we have only compared with their data for freshly fallen snow.

Unfortunately, many other studies have not employed the same criteria when choosing
measurements to evaluate their cessation threshold models (Claudin & Andreotti 2006;
Kok 2010b; Berzi et al. 2017; Andreotti et al. 2021; Gunn & Jerolmack 2022). This has
largely been driven by the belief that there is only one dynamic threshold, implying that
any kind of dynamic-threshold measurement is at least a proxy for the cessation threshold.
However, we have presented evidence for the hypothesis that the continuous-transport
threshold is a second kind of dynamic threshold with an underlying physics different from
that of the cessation threshold (Pähtz & Durán 2018a; Pähtz et al. 2020; Pähtz et al. 2021).
An important example for a potential misinterpretation of measured dynamic thresholds
as cessation thresholds is the study by Andreotti et al. (2021) for the following reasons.

(i) Andreotti et al. (2021), who carried out their measurements in a pressurised-wind
tunnel, explicitly mentioned that they were only able to establish equilibrium
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transport for air pressures relatively close to ambient pressure (P � 30 000 Pa) but
not for the vast majority of studied pressure conditions (down to P ≈ 200 Pa): ‘below
300 hPa [the erosional zone] encompasses the entire bed’.

(ii) Andreotti et al. (2021) explicitly defined threshold conditions ‘as the transition
between saltation of groups of particles (bursts) to intermittent saltation of single
particles (at high pressure) or no transport (at low pressure)’. For high-pressure
conditions, the so measured threshold is, by definition, larger than the cessation
threshold (i.e. the threshold of intermittent saltation; Martin & Kok 2018). For
low-pressure conditions, the measurements are difficult to interpret due to the lack
of equilibrium transport.

(iii) Andreotti et al. (2021) accompanied their direct threshold measurements with
indirect measurements obtained from extrapolating to vanishing transport. However,
since they have not established equilibrium (for most pressure conditions), this
extrapolation does not necessarily yield the cessation threshold.

(iv) Pähtz et al. (2021) hypothesised that the continuous-transport threshold is the
smallest wind shear stress at which an average grain ejected by an impacting grain
can be accelerated into a steady trajectory. A modification of their trajectory-based
model based on this hypothesis captured the measurements by Andreotti et al.
(2021), suggesting that their employed experimental method yields a threshold akin
to the continuous-transport threshold.

The potential misinterpretation of the measurements by Andreotti et al. (2021) as
cessation threshold measurements is highly relevant, since it led Gunn & Jerolmack (2022)
to introduce a Galileo number (Ga)-dependent viscous damping of grain–bed rebounds in
their cessation threshold model in an attempt to capture these data. However, this rebound
damping is the very reason for the very strong disagreement between their model and
the here presented numerical data of the cessation threshold (§ 3.3.1). Note that, from
a physical perspective, rebound damping should not depend on Ga but on the Stokes
number associated with the grain’s impact velocity St = ρp|v↓|d/μ (Berzi et al. 2016,
2017; Andreotti et al. 2021), which is experimentally known to control the viscous damping
of frontal grain collisions with a flat plate (Gondret, Lance & Petit 2002). Since typical
values of |v↓|/√g̃d for Martian saltation are at the very least comparable to, if not much
larger than, those for terrestrial saltation (because of Vt ∝ s1/3

√
g̃d, see § 3.2.3), and since

ρp, d and μ are of the same order of magnitude on Earth and Mars, typical values of St
on Mars are many orders of magnitude too large for viscous damping to play a meaningful
role. In addition, even if there was a strong damping of frontal grain–plate collisions, this
would not necessarily translate into a strong damping of grain–bed collisions. In fact, we
previously reported only slight differences between DEM-RANS simulations of saltation
for undamped (normal restitution coefficient e = 0.9) and nearly fully damped (e = 0.01)
frontal grain–grain collisions (Pähtz & Durán 2018a). Even for e = 0.01, grains can saltate
in large hops on the order of 100d high (Movie S3 of Pähtz & Durán 2018a).

4.2. Recommendations for how to reliably measure the saltation cessation threshold for
low-pressure atmospheric conditions

As described in the previous section, a reliable wind tunnel measurement of the cessation
threshold for a given low-pressure atmospheric condition requires that equilibrium
transport conditions can be established, at least temporarily. Since we are currently unable
to predict with confidence the fetch distance saltation needs to reach equilibrium as a
function of the atmospheric pressure, and since the required fetch could potentially be
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very large, it makes sense to design an experimental set-up that allows for adjustable
sand feeding. However, this may be challenging given the closed-conduit nature of
pressurised-wind tunnels. Once equilibrium transport is established in one way or another,
we recommend to carry out measurements in the continuous-transport regime of the
equilibrium transport rate Q (or a proxy thereof) as a function of the shear velocity
u∗ and then extrapolate these measurements to vanishing transport using Q = c1(u2∗ −
u2∗t) + c2(u2∗ − u2∗t)

2 (consistent with (3.2)), where c1, c2 and u∗t are treated as fit
parameters. The resulting cessation threshold u∗t should be substantially smaller than
the dynamic-transport threshold. In fact, for the terrestrial wind tunnel measurements by
Creyssels et al. (2009), this extrapolation method yields the value u∗t 
 0.13 m s−1 (Pähtz
& Durán 2020), which is nearly a factor of 2 smaller than the smallest wind shear velocity
(u∗ 
 0.24 m s−1) for which Creyssels et al. (2009) reported continuous equilibrium
transport.

5. Conclusions

Guided by simulations with a well-established DEM-based numerical model (Durán
et al. 2012) and existing experimental data, we have semi-empirically derived the scaling
behaviours of the cessation threshold shear velocity u∗t and rate Q of equilibrium sediment
transport across almost seven orders of the particle–fluid density ratio s, ranging from
subaqueous transport (s ≈ 2.65) to aeolian transport in the highly rarefied atmosphere on
Pluto (s ≈ 107). For saltation transport, occurring in planetary aeolian environments, they
are

u∗t = 2.3(g̃ν)1/3 max
[
(D∗/18)−1/2, (D∗/18)1/2

]
, (5.1)

Q = 1.7s1/3ρp(d/g̃)1/2(u2
∗ − u2

∗t) + 12s−2/3ρp(g̃3d)−1/2(u2
∗ − u2

∗t)
2, (5.2)

where ρp is the particle density, ν the kinematic fluid viscosity, g̃ ≡ (1 − 1/s)g the
buoyancy-reduced gravity, d the median grain diameter and D∗ ≡ √

sg̃d/(g̃ν)2/3 its
normalised value. In highly rarefied atmospheres (s � 106), D∗ is calculated by the
more general (3.20), accounting for drag rarefaction effects. Put together, (5.1) and (5.2)
constitute a simple means to make predictions of aeolian processes across a large range of
planetary conditions.

The derivation of (5.1) consists of a first-principle-based proof of the statement that
u∗t/(g̃ν)1/3 is a function of only D∗ (§ 3.2.1). In contrast to existing cessation threshold
models, this proof does not resort to coarse-graining the particle phase of the aeolian
transport layer above the bed surface, but requires comparably much milder assumptions.
Its arguably most critical underlying assumption is that scale-free boundary conditions
describe the outcome of grain–bed collisions. The validation of the above statement with
our extensive simulation data set therefore indicates that the characteristic velocity scale√

g̃d of grains ejected by the splash of an impacting grain plays no important role for the
physics behind the cessation threshold. Instead, grain–bed rebounds and/or splash ejection
events associated with the upper-tail end of the ejection velocity distribution are seemingly
the physical processes that need to be considered.

The left and right term of the right-hand side of (5.2) are consistent with the saltation
limit and collisional limit, respectively, of the Q-scaling derived by Pähtz & Durán (2020),
with a threshold mean grain velocity scaling as Vt ∝ s1/3

√
g̃d. This scaling strongly

deviates from the previous physical transport laws by Ungar & Haff (1987, Vt ∝ √
g̃d)

and Durán et al. (2011, Vt ∝ u∗t). For example, the law by Ungar & Haff (1987), which
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has been adjusted to Earth conditions, underestimates the sediment transport rate for the
simulated Martian conditions by a factor of about 5. Only the recent model of Pähtz et al.
(2021) comes somewhat close to reproducing this scaling. It captures the s1/3-dependence
of Vt, but fails to capture its proportionality to

√
g̃d. This hints at a quite fundamental lack

of understanding of the transport rate physics and calls for future studies on this issue.
For Martian atmospheric conditions, the cessation threshold values predicted by the

numerical simulations and (5.1) are much smaller than the recent dynamic-threshold
measurements by Andreotti et al. (2021). This is particularly odd given that both the
numerical simulations and (5.1) are in agreement with terrestrial experimental data. If the
simulations were fundamentally wrong, one would expect them to fail for all conditions,
not just for Martian conditions. In § 4, we have therefore presented arguments for why
the experimental methods used by Andreotti et al. (2021) may have yielded a threshold
different from u∗t. This issue needs to be resolved in future studies, since knowing the
‘true’ value of u∗t is crucial for understanding the time evolution of Martian landscapes.
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