NOTES ON INTERPOLATION BY BOUNDED ANALYTIC FUNCTIONS

BY TAKAHIKO NAKAZI

ABSTRACT. Let $\{z_n\}$ be a sequence in the open unit disc and write $\rho_n = \prod_{m:m \neq n} |(z_n - z_m)(1 - \overline{z}_m z_n)^{-1}|$. In the case of $|w_n| \leq \rho_n$ for all *n*, the interpolation problems are considered.

1. Theorems. Let H^{∞} be the Hardy space of bounded analytic functions in the unit disc D with boundary values in $L^{\infty} = L^{\infty}(d\theta/2\pi)$. Let $\{z_n\}$ be a sequence of distinct points in D and $\{w_n\}$ be a bounded sequence of complex numbers. Our notes concern the interpolation problem

$$f(z_n) = w_n, n = 1, 2, \dots$$

for f in H^{∞} . Put

$$\rho_n = \prod_{m; m \neq n} \left| \frac{z_n - z_m}{1 - \overline{z}_m z_n} \right|.$$

Carleson [1] proved that every interpolation problem has a solution if and only if $\inf_n \rho_n > 0$. Such a sequence is called uniformly separated. We wish to consider the interpolation problem when $\inf_n \rho_n = 0$. Gleason has observed (unpublished) that Earl's proof of Carleson's theorem yields a solution of the interpolation problem whenever $|w_n| \leq \rho_n^2$ for all n (cf. [3]). Moreover Garnett [3] shows that interpolation is possible if we have $|w_n| \leq \rho_n(1 + \log 1/\rho_n)^{-2}$ but interpolation is sometimes impossible if $|w_n| = \rho_n(1 + \log 1/\rho_n)^{-1}$.

In this paper we show the following two theorems. If $\{z_n\}$ is a finite union of interpolating sequences, then Theorem 1 says ρ_n is the slowest possible rate of decay in $|w_n|$ for interpolation to occur and Theorem 2 shows that if $|w_n|$ decays at a faster rate, then the interpolant of minimal norm is unique and an inner function.

THEOREM 1. $\{z_n\}$ is the union of a finite number of uniformly separated sequences if and only if for $|w_n| \leq \rho_n$ for all n, there exists a function in H^{∞} such

404

Received by the editors September 16, 1986, and, in revised form, June 11, 1987.

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

AMS Subject Classification (1980): 30E05.

[©] Canadian Mathematical Society 1986.

that $f(z_n) = w_n$ for all n.

The referere kindly pointed out to us the following: If $\{z_n\}$ is a finite union of interpolating sequences, then there is a constant M so that if $|w_n| \leq \rho_n$ for all n, then there exists an f in H^{∞} such that $f(z_n) = w_n$ and $||f||_{\infty} \leq M$. This is a little surprising, since there are interpolating sequences $\{z_n\}$ and sequences $\{w_n\}$ with $|w_n| \leq \rho = \inf \rho_n$ with $M \geq C/(\log 1/\rho)$.

 $\{w_n\}$ with $|w_n| \leq \rho = \inf \rho_n$ with $M \geq C/(\log 1/\rho)$. The similar theorem for H^1 is not true. For when $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, we can show that if $\sum_{n=1}^{\infty} \rho_n^{-1} |w_n| < \infty$ then there exists a function f in H^1 such that $(1 - |z_n|)f(z_n) = w_n$ for all n.

THEOREM 2. Let $\{z_n\}$ be the union of a finite number of uniformly separated sequences and $\rho_n^{-1}w_n \rightarrow 0$. Then there exists a unique f in H^{∞} of minimal norm such that $f(z_n) = w_n$ for all n. This function is a complex constant times an inner function and has analytic continuation across $\partial D \setminus \overline{\{z_n\}}$.

When $\{z_n\}$ is uniformly separated, Øyma [6] proved Theorem 2.

2. **Proof of Theorem 1.** In order to prove the theorem we need two well known lemmas. Let

$$B_{j}(z) = \prod_{n=1}^{J} \frac{z - z_{n}}{1 - \overline{z}_{n} z}, B_{jn}(z) = B_{j}(z) \frac{1 - \overline{z}_{n} z}{z - z_{n}} \text{ and}$$
$$b_{jn} = B_{jn}(z_{n}) \ (1 \le n \le j).$$

Define

$$m_j(w) = \inf\{ \|f_j + B_jg\|_{\infty}; g \in H^{\infty} \}$$

where $f_j(z) = \sum_{n=1}^{j} b_{jn}^{-1} w_n B_{jn}(z)$.

LEMMA 1. Let $w = \{w_n\}$, then

$$m_j(w) = \sup \left\{ \left| \sum_{n=1}^j \frac{w_n}{b_{jn}} f(z_n) (1 - |z_n|^2) \right|; f \in H^1 \text{ and } ||f||_1 \leq 1 \right\}.$$

The proof is in [4, p. 197-p. 198].

LEMMA 2. $\{z_n\}$ is the union of a finite number of uniformly separated sequences if and only if the measure $\sum (1 - |z_n|) \delta_{z_n}$ is a Carleson measure, where δ_{z_n} denotes point mass at z_n .

The proof is in [5].

THE PROOF OF THEOREM 1. For the part of 'only if', put $\ell' = \{w_n\}$; $|w_n| \leq \delta_n, n = 1, 2, ...$). By Lemma 1,

[December

$$\sup_{w \in \ell} m_j(w) = \sup_{w \in \ell} \sup_{f} \left| \sum_{n=1}^{j} \frac{w_n}{b_{jn}} f(z_n) (1 - |z_n|^2) \right|$$
$$= \sup_{w \in \ell} \sup_{f} \left| \sum_{n=1}^{j} \frac{w_n}{\delta_n} \frac{\delta_n}{b_{jn}} f(z_n) (1 - |z_n|^2) \right|$$
$$\leq \sup_{f} \sum_{n=1}^{j} \left| \frac{\delta_n}{b_{jn}} \right| |f(z_n)| (1 - |z_n|^2)$$
$$\leq \sup_{f} \sum_{n=1}^{j} |f(z_n)| (1 - |z_n|^2).$$

By Lemma 2, $\sup_{y \in \ell} m_j(w) < \infty$ and this finishes the proof of 'only if' (see [4, p. 197]).

For the part of 'if', by [4, p. 197], $\sup_{w \in \ell} m_j(w) < \infty$. By Lemma 1,

$$\sup_{j} \sup_{f} \int_{n=1}^{j} \left| \frac{\delta_{n}}{b_{jn}} \right| |f(z_{n})| (1 - |z_{n}|^{2})$$

$$= \sup_{j} \sup_{w \in \ell} \sup_{f} \int_{n=1}^{j} \frac{w_{n}}{\delta_{n}} \frac{\delta_{n}}{b_{jn}} f(z_{n}) (1 - |z_{n}|^{2}) | < \infty.$$

Put

$$\mu_j = \sum_{n=1}^j \left| \frac{\delta_n}{b_{jn}} \right| (1 - |z_n|) \delta_{z=z_n},$$

then for any $f \in H^1$ and all j there exists a finite positive constant γ such that

$$\int_D |f| d\mu_j \leq \gamma \int_0^{2\pi} |f(e^{i\theta})| d\theta/2\pi$$

and $||\mu_j|| \leq \gamma$. Let μ be the weak-* cluster point of $\{\mu_j\}$, then μ is a measure on the closed unit disc \overline{D} and $||\mu|| \leq \gamma$. Since for any continuous function u on \overline{D} that is analytic in D

$$\sum_{n=1}^{j} \left| \frac{\delta_{n}}{b_{jn}} \right| (1 - |z_{n}|) |u|^{2} (z_{n}) = \int_{\overline{D}} |u|^{2} d\mu_{j} \leq \int_{0}^{2\pi} |u(e^{i\theta})|^{2} d\theta / 2\pi,$$
$$\int_{\overline{D}} |u|^{2} d\mu = \sum_{n=1}^{\infty} (1 - |z_{n}|) |u|^{2} (z_{n}) \leq \gamma \int_{0}^{2\pi} |u(e^{i\theta})|^{2} d\theta / 2\pi \text{ and}$$
$$\mu |D| = \sum_{n=1}^{\infty} (1 - |z_{n}|) \delta_{z=z_{n}}.$$

406

This implies $\sum_{n=1}^{\infty} (1 - |z_n|) \delta_{z=z_n}$ is a Carleson measure and this finishes the proof of 'if' by Lemma 2.

3. **Proof of Theorem 2.** Let Q denote the orthogonal projection from L^2 onto $e^{-i\theta}\overline{H}^2$. For ϕ in L^{∞} let H_{ϕ} denote the Hankel operator on H^2 defined by $H_{\phi}x = Q(\phi x)$. Let ℓ^{∞} be the space of all bounded sequences of complex numbers and ℓ_0^{∞} the subspace of ℓ^{∞} of sequences tending to zero. Let $\{z_n\}$ be a sequence of distinct points in D and b a Blaschke product with zeros $\{z_n\}$. If f is in H^{∞} and $H_{\overline{b}f}$ is compact then $\{f(z_n)\}$ is in ℓ_0^{∞} [2]. Clark [2] showed that when $\{z_n\}$ is uniformly separated, if $\{f(z_n)\}$ is in ℓ_0^{∞} then $H_{\overline{b}f}$ is compact. The following lemma is a generalization of the Clark's theorem and we need it to prove Theorem 2.

LEMMA 3. Suppose $\{z_n\}$ is the union of a finite number of uniformly separated sequences. If $\{\delta_n^{-1}f(z_n)\}$ is in ℓ_0^{∞} then $H_{\overline{b}f}$ is compact.

PROOF. It is Hartman's theorem (cf. [7, p. 6]) that $H_{\overline{b}f}$ is compact if and only if $\overline{b}f \in H^{\infty} + C$ where C denotes the space of continuous complex valued functions on ∂D . We shall show that if $\{\delta_n^{-1}f(z_n)\}$ is in ℓ_0^{∞} then $\overline{b}f \in$ $H^{\infty} + C$. There is a factorization $b = b_1b_2 \dots b_\ell$ such that b_j $(1 \leq j \leq \ell)$ is a Blaschke product of $\{z_n^{(j)}\}$ where $\{z_n^{(j)}\}$ is uniformly separated and $\cup_j \{z_n^{(j)}\} = \{z_n\}$. Let $b'_j = \prod_{k \neq j} b_k$ then $\{b'_j(z_n^{(j)})^{-1}f(z_n^{(j)})\} \in \ell_0^{\infty}$. Since $\{z_n^{(j)}\}$ is uniformly separated, by Carleson's theorem there exists a function f in H^{∞} such that $f_j(z_n^{(j)}) = b'_j(z_n^{(j)})^{-1}f(z_n^{(j)})$ for all n. Set

$$g=\sum_{j=1}^{\ell}b_jf_j,$$

then $g(z_n) = f(z_n)$ for all *n* and so $H_{\overline{b}g} = H_{\overline{b}f}$. By Clark's theorem, $\overline{b}b_j f \in H^{\infty} + C$ for each *j*, and hence $\overline{b}g \in H^{\infty} + C$. Since $\overline{b}(g - f) \in H^{\infty}$, we conclude $\overline{b}f \in H^{\infty} + C$.

THE PROOF OF THEOREM 2. Let b be a Blaschke product with zeros $\{z_n\}$. Then by Nehari's theorem (cf. [7, p. 6]) $||H_{\bar{b}f}|| = ||\bar{b}f + H^{\infty}||$. By Lemma 3, $H_{\bar{b}f}$ is compact and so by Hartman's theorem (cf. [7, p. 6]), $\bar{b}f \in H^{\infty} + C$. Suppose $f(z_n) = w_n$ for all n, then we may assume that f is of minimal norm, that is, $||f + bH^{\infty}|| = ||f||_{\infty}$. The $\bar{b}f$ defines a continuous linear functional on $e^{i\theta}H^1$. Since $\bar{b}f \in H^{\infty} + C$, there exist a function $g \in e^{i\theta}H^1$ such that

$$\int \overline{b}fgd\theta/2\pi = ||\overline{b}f + H^{\infty}|| \text{ and } ||g||_1 = 1.$$

This implies that f is a desired inner function and unique.

I am very grateful to the referee who improved the exposition and pointed out the errors in the first draft.

T. NAKAZI

References

1. L. Carleson, An interpolation problem for bounded analytic functions, Amer. Jour. Math. 80 (1958), pp. 921-930.

2. D. N. Clark, On interpolating sequences and the theory of Hankel and Toeplitz matrices, J. Functional Anal. 5 (1970), pp. 247-258.

3. J. Garnett, Two remarks on interpolation by bounded analytic functions, Banach Spaces of Analytic Functions (Baker et al., eds.) (Lecture Notes in Math. Vol. 604), Springer-Verlag, Berlin.

4. K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, New Jersey.

5. G. McDonald and C. Sundberg, *Toeplitz operators on the disc*, Indiana Univ. Math. J. 28 (1979), pp. 595-611.

6. K. Øyma, Extremal interpolatory functions in H^{∞} , Proc. Amer. Math. Soc. 64 (1977), pp. 272-276.

7. S. C. Power, *Hankel Operators On Hilbert Space* (Research Notes in Math. Vol. 64), Pitman Advanced Publishing Program, Boston, London, Melbourne.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan