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ISOMORPHIC SUBGROUPS OF FINITE »-GROUPS. I
GEORGE GLAUBERMAN

1. Introduction and Notation. Let p be a prime and P be a p-subgroup
of a finite group G. Suppose that g € G and that P M P? has index p in P.
In [4], we assumed that g normalizes no non-identity normal subgroup of P.
We obtained some bounds on the order of P and some applications to the case
in which » = 2 and P is a Sylow 2-subgroup of (P, P?). In this paper, we
examine this situation further by considering the isomorphism ¢ of P M P!
onto P M P?given by ¢ (x) = x?. We actually consider arbitrary isomorphisms
¢ between two subgroups of index p in P. However, an easy argument
(Lemma 2.3) shows that every such ¢ can be obtained as above for some G
and some g. We obtain some results concerning the nilpotence class rather
than the order of P.

Let E(p) be the non-Abelian group of order p® which is generated by two
elements of order p. Thus, E(p) is dihedral if p = 2, and E(p) has exponent p
if p is odd. If p is odd, then E*(p) is defined in § 5 to be a particular group of
order p% and nilpotence class three. Our main results are:

THEOREM 1. Suppose that p is a prime, that P is a finite p-group, that Q and
R are subgroups of index p in P, and that ¢ is an isomorphism of R onto Q.
Let N be the subgroup of P generated by all the subgroups of R that are fixed by ¢.
Then

(@) ¢ fixes N and N J P,

(b) P/N has nilpotence class at most two if p = 2, and

(¢) P/N has nilpotence class at most three if p is odd.

THEOREM 2. Let p be a prime and let P be a p-subgroup of a finite group Hi
Assume that, for some h € H, (P, P"y = H, and that [P:P (\ P"] = p. Le.
Py =Pand Py = [Py, P, fori = 1,2, 3.

Suppose that o is an automorphism of P that fixes no non-identity normal
subgroup of H contained in P. Let |P/Z(P)| = p* and let n be the smallest
positive integer such that o fixes P (N P Then P, = 1, x is even, and, if Py #% 1,
x/2 divides n.

Furthermore, let v = x/2 and, if Py # 1, let n = quv. Then:

(a) Suppose that P, = 1. Then P 1is an elementary Abelian group and
|P| = p"

(b) Suppose that P; =1 and Py 5% 1. Then |Py| = p% ¢ > 1; ¢ = 2, if
p = 2; and q is a divisor of p, p — 1, or p 4+ 1, if p is odd. Moreover, P is a
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direct product of an elementary Abelian group with a direct product of v sub-
groups isomorphic to E(p).

(c) Suppose that Py = 1. Then p is odd, v is even, |P;| = p°, and ¢ = 1.
Moreover, P is a direct product of an elementary Abelian group with o direct
product of v/2 subgroups isomorphic to E*(p).

(d) Let Z =P N Z(H). Define t by p'=|P|. If t=2v+4 2, then
ZMNZaeM ..M 25727 52

(e) If P3s = 1 and P is a Sylow p-subgroup of H, then p = 3.

Theorem 2 is related to a question about Sylow p-subgroups of finite groups.
Let G be a finite group, ¢ be a prime, S be a Sylow p-subgroup of G, and ¢ be
the nilpotence class of S. Suppose that G contains a normal p-subgroup T
such that C(T) C 7. Let @ be an automorphism of S. We ask whether a
fixes some non-identity normal p-subgroup U of G.

If p is odd and SL(2, p) is not involved in G, then the answer is affirmative.
By [5, Theorems 8.1.2 and 8.2.11], we can let U = Z(J(S)); here J(S) is the
Thompson subgroup of .S, generated by the Abelian subgroups of S of maximal
order. However, it is easy to construct examples in which the answer is
negative, e.g., where |T'| = p? and G/T is isomorphic to SL(2, ). Thus, one
might hope that the answer is affirmative if 7 or S is “‘large’”’ in some sense.
Let us consider the special case in which |S/T| = p and

(1.1) G = (S, 5",

for some & € G. Then Theorem 2 gives us an affirmative answer when ¢ > 2
and p # 3, or when ¢ > 3 and p = 3.

The relation between Theorem 2 and Theorem 1 is illustrated by the fact
that Theorem 1 already gives an afirmative answer if ¢ > 3. To see this, take
h as in (1.1) and consider the mapping ¢:7%' — T given by ¢(x) = (x*)*
x € T=', Assume that ¢ > 3. Then we obtain N 5 1 in Theorem 1. A short
argument (using Lemma 2.4) shows that N < G and hence that « fixes V.

Theorem 1 is proved in § 3. The basic ideas of its proof stem from Sims’
work (see Propositions 2.1 and 3.4). For Theorem 2, we are mainly interested
in the case in which P is a Sylow p-subgroup of H. However, we make some
use of weaker assumptions. Thus, throughout each of §§ 4, 5, and 7, we have
a general hypothesis, stated at the beginning of the section, which is satisfied
if P is a Sylow p-subgroup of H. An extension of Theorem 2 is given in § 8
(Theorem 8.1). Note that both Theorem 2 and Theorem 8.1 yield information
if H is embedded in a larger group G and some element of N4(P) normalizes
no non-identity normal subgroup of H contained in P.

Let P be an arbitrary group that satisfies Theorem 1 with N = 1. Comparing
Theorems 1 and 2, one might suspect that P must always have a direct product
decomposition as in part (a), (b), or (c) of Theorem 2. But this is not true.
One may easily construct counterexamples (for example, see the note after
Definition 5.8). In [3], J. Currano has characterized all such groups P by
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generators and relations. Moreover, he has shown that P has a direct product
decomposition under weaker assumptions than the hypothesis of Theorem 2
(see Remark 5.11).

All groups considered in this paper will be finite. Most of our notation is
taken from [5]; we list some special cases and exceptions. Let G be a group.
We write H € G if H is a subgroup of G; HC G if H C G and H # G;
H QG if H is a normal subgroup of G; and H < G if H < G and H # G.
If H C G, let [G:H] be the index of H in G. As in [5], let [x, v, 2] = [[x, ¥], 2]
and [H, K, L] = [[H, K], L], for x,v,2 € G and H,K,L C G.

Let p be a prime. For every group G, let O?(G) be the subgroup of G gener-
ated by all the p’-elements of G. Let Z, be the field of the integers modulo . In
discussing a p-group, we will sometimes use ‘‘elementary’” to mean ‘‘elemen-
tary Abelian’.

For a vector space V, let SL(V) be the special linear group on 7, i.e., the
group of all linear transformations of determinant one on V.

Acknowledgement. We thank the Institute for Advanced Study, the National
Science Foundation, and the Sloan Foundation for their partial support
during the writing of this article. We also thank Bowdoin College for the
opportunity to present part of this work during the Bowdoin Finite Groups
Seminar in the summer of 1970.

2. Preliminary results. Let G be a group and let ¢ be an isomorphism
from a subgroup H of G onto a subgroup K of G. We say that ¢ fixes an element
or subgroup of H if it maps it to itself. Suppose that L & G. Define
¢°(L) = LN K and

¢~ CD(L) = {¢" ' (x)|]x € ~(L)YNK}, ¢=0,1,2,....
The following fundamental result is a restatement of some results of [10].

ProposiTioN 2.1 (Sims). Suppose that P is a finite p-group of order p*, that
Q and R are subgroups of index p in P, and that ¢ is an isomorphism of R onto Q.
Let N be the subgroup of P generated by all the subgroups of R that are fixed by ¢.
Then:

(a) & fixes N;

(b) N 4 P; and

(¢) if N = 1, then there exists x € P such that x € ¢~V (P), and such
that {x, p(x), ..., ¢ 1(x)) has order p, for i = 1,2, ...t

Proof. (a) This is obvious.

(b) If Q = R, then N = Q. Suppose that Q # R. Then ¢ maps RN Q
isomorphically into Q, and maps ¢~1(R M Q) isomorphically into R. Since
NC RN Qand N C ¢~ (RN Q), we may assume by induction that N J Q
and that N < R. Therefore, N < QR = P.
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(¢) Let Ry = P and Ry = ¢~ '(P), forz =1,2,3,... . Then R, = R and
Ry = RN ¢ 1(R;) TR, for all 2= 0. Since N =1, we have R; D Ry
whenever R; # 1. However, for each 1,

[Ripa| = [RM ¢~ 1(RY)| = [¢(R) VR = [QN Ry = [Ri]/p,

SO IRi/Ri+1| é P. ThUS, l]{i/RH.l[ = p, if Rl #= 1. Consequently, IRl—ll = P.
Moreover, for 1 £ ¢ £t — 1, we have ¢(R;) # R, and ¢(R;) € R,_;; hence,
Ri_1 = (R;, ¢(Ry)). By induction,

Rt—l—-i = <Rt_1, ¢)(.Rt_1), e ey ¢i(Rt..1)>, fOI‘ 1= 1, 2, c ey t— 1.
Let x be a generator of R,_;. We obtain (c).

Our next two lemmas are special cases of results of G. Higman, B. H. Neu-
mann, and H. Neumann (8, Volume II, p. 53].

LEMMA 2.2, Let H and K be subgroups of a finite group G. Let S be the sym-
metric group on G. Embed G in S by identifying each element g of G with the
permutation x — xg(x € G) of G.

Suppose that there exists an isomorphism ¢ of H onto K. Then there exists
g € S such that g7'Hg = K and g~'hg = ¢(h), for all h € H.

Proof. Let n = [G:H] = [G:K]. Take %1, ...,%, ¥1,...,%. € G such that
G = Ux;H = Uy.K.

In this proof, we will write x* to denote the image of an element x of G
under an element s of S. Define g € S by

(xh)? =vyip(h), for 1 £i=<mandh € H.
Forz=1,...,nand %, 2 € H, we have
b (2))7" = (x2)"
= (x.h)?
= yup(zh)
= y.:9(2)¢(h)

= (y:ip(2))*™.
So g~ thg = ¢(h).

LemMMA 2.3. Let H and K be subgroups of a finite group G. Let
Q= {(e,r)|ac G;r=1,2},

and let S be the symmetric group on Q. Suppose that there exists an isomorphism ¢
of H into K. Then there exists an embedding of G into S and an element g of S
such that g7'Hg = K = g7'Gg M\ G and g~'hg = ¢(h), for all h € H.

Proof. First assume that 4 = 1. Embed G in S by defining
(x, 1)V = (xy,1) and (x,2)" = (x,2), forx,y € G.
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Define g by
(x,1)? = (x,2) and (x,2) = (x,1), forx € G.

Now assume that H ¢ 1. Then K # 1. Take £ % 1 in K. Define # and
X1y« vy Xy Y1, - - -, Yo @S in the proof of Lemma 2.2. We may assume that
x; = 31 = 1. Embed G in S by defining

(x,7) = (xy,7),forx,y € G and 7 =1,2.
Define g by
(xih, 1) = (yvip(h),1), forl £i=<mandh € H;
(h, 2) = (¢(h), 2), for h € H; and
(xih, 2)? = (yik¢(h),2), for2 =i =<mandk € H.
As in the proof of Lemma 2.2, we obtain g~lhg = ¢ (k) for all & € H.
We claim that g7'Gg N\ G = K = g~1Hyg. Suppose that this is false. Take

x € G — H such that gxg € G. Let x = x;h, where # € H. Then 7 > 1.
Moreover,

glxg = (glxg) (g hg)™ € G.
Since x; = y; = 1,
(g7g, 1) = (L, )77 = (1, 1) = (x5, 1)? = (y,, 1).
Thus, g7x.g = ;. So
0s2) = (1,2)% = (1,2)77 = (1, 2)" = (x;,2)" = (y:k, 2).
Since k # 1, this is a contradiction.

LeEMMA 2.4. Suppose that P is a finite p-subgroup of a group G. Let ¢ be an
1somorphism of P into G such that P M\ ¢ (P) has index p in P. Let N (y) be the
subgroup of P generated by all the subgroups of P that are fixed by . Then:

(@) We have N(¥) < (P, ¢(P)).
(b) Suppose that Q = P M Y (P) and that /' is the restriction of ¥ to ¥~1(Q).
Then N () is the subgroup of P generated by all the subgroups of ¥~1(Q) that are

Sfixed by /.

Proof. Define Q and ¢/ as in (b). Clearly, N(¥) = ¢ 1(N(¥)) € ¢v1(Q).
This yields (b). By Sims’' result (Proposition 2.1), N(¥) < P. Hence,

NE) =y @) ¥ (P).

Note. For any isomorphism ¢ that satisfies the hypothesis of Lemma 2.4,
we define N (¢) as in the lemma.

The next two lemmas are proved in [5, pp. 18-19]:
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LeMMA 2.5. Let G be a group in which G' C Z(G). Let x,v,2 € G. Then
[xy’ Z} = [x’ Z][y’ Z]’
[x, y2] = [x, y][x, 2], and
[x%, ¥7] = [x, ¥]H, for all integers 1, j.
LemMA 2.6 (Three Subgroups Lemma; P. Hall). Let G be a group.
(@) Forallx,v,2 € G,
[x, y7% 2]y, 571, «)°le, &L, )"
(b) If HHK,LC G end [H,K,L] = [K, L, H]

1.
1, then [L, H, K] = 1.

Il

3. The general case. In this section we assume the hypothesis and nota-
tion of Proposition 2.1. We further assume that N = 1. Take x as in
Proposition 2.1(c); let x; = ¢ (x), forz = 1,2, ..., ¢ Then we have
B.1) @) |P| = p' pisaprime, and t = 1;

(b) Q] = [R] = p*=Y;

(c) @ is an isomorphism of R onto Q that fixes no non-identity subgroup
of R;

d) x1,...,%01 € Rand ¢(x;) = x4qy1, fore=1,...,t — 1;
and

) [{x1, ... x| =pLfori=1,2,...,¢

We will not use subscripts to denote terms of the lower central series of a
group, except that we define Py, = P’; P3; = [P, P]; and P, = [P;, P]. We
also define the parameters u, v, and % as follows. Let # = ¢ if P is Abelian.
Otherwise, let # be the smallest positive integer such that [x;, x4 # 1 for
some 7. Let v =t — u. Let & = ¢ if P; = 1. Otherwise, let £ be the smallest
positive integer such that [x;, xzy:] ¢ Z(P) for some ¢ (B must exist since
P/Z(P) is not Abelian).

Forl =7 £ j < ¢, we write (x;, . . ., x;) to denote the group (x,|i < r < 7).
Similarly, we often denote an element of (x; ..., x;) by x,® ... x,® for
some function e; here, it is understood that the subscripts on the x's increase
from left to right in the actual product.

Throughout this section we assume (3.1).
From (d) and (e) we obtain easily:

LEMMA 3.1. For every x € P, there exist unique elements e(1),...,e(t) € Z,
such that x = x,° ., x,%9,

LemmA 3.2. (a) If 1 £ 4 < j = ¢, then
[, (6] & @ty o ooy %5m1)
L) If PP # 1and 1 £ ¢ = v, then (x4, Xupq) # 1.

Proof. (a) First, suppose that j = ¢+ 1. Then (x; x,) = ¢ ((xy, x2)).
By (3.1) (e), [(x1, x2)] = p% Hence, (xi, x2) and (x., x,) are Abelian.
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Now suppose that j = 7 + 2. Similar calculations show that (x4 ..., %;-1)
and (X1, ...,%;) have index p and are therefore normal in {x; ..., x;).
Hence,

(o), )] € (Xay e vy Xma) M {Xigty o ooy X5 = (Kitdy o ooy Xye1)e

This proves (a).
(b) By the definition of %, we have [x;, x,+;] # 1 for some j for which
1 =j = v. Hence [x4, xu1.d] = 6" ([, %uss]) #~ 1.

The following symmetry principle will be quite handy:

LEMMA 3.3. Let n be a nonzero element of Z,. Condition (3.1) and the definitions
of u, v, and k remain valid if we replace P by P, Q by R, Rby Q, ¢ by ¢!, and
Xy by (x,+1_i)",f0r1: = 1, ooy t.

Recall that # = ¢ if P is Abelian.
ProrositioN 3.4 (Sims [10, Lemma 2.7]). Assume that P is not Abelian.

Then
(@) uz 3t
(b) [xlr xu+1] S <xv+1; ceey xu—g+1>, and

©) [xsxurd € UWEZP)), fori=1,...,0.

Proof. Since P is not Abelian, # < ¢{. Suppose that 1 < ¢ < v and that
1 = u. Then

[xu+1—1y xu-(-i_ly xl] = [17 xl] = 11
and
[ut o 2174 ugr™] € [(o2, - 0y Xugimn)y (Bur)] = 1,

by Lemma 3.2 and the definition of #. By the Three Subgroups Lemma
(Lemma 2.5)

3.2) (1, ®ut1, Xuri] = 1.

ByLemma 3.2,1 # [x1, Xu11] € (Xg, . .., %u). Let [X1, Xyp1] = 2,5 ... 2,5®,
where e(m), e(n) ¥ 0. Then m =< u. Suppose that m < v. Then u + m = ¢,
and x,4, centralizes X,41, . . ., %, but not x,, (by Lemma 3.2). So

(1) K1y Xutm] = [Xn®™ o0 5,5, Kyym] # 1,

contrary to (3.2). Thus, m = v 4 1.
Lety; = %4414, for< =1,2,...,¢ Then

1 Yur1] = (x4, 0]
= [xw xt]_l
= ¢" 1 ([x1, Xuy1]™?)
= GmI(, . gmem)
= ¢0—1(yt+l—n—g(n) e yH—l—m—e(m))

= yu+2—n—8(") eoe yu+2—m_e(m)-
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By the above argument and by symmetry (see Lemma 3.3), we obtain
u+ 2 —n =9+ 1. Therefore,

v+1=m=ns wu+2)—@w+1)=u—v+ 1.

Since v = ¢ — u, this proves (a) and (b).
Suppose that 1 < ¢ < v. Then

(X4 Xupa] = ¢7H([%1, Xug1]) € Kopir e o vy Bumprs) & (Kpg1, - -, %) & Z(P),

by (b) and the definition of «. Since every x; has order p, this proves (c) and
completes the proof of Proposition 3.4.

LemMA 3.5. (@) Fort =1,...,v,
Co({xiy ooy u)) = (X1, « « ) Lytic1)
(b) Fori=u-+1,...,¢
Co({Xpsty o v ey X0)) = (Xiuply « o oy X4
(c) Moreover, Z(P) = {Xps1, .., %) and Z(Q) = (Xog1, .+« Xug1);

both are elementary Abelian.

Proof. If P is Abelian, then # = ¢t and v = 0, and the lemma is obvious.
Assume that P is not Abelian.

(@) Let C= Cp({(x4...,%,)). By the definition of u, C contains
{x1, . . ., Xurs—1). Suppose that it contains some further element x. Let
x =21V ... 5,5, where m =2 u+ ¢ and e(m) # 0. Then 7 = m — u =
t—u =u,s0x € CC Cy(xp) and x,_, centralizes

X1y X2y o0 0y Xpeagy o o o y X1

Hence, x,_, centralizes x,,°™, contrary to Lemma 3.2.
(b) Use (a) and symmetry.
(¢) Takez = 1in (a) and 7 = ¢ in (b). We obtain

Z(P) S (1 eeey @) M) (Kppty oo vy X)) = (Fogty o vy Xu)e

We obtain the reverse containment because [x;, x;] = 1 whenever 1 <7 < ¢
and v + 1 = j = u, by the definition of # and v. A similar argument yields
that Z(Q) = (Xpt1, « - - , Xur1). Since every x; has order p, Z(P) and Z(Q)
are elementary Abelian.

Recall that & = ¢ if P3 = 1.
ProrositioN 3.6. Suppose that Py # 1. Then

(3.3) kzu+ 3o,
and
(3.4) [x1, Xrga] = %05 L0 L%, 5,
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for some integers m, n and some e(m), ..., e(n) € Z, such that

@)l1l=m=ncst,

(b) both e(m) and e(n) are nonzero,

c)ym=k—u+lorn=u-+1,

dm=k—u-+lorm=v+1,and

e)n=u+lorn=k+1-—o

Proof. If [x1, xx41] = 1, then [x;, xprq] = 671 ([x1, x341]) = 1 € Z(P), for
2=1,...,t— k, contrary to the definition of k. Thus, [xi, %x11] ## 1. Take
m,n and e(m), ..., e(n) to satisfy (3.4), (a), and (b).

Suppose thatm = v 4+ land thatn < k2 + 1 — v. Then,for1 =7 =t — &,
we have v+ 1=m <m-+72—1and 4+ 17— 1 = u; hence,

oo, @ira] = 7 ([, wga]) = 671 (@™ L. L 5,°)
= Xy 1™ L X1 @ € (Kgp1, ..., X)) © Z(P).
This contradicts the definition of k. So we have
(3.5) mZvorn=k-+2—uo
We will assume for a while that m < v. Let
N = (Xpr1y ey Xp),
and let C = Cp(N). Since b = u, Lemma 3.5 yields that N D Z(P) and that

C = (Crg1mus o o+ Xo)e

By our choice of k, we have [(x,), N] C Z(P), for j = 1,...,k — u. Since
[C, N] =1, we have [P, N] C Z(P) C N. Therefore, N I P and C < P.
It follows that [x1, xz+1] € C and consequently that m = & + 1 — u. We will
show that m =k + 1 — u.

Let ¥V = {[X111—u %z+1]). Then ¥ C Z(P), by Proposition 3.4. Moreover,
[C, x:+1] € Y. Hence, the coset x;41Y is in the centre of C/Y. Since C < P,
we have C/Y < P/Y and Z(C/Y) < P/Y. Consequently,

(3.6) [y, 041 Y € Z(C/ 7).
Therefore,
(3'7) [xme(m) .. xne(n), xu+m] = [xly Xrt+1, xu+m] € Y = <]:xk+1—u) xk+1]>'

Let Yy = {{*n, ¥utm)). Then Y1 C Z(P), and x,4n centralizes xn, ..., %,
modulo Y;. By (3.7),

15 [x,5™ L x,°®, Xyim] € YN V= VN ¢gn-H1-0 (T,

Since |Y| = p,m — (k + 1 — u) is zero; thatis,m =k + 1 — u.
Suppose that 2 < # + %v. Then 2k < 2u+v=u+ 4,2k +1 =2 u 4 ¢,
and m +k =2k + 1 —u =< ¢t By (3.6) and the definition of C,

[xme(m) e oo %5, K] = (X1, Xy, xm+k] cYc Z(P)-
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Hence, x,4; centralizes x,,°™ ... x,°™ modulo Z(P). By the definition of
k, x,4x centralizes X441, . . ., x, modulo Z(P). As e(m) £ 0, x,,+, centralizes
x, modulo Z(P). However,

[y Xmpr] = "1 ([w1, Xpt1])
¢m—1 (xme(m) L. xne(n))

e(m) e(n)

Il

Xom—1 oo Xptm—1

As 2m — 1 =2+ 1—u) — 1 =2k —2u+ 1 <94 1, this contradicts
Lemma 3.5(c). Hence & = u + 1v.

We have now proved (3.3), (c), and (d) under the assumption that m < v.
Lety; = Xy41-4, for 2 = 1, ..., ¢ Then

[yl, Vi1l = [%4, X 44]
= ¢ 1([x1, xpy1]7?)
= ¢y 1™ L L Y ip1-m4™)

—e(n) — e(m)

= Yit2—n oo Vito-m

By symmetry (Lemma 3.3) and by the above argument, we obtain (3.3)
andk+2—n=%k+1—u (thatis,n =u + 1)if £+ 2 — n < v (that is,
if n=k+4+ 2 —v), regardless of m. Thus, we obtain (3.3), (c), and (e) if
n=k+2—0By @35),m Zvorn =k+ 2 — v This proves (3.3) and (c)
in all cases. Since (d) is trivial if m > v and (e) is trivial if » < B — v 4+ 2,
this completes the proof of Proposition 3.6.

THEOREM 38.7. If p = 2, then Py = 1. In all cases, Py = 1 and
P C (X p1py + oy i)

Proof. We assume that P; 5 1 and use the notation and results of Proposi-
tion 3.6. By symmetry, we may assume that

(3.8) m=k—u-+ 1.
Suppose that p = 2. Let x = x; and y = %341. Then
(3.9) x = 2 = (al, 1) = &'[x, 1Y = alx, y1°Lx, 9, 9.
Since 0 =n—m=@w+1)— (k—u+1) <u by Proposition 3.6, the

group (Xu, . .., %,) is elementary Abelian. Consequently,

[xr y]2 = [xly xk+1]2 = 11
and (3.9) yields

(3.10) 1= [x,9,9] = [x° ... %,°®, g 11].
By (3.8), B+ 1 =m + u. Hence, x;41 centralizes x,.1,...,%, Since
e(m) #= 0, (3.10) yields [x,,, xx+1] = 1, which is a contradiction. Thus, p = 2.
Let
N1 = <x0+1,...,xk), N2= <xt+1—kv"'vxu>y

Cl = <xk+l-—u) ey xl)y and C2 = <x11 ce ey xl+u—k>-
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By the definition of k, we have [N;, P]C Z(P) C N,, for 7 =1,2. By
Lemma 3.5, C; = Cp(N;), fori = 1, 2. Thus, Ny, N» < P. Hence, C;, Cs < P.

Suppose that 1 <7 =<j <t and that [x; x;] # 1. Then j — 7= u, so
jzu+1=29v+12=2%k—u+ 1 Thus, x; € Cy and [x;, x,] € C;. Similarly,

1 =u=t+u—kand [x;x,] € Cs Since C; N\ C, 4 P, we obtain
(3.11) P’ C Cl f\ C2 = <xk+1_u, “ e ey x,+u_k>.

Since k=u+3v, 26 22u+v=t+u Hence, k+1—u=¢t+1—%F
andt+u—k§k.By(311),

(3.12) P C (X1 .- ) %)
By (3.12) and the definition of k, we have P3; = [P’, P] C Z(P). Therefore,
P4 = 1.

Example 3.8. Let P = E(p) and let ¢ and b be two generators of P that
have order p. Let

X1 =2a, % = [a,b], and x; = 0.

Let R = (x1, ¥2) and Q = (xs, x3). Then Q and R are elementary Abelian
groups of order p? and are isomorphic under a mapping ¢ that satisfies (3.1).
Here P has nilpotence class two.

Example 3.9. Assume that p is odd. Take ¢ and b as in Example 3.8, and let
¢ = [a,b]. Let Q be the direct product of {a,d) and an elementary group
(d, e) of order p2. Then there exists a unique automorphism « of Q given by

a* =a,b* = a b, c* =¢,d* = d, e = dle.

(Since p is odd, (a~c)? = 1.) Moreover, o? = 1.
Let P be the semi-direct product of Q by (a). Let

X1=a, X2=a, X3=4d, X4=¢ x5s=¢e, and x; = b.

Let R = {(x1, X3, X3, X4, X5) = (@, €) X {a,¢). Then Q and R are isomorphic
under a mapping ¢ that satisfies (3.1). Since P’ = (a,c¢,d) and P; = (c),
P has nilpotence class three.

Remark 3.10. It is easy to see that in (3.1), P is elementary Abelian if
v = 0 and P is a direct product of E(p) and a (possibly trivial) elementary
Abelian group if ¥ = 1. On the other hand, it is easy to construct examples
for which ¥ = 0 and ¢ is an arbitrary positive integer, or for which v = 1 and
¢ is an arbitrary integer greater than two. In [3], J. Currano has classified all
groups P and isomorphisms ¢ that satisfy (3.1).

4. A restricted case. Suppose that P satisfies (3.1). In Lemma 2.2, we have

shown that P can be embedded in some finite group G such that ¢ is effected
by conjugation by some element g of G. Suppose that P is thus embedded:
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let H = (P, P% and x,; = x,%. Since [P?: Q] = p, Q is normal in P’ and
therefore in H. Then H = (Q, x1, x,+1). In this section we investigate the
structure of P when P and H satisfy the following restrictions:

4.1) P is not Abelian;
(4.2) H = Cy(Q)O"(H)P?.

It is of interest to show that (4.2) depends only on P and ¢, and does not
depend on the group G in which P is embedded. Let ¥ be the homomorphism
of H into Aut Q that maps each # € H to the automorphism of Q given by
x — x" Let H* be the image of ¢, and let P* be the image of P? under .
Then (4.2) is equivalent to the condition that H* = 0?7 (H*)P*. However,

H* = Y@x)12i5t+1) and P* = YEH2=:i=Zt+ 1).

Now, ¢ (x;) is determined by the structure of P, for ¢ = 1, ..., Moreover,
Y (x,41) is determined by the condition

xi|lf(zz+1) = x et
— (xi_ld)ztﬂ
= (xi_lzt)ﬂ

= ¢(x;_1"t), fori =2,...,L
Thus, (4.2) is determined solely by P and ¢.
Throughout the remainder of this section we assume (3.1), (4.1), and (4.2).
By Proposition 3.4, [x1, Xuq1] € Xpa1y + « .+ Xu_pr1). Define

co+1),...,cu—2+1) €Z,
by

(4.3) [x1, Xup1] = X1 L xy oy S@TOHD,
If Py = l,deﬁned(k — u + 1),-..,d(u+ 1) c Z,,by
(4) [%1, Xrq1] = Xppgr®FTHHD L1 a0 2OFD,

By Proposition 3.6, these exponents exist.
Let us recall some notation from [5]. A series

S=S()2512...25n=1

in a group S is a normal series if S; < Sy, fort = 1,2,...,n. A subgroup K
of Aut S stabilizes this series if it fixes Sy, .Sy, ...,.S, and fixes every coset of
S;inS;_, fore=1,2,...,n.

LemmA 4.1 (Maschke [5, p. 69]). Suppose that S is an elementary Abelian
p-group, that K is a p'-group of automorphisms of S, and that Si is a subgroup
of S fixed by K. Then there exists a subgroup Se of S fixed by K such that
S =51 X S..
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LemMmaA 4.2 ([5, pp. 178-179]). Suppose that S is a p-group and that K is a
group of automorphisms of S that stabilizes a normal series of S. Then K is a

p-group.

LeEmMmA 4.3. Suppose that Qs C Q1 C Q and that Q1, Q2 < H. Assume that
H/Cyx(Q1/Qs) s a p-group. Then H = Cy(Q1/Q2)P°.

Proof. Clearly, Cx(Q)0?(H) € Cx(Q1/Q2). Apply (4.2).

LemMA 4.4. The group H/Cx(Z(Q)) is not a p-group.

Proof. Suppose that this is false. By Lemma 4.3,
H = Cg(Z(Q)P? S Cu¥us1),
contrary to [x1, Xu41] #= 1.
ProrositioN 4.5. We have c(v + 1) £ 0 and c(u — v + 1) 5 0.

Proof. Suppose that c(u —v 4+ 1) = 0. Let Ny = Z(P) = (Xpt1, -« - » %)
and let N = (Xp42,...,%,). Then N, C Z(P)N Z(P?) C Z(H). Since
X1y Xop1] = [%1, Luqr]”
¢’v(xv+lc(v+1) .. xu_v+1c(u—v+1))
= X031 %D L L L 2,50 € N,
x.41 centralizes Ni;/Ni.. So Ny < H and Ni/N, C Z(H/N,). Moreover,
Z(Q) < H and Z(Q) = (N1, %4y1), by Lemma 3.5. As [x1, %,41] € Ny and

[%utr1, X241] = 1, we have Z(Q)/N1 C Z(H/N1). Let us regard H/Cy(Z(Q))
as a group of automorphisms of Z(Q). Then it stabilizes the normal series

Z@) DNiDN:21

of Z(Q). By Lemma 4.2, H/Cx(Z(Q)) is a p-group, contrary to Lemma 4.4.
Hence, ¢c(u — v + 1) # 0.

If ¢c(v + 1) = 0, a symmetric argument (by Lemma 3.3) yields again that
H/Cyx(Z(Q)) is a p-group, contrary to Lemma 4.4.

1l

Notation. Let z; = [%1, %1). For 1 =2,...,v4+ 1, let 2, = [x;, Xupe] =
¢ 1(z1). Let Z = {z1,..., 2,) and let V = (21, 2p11).

LEMMA 4.6. We have Z(Q) = {(Z(P), 2p41) and
(Z,2001) N Z(P) = Z.
Proof. Fori =1,...,9,
2= 7 1(21) = Xpp iSO L Xy ST € (Xpr1y 000, %) & Z(P),

by (4.3). Since ¢(x — v + 1) # 0, we obtain 2,41 ¢ Z(P) and (Z(P), 2p41) =
(Z(P), x4y1) = Z(Q), by a similar argument.
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ProrositTioN 4.7. We have Z(Q) = V X (QMN Z(H)) and V < H. More-
over, consider V to be a vector space over ZL,,; then the elements of H determine by
conjugation the elements of SL(V). Thus, H/Cy (V) = SL(2, p).

Proof. By parts (a) and (b) of Lemma 3.5, QN Z(H) = (X442, -+ ., Xu).
Since ¢( + 1) % 0and ¢c(x — v + 1) 0, we obtain

ZQ)=VONZH) and VN (QN Z(H)) = 1.
Thus, Z(Q) = V X (QMN Z(H)).
Let S = (Z(Q), x1) = (Z(P), %1, Xur1). Since [x1, X,41] € Z(P), the group
S/Z (P) must be Abelian. So S’ C Z(P) C Z(S). By Lemma 2.5,
(2o41) 7 (@04 1)" = [2p41, ¥1]
= [29,01°tD | L 2,1 0@ D )
= [, 1]

= [xu“, xl]v(u—wl)
— zl—c(u——0+l)_

So (2,41)*1 = 277°@ "Dz 1. A similar argument shows that 2,21 =g;,,,°°+D,
Let us consider 2; and 2,41 to form a basis of V' as a vector space. Since
%1, 21] = [* /41, 2o41] = 1 and since V C Z(Q), we find that V < H and that

(4.5) the automorphisms of V induced by conjugation by x1 and x .1 are repre-
sented by the matrices

1 0| and |1 c(w+ 1) .
[—c(u — v+ 1) 1] |:O 1 :I , respectively.

It is well known [9, pp. 115-118] that these matrices generate SL (2, p), since
¢(u — v+ 1) and ¢(v + 1) are nonzero, by Proposition 4.5. As

H = Qx1, x441) = Cu(V){x1, X441),
this completes the proof of the proposition.

Remark 4.8. In [3], J. Currano has obtained the conclusion of Proposition
4.7 by assuming (3.1), (4.1), and a weaker condition than (4.2).

LemvMa 49. Let N = (X0 ...,%). ZLThen [H,N]C Z(Q) and
[0?(H), N] S V.
Proof. Since u +1 =<k =t Z(Q) € N C Q. By the definition of %k, we
have [P, N] C Z(P) C Z(Q). Similarly, [P?, N] € Z(Q). Hence,
N/Z(Q) & Z(H/Z(Q)),

which yields [H, N] € Z(Q). By this calculation and by Proposition 4.7, the
automorphisms of N/V induced by conjugation by elements of H stabilize
the normal series

N/V2ZQ)/V22V/V=1
of N/V.By Lemma 4.2, H/Cy(N/V) is a p-group. Hence, O?(H) C Cx(N/V).
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We will say that a series of the form

(4.6) 1=0CQxC...0,=0

is an H-composition series of Q if Q; < H, for each ¢, and there is no normal
subgroup S of H such that Q;_; C S C Q; for some 7, 1 <7 < n. We note
that the Jordan-Holder theorem applies to H-composition series [6, Theorem
8.4.3, p. 126].

ProrosiTiOoN 4.10. Assume that P; = 1. Suppose that (4.6) is an H-com-
position series of Q. Then precisely one of the factors Q;/Qi—1 (1 = ¢ = n) has
order p2, and oll of the other factors Q:/ Qi1 have order p and are centralized by H.

Proof. By the Jordan-Holder Theorem, it is sufficient to find one H-composi-
tion series of Q that satisfies the conclusion of the lemma. Let Q; = V. By
Proposition 4.7, V is a minimal normal subgroup of H and Z(Q)/V is cen-
tralized by H. Since P; = 1, we have k¢ = {. By Lemma 4.9, H centralizes
Q/Z(Q)-

Consider the series

1=0CQ:CZ(Q) <O

After deleting repeated terms, if any, we may refine this series to an H-com-
position series of Q that has the desired properties.

LemMA 4.11. Fori=1,...,k — u,
[P, (Xur )] S (31, + - -4 30).
Proof. Use induction on . Suppose that 1 < r < £ — u and that the result
is true whenever 1 <2 < 7. Let M = (21,...,2,) and N = (M, 2,41). Then

MCZP)and VC NC VZ(H).So N < H.
We first show that x,.,/V is in the centre of H/N; that is, that

(47) [H) <xu+r>] .g N.

By (4.2), H = Cx(Q)0?(H)P*. Certainly, Cx(Q) centralizes the coset
%u4+N. By Lemma 4.9, O?(H) centralizes x,;,N. Thus we must show that
[x: %ups] € N, for 2 =2,...,¢t+ 1. For this, we may assume that r = 2.
Now,

[xiy xu-H'] = d)([xi—lv xu+r—1]) E ¢’({Pv <xu+f—l>])
§¢(<21,...,z,_1)) = <Zz,...,Zr>gMgN,
by induction. This proves (4.7).

Since # 4 7 < k, we obtain [P, (x,4,)] S NN Z(P) = M, by (4.7) and

Lemma 4.6.

LeEMmMA 4.12. Suppose that 1 <1 = k — u. Then

[P, (o)) S (Bupimier - - » Zy).
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Proof. Let Y = (2,1ity...,%). Then ¥ C Z(P). We must show that
Koty x] € Vyforj=1,2,...,¢. Now, 1 St 4+i—k=v<u Ifj=u,
then (%44, %;] = 1. Assume that j =2 u + 1. Letr =j— (¢t +7— %k — 1).
Then

j>v=2t+1—k and 127 =t—(t+i—k—1)=<k—1+4+1=ZkFk
Hence, by Lemma 4.11,

(%4 imiy 5] = T ([wg, %)) € (2, e ey 20)

= (ZH-i—k) ey z}—u) g Y)
as desired.
ProprosITION 4.13. Let Z* = (Z, 2p41) = {21, . . . , Zoy1) and let
N = (Xigopy o - vy Xi)-
Then:
(@) Zz* J H;

(b) N & H and [H, N] C Z*;
(c) of Py = 1, then P' = Z and [Q, H] = Z*; and
d) #f P3 % 1, then P; & Z C P,

Proof. Since V C Z* C Z(Q) C VZ(H), we obtain (a). Let
L = (4411, N).
By Lemmas 4.11 and 4.12, we have
(4.8) [P,N]C [P, L] C Z.

Hence, [P? N] C [P L] C Z? C Z* C N. This yields (b).

Since z; = [x;, Xy4q) € P/, fori=1,...,v, we have Z C P'.

Suppose that P; = 1. Then & = ¢t and N = Q. By Lemmas 4.11 and 4.12,
P C Z so P =Z. By (b), [0, H € Z*. Thus,

Z* = <Zy [xv+11 xt+1]> g [Q’ H] - Z*’

which proves (c).
Finally, assume that P; % 1. By Theorem 3.7, P’ C L. Hence, by (4.8),
P; C [L, P] C Z. This yields (d) and completes the proof of Proposition 4.13.

ProposITION 4.14. Assume that P3 # 1. Take m and n as in Proposition 3.6
and Z* and N as in Proposition 4.13. Let

M= ®yi1r oo o Xag1) = (N, Xop1oky Xeg1)e
Then:
(@) [Q,H] S M,[Q, M] S N, and M  H;
(b) of M/N C Z(H/N), thenm = v + 1;
(c) of M/N & Z(H/N), then k = u + Lv; and
d) n =u+ 1.
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Proof. (a) By Theorem 3.7, P’ C (xy11-ty - .., %5y & M. Hence, M < P.
Similarly,
P?) =o' & ®iroy - - -, Xpp1) & M,
and M < P?. So M < H. Moreover, [Q, H] € M because
Q/M < Z(P/M)N\Z(P/M) S Z(H/M).

By the definition of %, we have [Q, M] C Z(P) C N.

(b) Assume that M/N C Z(H/N). By Proposition 4.13 (b), the elements
of H determine by conjugation a group of automorphisms of M/Z* that
stabilizes the normal series

M/Z* D N/Z*¥ D Z*/Z* = 1.
By Lemmas 4.2 and 4.3, H/Cx (M/Z*) is a p-group, and
(4.9) H = Cy(M/Z*)P.
By the definition of %,
%6 Xera] = [wio1, %] € Z(P) = Z(P?) © Z(Q),

for ¢ =2,...,¢t+ 1. Hence, x11Z(Q) € Z(P*/Z(Q)). Since Z* C Z(Q),
(4.9) yields that [H, (xz+1)] © Z(Q). In particular,

XM x5 =[x, Xeg1] € Z(Q) = Koty - -y Xutr)

Since k<t k—u-+1<9v+ 1= m. By Proposition 3.6 (¢c), n = u + 1.
This proves (b) and proves (d) when M/N C Z(H/N).
(c) Assume that M/N & Z(H/N). Let C = Cx(M/N). By (@), C 2 Q.
Suppose that C D P? Then H = (P, P% = P(C. Therefore, H/C is a
p-group. By Lemma 4.3, H = CP? = C, contrary to assumption. Thus,
C 2 P?. Since C D Q, we must have x,.1 ¢ C. As [xz41, Xx,41] = 1, we obtain
[% 411> X 41] 2 1, modulo N. Now,

(% i1ty Xop1] = ¢ 7F([x1, Xp11])

= ¢ (xnt™ ... x,°™)
= Xmy 11"+ o Kzt
Since
[ or1t £eg1] € Krroty oo er X)) N M = (N, xe41),
we obtain
(4.10) mdtmb=k+ L

Thus,n =2k —¢t+1>k+u—t+1=Fk — v+ 1. By Proposition 3.6 (e),
n=u-+ 1. By 4.10), 2k =t + u = 2(u + 3v). This proves (c) and com-
pletes the proof of (d) and of the proposition.
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We now consider some consequences of assuming the following statement,
symmetric to (4.2):

(4.11) H = Cx(Q)0°(H)P.

We continue to assume (3.1), (4.1), and (4.2). Recall that, if P; £ 1, certain
exponents d(¢) are defined by (4.4).

ProrosITION 4.15. Assume (4.11). Suppose that Py % 1. Then:

(@) viseven,m = 1+ Yv, and k = u + Lv,

(b) both d(k — u + 1) and d(u + 1) are nonzero, and

(C) P3 = Z.

Proof. Take m and % as in Propositions 3.6 (and 4.14). By Proposition
4.14 (d), » = u + 1. Since (4.11) is symmetric to (4.2), Proposition 4.14 (d)
yields the symmetric result that m =k —u + 1 (see Lemma 3.3 and
Proposition 3.6). Hence, m <t —u -+ 1 =v+4+ 1. By Proposition 4.14,
k = u + %v. Thus, we obtain (a) and (b).

By Proposition 4.13, P; C Z. Now, 2z € Z. Let d =d(u + 1). Then
d # 0. By Lemma 2.5,

[1, 41, 1] = [2,50 ... 2,190 1]
= [xus1% x1]
= [xly xu+1]~d
= Zl_d # 1.
Therefore, 2, € P;. Fort =1,2,...,v/2, we have k + 7 < ¢ and

(4 Xppo €0] = ¢71([%1, Xpg1, X1]) = 67 L&) = 2,7

thus, z; € P;. Let w = v/2. For the same values of z, similar calculations yield
that

Zuy D =[xy, X1y Xeri] € Pa.
This proves (c).
ProposiTION 4.16. Assume (4.11). Suppose that P; £ 1. Let w = v/2.
Define

M = (Xpi1y s o o Xurwr1) ABE N = (Xpt2y o o oy Xyt

Then:
(a) [Q, H] € M and [Q, M] S N;
(b) M,N < Hand H/Cy(M/N) = SL(2, p); and
(c) for amy H-composition series

1=0CAxC...CL=0

of Q, precisely two of the factors Qi/Qi1(1 = © = n) have order p?, while all the
other factors Q;/ Q1 have order p and are centralized by H.
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Proof. Since w = &k — u, M and N have the same definitions as in Proposi-
tions 4.13 and 4.14. This proves (a) and yields that M, N < H.

By Proposition 4.15, d(w + 1) and d(# 4+ 1) are both nonzero. We may
complete the proof of Proposition 4.16 by arguing as in Propositions 4.7 and
4.10 and using (4.4) instead of (4.3).

Remark 4.17. Suppose that p = 2 or p = 3. Then SL(2, p) has a normal
p-complement. Using Proposition 4.7, we can obtain (4.11) from (3.1), (4.1),
and (4.2). If p = 2, then (x1, x;31) is a dihedral group, and (4.2) yields a
stronger result: PCyx(Q)/Cx(Q) and PCx(Q)/Cx(Q) are Sylow p-subgroups
of H/Cx(Q).

5. The conjugate case. Suppose that P satisfies (3.1). As in § 4, we may
and will assume that P is contained in a group G possessing an element g
for which ¢(x) = x? (x € R). In this section, we extend ¢ to an isomorphism
of P into G by defining ¢ (x) to be x? for all x € P. Let H = (P, ¢(P)). We
assume that

(5.1) P is not Abelian, and
(5.2) ¢ (P) is conjugate to P in H.

We will determine the structure of P (Theorem 5.10), and other information
(Corollary 5.14) that will be applied in the proof of Theorem 2.

Let w =9 if Py =1 and w = v/2 if P3 ¥ 1. Since ¢ has been extended,
there is no further need for the element g given above; we will therefore use
the letter *‘g"”’ to denote an arbitrary element of H.

Throughout this section we assume (3.1), (5.1), and (5.2), and use the leiters

e

g’ and “w" as in the previous paragraph.

LemmMmA 5.1. We have

(5.3) H = 0*(H)P = 0?(H)¢(P),
and, for some B’ € O?(H), P" = ¢ (P). Moreover,
(5.4) PN ¢(P) = Q.

Proof. Clearly, 0?(H) is a normal subgroup of H and H/O?(H) is a p-group.
Suppose that PO?(H) # H. Then PO?(H) is contained in a maximal subgroup
H* of H. Since H/O?(H) is a p-group, H*/O?(H) is a normal subgroup of
H/O?(H). Hence, H* <1 H. By (5.2),

H = (P, ¢(P)) S H*CH,

which is a contradiction. Thus, H = PO?(H). Similarly, H = O?(H)¢ (P).
Take g € H such that P? = ¢(P). Take ¥’ € P and ' € O?(H) such that
kW = g. Then P¥ = P? = ¢(P).
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Obviously, Q € PN ¢(P) C P. Suppose that PN ¢(P) ## Q. Then
P M ¢(P) = P. Since P is finite, $(P) = P. Therefore, ¢ (P’) = P’. By (3.1),
P’ =1, contrary to (5.1). Thus, P M ¢(P) = Q.

By Lemma 5.1, H satisfies (4.2) and (4.11) (for some g € G). Therefore,
all the results of § 4 are valid in this section. In particular, if P 5% 1 then v is
even and k = u + w.

Because of (5.4), we will use Lemma 2.4 to discuss various isomorphisms y
of P onto ¢(P).
Take & € H such that P* = ¢(P). Define a:P — P by

(5.5) xe = (¢ (x))",
for all x € P. Then « is an automorphism of P and ¢(x) = (x*)* for allx € P.

Henceforth, we will assume that h and o are fixed elements of H and Aut P
that satisfy (5.5).

LEMMA 5.2. For 1 =1,2,...,9— 1, 22 = 2,41 and 2.1 € Z(H); also,
(2,0 = {(21). Therefore, v divides the order of a.

Proof. Let g = 7. By Lemma 4.6, Z = (z1,...,2,) C Z(P). Therefore,
(22, ...y 20) S Z(P) N $(Z(P)) = Z(P) N Z($(P)) S Z(H).

Fori=1,2,...,9— 1,22 = (¢(2:))? = (3:41)? = 2:41.
By Lemma 4.6 and Proposition 4.7, V = (21, 2,41) < Hand VN Z(P) =
(21). Since z, € Z(P),

2 = (9(2,))’ = (2r1)? € VN Z(P) = (z1).

Hence, (3,)* = (21). Since o permutes the subgroups (z1), ..., (2,) cyclically,
v divides the order of a.

LemMa 5.3. Let 2 =gy and ¢ = clu —ov+ 1). Fori=0,1,...,w, there

exist vy € (Xpp1y .« . ., Xyps) SUCh that
(5.6) 2 =y @) 0=i=Zw—1),
and
5.7 (&) = Yo Cutwi1)
Furthermore, suppose that Pz % 1. Let z*¥ = (z**)*. For 1 =0,1,...,w,
there exist y;* € (Xwt1y - -« » Xurwri) SUch that
(5.8) @) = y* Cugwrir1)® O=i S w—1),
and
(5.9) ((F*)*)" = yu* (®441) "
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Proof. We prove (5.6) by induction on <. It is clear for 2 = 0 (e.g., see the
proof of Lemma 4.6). Suppose that 0 <7 < w — 2 and that (5.6) holds
for 7. Let g = h~'. Then

2 = (3(2) = (B Xuri41))° = ¢(1)? Furs12°)".

By Proposition 4.13,

[(Xos1y - o v s Xugw)y H] © (31« < oy Z011) © Z(Q) = Fpr1y -+« «  Xu1)e

Sinceu +171+ 2 = u + w,

(V1) Kut142°)° = (¥ 1)%uri+2° modulo Z(Q).
Since ¢(y:) € (Xpt2, ..., Xurir1), we obtain (5.6) for 7 4+ 1. This completes

the proof of (5.6).
Now let 2 = w — 1. Then

@) = ()" = ¢() = ¢V i%urn®) = ¢V )Xuuir’,
which yields (5.7).

Suppose that P; #% 1. Then [Q, H] € (Xyt1, - - « » Xutwt1), by Proposition
4.16. We obtain (5.8) and (5.9) by the arguments used to prove (5.6) and (5.7).

For our next results, recall the definition and properties of N(¢) for an
isomorphism y (Lemma 2.4).

LemMA 5.4. Define an isomorphism ¢ of P onto P" by
Yx) = () x € P.

Let Q* = N(). Then:
(a) Q* < H and o fixes Q*;
(b) of Ps = 1,then Q* N Z = (23, ..., 3,); and
(©) if Py 5= 1, then Q* N Z = (22, . <« y 25 Zurt2y + + + » Zo)-

Proof. (a) By Lemma 2.4, Q* < H. Hence, Q* £ PN P* = Q and

Q¥ = (Y(Q*)" = Q¥ = Q~.

(b) Suppose that P; = 1. By Lemma 5.2, each subgroup (z;), 2 =7 = v,
is fixed by a’. Moreover, each such subgroup is contained in the centre of H.
Therefore,

Q*NZ2 (..., 2)

Suppose that Q* N\ Z D (zs, ..., 2,). Then Q* D Z. By Proposition 4.7, V is
a minimal normal subgroup of H. Since z: € Q* N\ V, V C Q*. So z,41 € Q*.
Therefore, ¥ (2,11) = (2,41°°)* € Q*, contrary to Lemma 5.3.

(c) Suppose that P; 1. Let Y = (25,..., 20} Zut2,..-,3,). Using
Lemma 5.2 as in (b), we obtain ¥ C Q* N\ Z. Suppose that ¥ C Q* N Z.
Then there exists x € Q* N Z and 4, j € Z, such that x = z1%2,417 # 1.
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Since o fixes Q* and interchanges (z;) and {(2,.1), we may assume that 7 # 0.
Then x ¢ Z(H) and, since 2,41 € Z(H),

15 [<x>rH] = [<21>1H] g- V.

Since Q* <l H and V' is a minimal normal subgroup of H, ¥ C Q*. Hence,
Y2 (2,41) € Q* Take z* as in Lemma 5.3; then

V2 (2041) = ¥((2,41%°)") = (g%“)* ¢ Q%,
which is a contradiction.

LeMMA 5.5. Define ¢ and Q* as in Lemma 5.4, and let P = P/Q* and
H = H/Q*. Let P, = P' and P; = [P,, P]. Denote the coset hQ* by h. Define
a mapping ¥ of P into H by §(xQ*) = ¢(x)0*, for all x ¢ P. Then:

(@) ¢ is an isomorphism of P onto P%;

b) [P:PN P =pand N§) = 1;

(c) of P3 = 1, then |Py| = p and P; = 1; and

(d) if P3 5 1, then |P;| = p2.

Proof. Since ¢ is an isomorphism that fixes 0%, ¢ is well defined and satisfies
(a). Likewise, (b) is easy. Clearly, P, = P,Q*/Q*, for i = 2,3. If P; = 1,
then P; = 1 and

[Pa| = |P2Q*/Q¥| = |ZQ*/Q*| = |Z/(Z N Q¥)| = »,

by Proposition 4.13 (¢) and Lemma 5.4 (b). This yields (c), and (d) follows
similarly from Proposition 4.15 (¢) and Lemma 5.4 (c).

Note that, by Lemma 5.5, ¢ is an isomorphism of P into H that satisfies the
assumptions of this section, i.e., (3.1), (5.1), and (5.2).

LEMMA 5.6. Define ¢ and Q* as in Lemma 5.4. Then OP(H) centralizes Q¥.

Proof. Suppose that P; = 1. Let
1=0C...CQu=0Q*C...CQ =20

be an H-composition series of Q that contains Q*; here, m may be zero. By
Proposition 4.10, precisely one of the factors Q;/Q;-1 has order 2, while all
the other factors have order p and are centralized by H. Because of Lemma 5.5,
a similar statement is valid for the series

1= Q0" = 0n/Q* C... CQ/Q* = Q/Q*
Therefore, the factors Q;/Q.-1, 1 =< 72 = m, must have order ¢ and must be
centralized by H. By Lemma 4.2, H/Cy(Q*) is a p-group. Therefore, 07 (H)
centralizes Q*.
The proof for the case in which P; # 1 is similar, but requires Proposition
4.16 (c) instead of Proposition 4.10.
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LeMMA 5.7. Assume that p is an odd prime. Then there exists a group S of
order p® generated by elements a, b, ¢, d, e, f subject to the following relations:

(5.10) === =¢=f?=1;
(5.11) ab = ba, ac = ca, bc = ¢b;
(5.12) ad = da, bd = db,d'cd = cb;
(5.13) ae = ea, be = eb, ce = ec, e"de = db;

(5.14) af = fa,bf = fb, f ~l¢f = ca, f~df = dc7, ef = fe.
Moreover S is unique up to isomorphism and satisfies

Proof. To construct .S, let D be the direct product of E(p) and a group of
order p. Then there exists a set {a, b, ¢, d} of generators of D that satisfies
(5.11) and (5.12). Also, there exist e, f € Aut D for which

at*=a'=a, b°=0"=0, ¢*=¢, ¢/ =ca, d°®°=db, d’ =dc L.

Note that ef = fe.

Since p is odd, D has exponent p and ¢ and f have order p. Let .S be the
semi-direct product of D by {e, f ). Then we immediately obtain (5.10)~(5.14),
and easy computations yield (5.15).

Now suppose that S* is an arbitrary group generated by elements satis{ying
(5.10)-(5.14). Let D* = (a,b,¢c,d). Then D* I.S* and S* = (D*, ¢, f).
Hence, |D*| < p* and |S*/D*| £ p?. Assume that |S*| = pb. Then D* =~ D
and D* N (e, f ) = 1. Therefore, S* is a semi-direct product of D* by (e, f ),
and S* == S.

Definition 5.8. Suppose that p is an odd prime. Let E*(p) be the group
defined in Lemma 5.7.

Note that, by (5.15), E*(p) is not isomorphic to the group of Example 3.9.
We return to the isomorphism ¢.

LemMmA 5.9. (a) Suppose that Py = 1 and that v = 1. Then P is isomorphic
to the direct product of E(p) and an elementary group.

(b) Suppose that P3 = 1 and that v = 2. Then p is odd and P is isomorphic
to the direct product of E*(p) and an elementary group.

Proof. (a) In this case, |P| = p**! and Z(P) = {x3,...,x,). By Proposi-
tion 4.13, P! = Z = (z1) © Z(P). Let S = {x1, X441) and let ¥ be a comple-
ment of Z in Z(P). Since %/ = x,.1* = 1, we have

S=E®@®),SNY =1,
and
P={(x,Z(P),%ut1) =(S, V) =S X 7.
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(b) Here, |P| = p**? and Z(P) = (x3, ..., %,). By Theorem 3.7, p is odd.
Let
c = [x1, Xup2)y, @ =1[c,%1], b =[c, Xur2], d = Xups,
e =x"9%, f=ux1, and S = (g, b,¢cd,ef).

A few calculations suffice to verify (5.10) through (5.14) and to show that
S = (x1, %3, %,42) and that |S| = p& Let ¥ be a complement to Z = (z, 3,)
in Z(P). By Lemma 5.7 and Proposition 4.15,

S E*(p) and Z(S) = {a,b) C Py = Z.
Thus, Z(S) = Zand SN Y = 1. Since ¢ € S and d(u + 1) = 0,
P = (xl,...,xu+2> = (S,x;;,...,ﬁ%) =SZ(P) =SX 7T

TaroreM 5.10. If Py = 1, then P is a direct product of an elemeniary group
of order p*~2° with a direct product of v subgroups isomorphic to E(p). If Py 5~ 1,
then p is odd, v is even, and P is a direct product of an elementary group of order
P2 with o direct product of v/2 subgroups isomorphic to E*(p).

Proof. As before, let w = v if P; = 1 and w = v/2 if P; 5 1. Define Q* as
in Lemma 5.4. By Lemmas 5.5 and 5.9, P/Q* is isomorphic to the direct
product of E(p) and an elementary group if P; = 1, and to the direct product
of E*(p) and an elementary group if P; # 1; also, in the latter case p is odd
and, by Proposition 4.15, v is even. Let F; = P/Q** fori = 0,1,...,w — 1.

Let F be the direct product of the groups Fo, Fi, ..., F,_1. Let

Q** = moggw—lQ*“‘-

For each ¢, there is a natural map of P onto F;; these maps yield a homomor-
phism 6 of P into F. Clearly, Q** is the kernel of 6.
By Lemma 5.4, o® fixes Q*. Therefore,

Q" = NigiguQ* = 0** N (Nigigw1Q*) = Q**.
Since Q* < P, Q** < P, for each 4. Hence, 0** <I P. By Lemma 5.6, O?(H)
centralizes Q**. Since H = 0?(H)P, by Lemma 5.1, 0** < H and
¢ (Q**) = ((@*))" = (@**)" = Q**.
Since ¢ fixes no non-identity subgroup of P, Q** = 1. Consequently, 6 is an
isomorphism of P into F.

As « is an isomorphism, F;= Fy, for 1 =1,2,...,w — 1. Therefore,
F = F* X S, where S is an elementary group and F* is a direct product of
v groups isomorphic to E(p), or of w groups isomorphic to E*(p). For each 1,
the natural map of P onto F; must map Z(P) into Z(F;). Hence,

(5.16) 0(Z(P)) C Z(F) = Z(F*) X S.
Suppose that Ps = 1. Then |F¥| = |E(p)’'|® = p? = |P’|. Since
6P’y C F = F¥,
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we have §(P’) = F¥ = Z(F*). Thus,
(5.17) Z(F*) C 6(Z(P)).

Suppose that P; # 1. By Lemma 5.7 and Proposition 4.15, we find similarly
that Z(F*) = [F, F, F] = 0(P3). Thus, (5.17) is valid in this case as well.

Let S; = 6(Z(P)) N S. By (5.16) and (5.17), 6(Z(P)) = Z(F*) X S1. Let
Ss be a complement of S; in S. Since S, C Z(F),

6P)N S, =0(ZP)) NS = 1.

Therefore, the mapping of P into F/S. given by x — 6(x)S; is an isomorphism
into F/S,. Since |E(p)/Z(E())| = p* and |E* (6)/Z(E*())] = p*,
IF/Szl = [F/Z(F)“Z(F)/Szl

= |F*/Z(F*)||6(Z(P))|

= p¥|Z(P)|

. p2vpu—v

= pt-
Thus, P = F/S, = F* X Si. This completes the proof of Theorem 5.10.

Remark 5.11. In [3, Theorems 2.3.2 and 2.4.1], J. Currano has proved
Theorem 5.10 without assuming (5.2). He requires only the assumptions
(3.1), (4.1), (4.2), and (4.11).

LEMMA 5.12. Every automorphism of P that fixes Q also fixes {21).
Proof. Since Z(Q) = (Xot1, - - - , Xut1), We have (z1) = [P, Z(Q)].
Recall that R = (%1, ...,%,-1) and that Z(R) = (X, - + « , Xu)-

LeMmMA 5.13. Suppose that Py # 1 and that v = 2. Then
(@) Q' = (z2) and R’ = (z1), and
(b) every automorphism of P fixes or interchanges Q and R.
Proof. Part (a) is obvious. Since & = u + 1,
(QNR)/Z(P) = (&2« %up1)/Z(P) = Z(P/Z(P)).

Thus, Q N R is a characteristic subgroup of P.

Let S be an arbitrary subgroup of P that contains Q M R as a subgroup of
index p. If Sis Q or R, then |S’| = p. Suppose that S # R, Q. Then there
exist y € QM R and j # 0 in Z, such that x1yx,427 € S.

S 2LS, 0N R] 2D (21, 2) = Z.
Thus, |S’| > p. This yields (b).

COROLLARY 5.14. Let n be the smallest positive integer for which o fixes Q.
If Py# 1, thenn =v. If Ps = land p = 2, then n = 2v. If P3 = 1 and p is
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odd, then n = qu for some ¢ > 1, and q divides p, p — 1, or p + 1. Consequently,
if o has odd order, then P3 = 1 and p is odd.

Proof. We first reduce to the case in which w = 1. Assume that the result
is true in this case, and consider the general case. By Lemmas 5.2 and 5.12,
v divides #. So w divides #. Define Q* as in Lemma 5.4. Let # = #'w; then #n’
is the smallest positive integer ¢ for which (a®)? fixes Q (or, equivalently,
fixes Q/Q*). By Lemma 5.5 and our assumption, #’ = 2if P; ## lorif P; = 1
and p = 2; while, otherwise, ' > 1 and #' divides p, p — 1, or p + 1. Hence,
n satisfies the conclusion of the theorem.

Thus, we may assume that w = 1. Since Q < H and ¢ does not fix Q,
a does not fix Q. So #» > 1. Suppose first that P; = 1 and that p is odd. By
Theorem 5.10, P is isomorphic to the direct product of E(p) and an elementary
group. Therefore, |P/Z(P)| = p®. Now, Z(P) C Z(Q) = Qand [Q/Z(P)| = p.
We may consider P/Z(P) to be a two-dimensional vector space over Z,.
Thus, Aut(P/Z(P)) =% GL(2, p). Let X = GL(2, p). Then every element of
Z(X) fixes every one-dimensional subspace of the vector space. Therefore,
n divides the order of an element of X/Z(X). By considering eigenvalues, one
sees that the order of every element of X/Z(X) divides p, p — 1,0r p + 1.

Suppose that P3 = 1 and that p = 2. Since P/Z(P) is an elementary group
of order four, P has precisely three subgroups of index two that contain Z (P).
These are Q, R, and {(Z(P), x1x,). Clearly, Q and R are elementary. However,

(x1%,)? = xwepx, = 2, wax, = %1, %] = [x1, 1] & 1.
Hence, « fixes (Z(P), x1x,). Since a does not fix Q, & interchanges Q and R.
Thus, n = 2.

Suppose P3 # 1. Then v = 2. By Lemmas 5.2 and 5.13, « interchanges
Q and R. Thus, n = 2.

The following result is used in § 7.

LemMA 5.15. Suppose that w = 1. Let 8 € Aut P. Assume that

(@) P; = 1land Q8 = Q, or

(b) P3 % 1 and B interchanges {z1) and (23), or

(c) Ps# 1land Q8 # Q.

Define an isomorphism 9 of P onto P* by

0(x) = (xB)*, x € P.

Then N@O) N\ Z

Proof. Let Q*
and

1.
N(6). By Lemma 2.4, 0* < H. Hence, Q* T PN\ P* = (

Q* = (9(Q*))"" = Q¥ = Q*.

(a) Since v = 1, Z(P) = (%2, ...,%,) and Z = (z1). Thus, [Q/Z(P)| = p.
Since Q®# Q, QM Q@ = Z(P). So Q* S Z(P). Now, V = (z1,2). By
Proposition 4.7, V is a minimal normal subgroup of H. Since z, ¢ Z(P),
25 ¢ Q* Hence 2; € Q% as desired.
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(b), (c) By Lemma 5.13, 8 interchanges Q and R. Hence,
Q* = Q*ﬂngR = <JC2,... ,xu+1).

Define M = (x3,...,%u42) and N = (x3, ..., %41) = Z(Q), as in Proposi-
tion 4.16; then, by the proposition, M/N is a minimal normal subgroup of
H/N. Since NQ* C M, Q* € N. Thus

Q=S NNN =Z(Q)NZR) = Z(P).
Similarly,
Q* = Q¥ C Z(P) N\ Z(P*) = QN Z(H).
Therefore,
PFNZCZH)NZ = ().

So 21 ¢ Q*. Since (22)f = (21), Q* N Z = 1.

6. Proof of Theorem 2(a), (b), (c), (d). Suppose that P, H, &, and «
satisfy the hypothesis of Theorem 2. Define an isomorphism ¢ of P onto P* by

$(x) = @), x€ P

Let Q =PNP!, R=¢1Q), and S = N(¢) (see Lemma 2.4). Then
Q,R C Pand [P: Q] = [P: R] = p. By Lemma 2.4, S < H. Hence,

Se= ((S)") = (@(S)) =S = S.

By the hypothesis of Theorem 2, S = 1. Consequently, the restriction of ¢
to R fixes no non-identity subgroup of R and satisfies (3.1).

Suppose that P is Abelian. Then P is elementary and Q € P N\ P* C Z(H).
As in Theorem 2, let # be the smallest positive integer such that " fixes Q. Let

r=0NQC¢N...NE""N

Then Q* = Q* and Q* C Z(H). Hence, ¢(Q*) = (Q*)* = Q*, and, there-
fore, O* = 1. Consequently,

|P| = [P:Q*] = [P:QI[P:Q]...[P:Q""] = p7,

which yields part (a) of Theorem 2.

Suppose that P is not Abelian. Since ¢(P) = (P*)" = P*, ¢ and P satisfy
(5.1), (6.2), and (5.5). Hence, parts (b) and (c) of Theorem 2 follow from
Propositions 4.13 (c) and 4.15 (c), Theorem 5.10, and Corollary 5.14.

Suppose that # = v + 2. By an argument similar to the proof of Lemma 5.2,
x& =xygn,fortc =04+ 1,94+ 2,...,u — 1. Hence,

2 au—v=2

Xy = Xyem1® = Xy9® = 0o = Xyt

Since Xop2, . oo, %, € P M Z(H), this proves part (d) of Theorem 2.
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7. The weakly closed case. In this section, we resume the hypothesis
and notation of § 5. Suppose that.S is a Sylow p-subgroup of H that contains P.
Then P is said to be weakly closed in S with respect to H if, whenever g € H
and P? C S, then P? = P. Throughout this section, we will assume the follow-
ing condition:

(7.1) P satisfies (3.1), (5.1), and (5.2), and P is weakly closed in some Sylow
p-subgroup of H.

We will show (Theorem 7.11) that if P; # 1, then p = 3. This immediately
yields Theorem 2 (e). Another result (Theorem 7.6) will be used in § 8. Note
that (7.1) is satisfied whenever P satisfies (3.1) and (5.1) and P is a Sylow
p-subgroup of H.

Take h € Hand a € Aut P as in § 5.

LeEMMA 7.1, Suppose that g € H. Then P and P’ are conjugate in (P, P?).

Proof. Choose a Sylow p-subgroup S of H in which P is weakly closed. Let
K = (P, P?) and let T be a Sylow p-subgroup of K that contains P. Take
kE € K and f € H such that (P?)* © T and 77 C S. Then P/ C 7V C S and
Pl C T7 C S. By the weak closure of P in S, P = P/ = P/, Hence, f and
gk normalize P, and P? = P¥',

LEMMA 7.2. Let T be any p-subgroup of H that contains P. Then P is weakly
closed in T with respect to H, and P/Q C Z(T/Q).

Proof. Suppose that g € H and P? C T', but P? # P. Let T* = (P, P%)
and let M be a maximal subgroup of 7™* that contains P. Since 7% is a p-group
M < T*. By Lemma 7.1, P?is conjugate to P in 7*. Hence, T* = (P, P?) C M,
which is a contradiction. Thus, P is weakly closed in 7" with respect to H. In
particular, P = P? for all g€ 7. So P < T. Since 7/Q is a p-group and
contains P/Q as a normal subgroup of order p, P/Q C Z(T/Q).

LeMMA 7.3. Let © be a primative (p — 1)th root of unity in Z,. Then N(P)
contains a p’'-element k having the following properties:

(a) k”lzzlk = Zli,'

(b) k——lzv+1k = Zv+li_l;

(c) k'xk = x®, modulo Q, for all x ¢ P; and

(d) B Y%wyp1k = x4, modulo Z(P).

Proof. Recall that V = (21, 2,41). By Proposition 4.7, Z(Q) = V X
©OMN Z(H)), and H/C(V) is isomorphic to SL(V) for V considered as a
vector space over Z,. For every g € H, let 6(g) be the matrix, with respect

to the basis {21, 2,41}, of the automorphism of V given by conjugation by g.
Then 6(P) is the group of all matrices of the form

1 0 .
1 sen
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Since §(H) = SL(2, p), there exists f € H such that

o =g L]

Since 0(f) normalizes 6(P), f normalizes PC(V).

Now, (P, P’y C PC(V). By Lemma 7.1, there exist ¢ € P and ¢ € C(V)
such that P¢° = P/, Then P/ = P¢; fc™! normalizes P. However, 6(fc™!) =
0(f)0(ct) = 0(f). Let g be the p-part of fc=! and & be the p’-part of fc~1; i.e.,
let ¢ be a p-element and % be a p’-element such that gk = kg = fc~!. Since
6(fc ') has order p — 1, 8(g) = 1 and 6(k) = 6(kg) = 60(fc) = 0(f). Thus,
k satisfies (a) and (b). A calculation shows that, for each «x € P,
0(E~1)0(x)0(k) = 6(x)”; therefore, 6(k~xkx~") = 1 and

Elxkx=? ¢ PN C(V) = Q.
This yields (c). Finally, (d) follows from (b) because

Z(P) = (Xpt1y - -+ Xu)y

Zop1 = Xgpp1OFD L a0y ST

and
clu—ov+1)#0.

LeEmMA 7.4. Suppose that p is odd, that Ps = 1, and thatv = 1. Define i and k
as in Lemma 7.3. Then P contains a subgroup S with the following properties:

(@) Z(P) CSand S* = S;

(b) P/Z(P) = S/Z(P) X Q/Z(P);

(c) Q and S are the only subgroups of P that are normalized by k and contain
Z(P) as a subgroup of index p;

(d) Bk = x®, modulo Z(P), for all x € S; and

(e) k~xk = x'*, modulo Z(P), for all x € Q.

Proof. Since v =1, Z(P) = (xs,...,%,). Hence, |P/Z(P)| = p? and
P = (Z(P), x1, %y+1). Let F = P/Z(P). Consider F to be a vector space
over Z,. By parts (c) and (d) of Lemma 7.3, conjugation by % induces a
transformation on F having eigenvalues 72 and 47! and such that ¢! is an
eigenvalue for the subspace Q/Z(P). Thus, we obtain (e). Since ¢ is odd and
7 has order p — 1, 22 &£ ¢~ Hence, there exists a unique one-dimensional
subspace S/Z (P) for which 4% is an eigenvalue. This gives (a), (b), (c), and (d).

Recall that z; = [x;, %uy], for j=1,...,9, and that Z = (21, ..., z,).

LEMMA 7.5. Suppose that p is odd, that Ps = 1, and that v = 1. Define k as in
Lemma 7.3 and S as in Lemma 7.4. Let « be the automorphism of P induced by
conjugation by k. Let B = k laka™ and v = « o ka. Then:

(@) B and v fix z1 and fix every element of Z(P)/{z1); and

(b) if QF = Qv = Q, then o interchanges Q and S.
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Proof. Since v = 1, (1) = Z = P’. So (21) is a characteristic subgroup of P.
As Aut(z,) is cyclic, 8 and v fix z;. By Proposition 4.7, k centralizes Z(P)/(21).
Consequently, we obtain (a).

Suppose that (f = Q. Then Q = Q¢ '™ = Qe and Q= = (Q)~
By Lemma 7.4 (c), Q= is Q or S. Since Q= # Q, Q* = S. Similarly, if Qv = Q,
then Q="' = S and S* = Q. This proves (b).

THEOREM 7.6. Define k as in Lemma 7.3, and let « be the automorphism of P
induced by conjugation by k. Let A = {a, k). For every 8 € A, define an iso-
morphism ¢g of P onto P* by ¢g(x) = (x#)"

Suppose that, for every 8 € A, N(dg) s 1 or N(¢g) 2 Z. Then w = 1.

Assume further that p is odd. Then:

(@) Suppose that Py #~ 1. Then u = 2v = 4 and t = 6.

(b) Suppose that Py = 1. Define S as in Lemma 7.4. Let Ay be the set of all
B8 € A that fix Q. Then either

(1) u=2v=2andt =3, or
(1) u = 3,¢t =4, A fixes S, and [A:Ag] = [A7:4" N 4] = p.

Proof. By Lemma 5.4, w = 1. Now assume that p is odd.

(a) Suppose that P; ¢ 1. Then v = 2 and Z = (21, 22). By Lemma 5.2,
a interchanges (z1) and (2;). Since 2, € Z(H), Lemma 7.3 (a) yields that
k fixes (z1) and (2s). Therefore, 4 has a normal subgroup B of index two in
which every element fixes (z1) and (z;). Let X\ be the 2-part of k@ D/2 and let
As be a Sylow 2-subgroup of A that contains \. By Lemma 7.3 (a), x®-D/2
maps 2 into 2,7 1. Hence, 2:* = 2;71. By Proposition 4.7,

Z(P) = (21) X (Z(P) N\ Z(H)).

Therefore, the fixed points of Z(P) under A are just the elements of
Z(P) N\ Z(H).

Since |A/B| = 2, Ay € B. Take 8 € Ay — B, and let C = {\, 8). Then C
is a 2-group and, by Lemma 5.15 (b), N(¢s) M Z = 1. Hence, N(¢g) = 1.
Since ) fixes every element of Z(P) M Z(H), ) fixes every element of Z(P)/Z.
By Lemma 4.1, there exists ¥ C Z(P) such that Cfixes Yand Z(P) = ¥V X Z.
Then ) fixes every element of V. Therefore, ¥ C Z(P) M Z(H). Since 8 € C,
B fixes YV and ¥V & N(¢s) = 1.

(b) Suppose that P = 1. Thenv = 1and Z = (z;). Since Z = P’, 4 fixes Z.
Assume « interchanges Q and S. Then 4 has a normal subgroup B of index two
in which every element fixes Q and S. Define )\, 4,, 8, and C as in the preceding
argument. Then Qf = S. By Lemma 5.15, N(¢s) N Z = 1. So N(g¢s) = 1.
Let ¥ be a complement of Z in Z(P) that is fixed by C. As before, we obtain
YCZWP)NZH) and Y C N(¢s) = 1. Therefore, Z(P) =Z and
u =2 = 2. So (i) holds.

Assume that (i) does not hold; i.e., # = 3. Then a does not interchange
Q and S. By Lemma 7.5, there exists some element 8 in 4’ such that Q8 = Q,
B fixes z1, and B fixes every element of Z (P)/(z1). As before, N (¢3) = 1.
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We claim that # = 3. Note that x; € Z(H). The hypothesis of the theorem
is satisfied if ¢ is replaced by ¢s. Thus, to prove that # = 3, we may replace
a by B; equivalently, we will assume in this paragraph alone that « fixes 2;
and every element of Z(P)/(z:). (This permits us to retain our present nota-
tion.) In particular, x, = x2* = (¢(x2))* = (x3)"" = x3, modulo {(z1). So
x93 € (21). Since z; = %% . .. x,2® and d(u) # 0, we obtain # = 3.

We now have Z(P) = (x2, x3) = (21, %3) = (P, x3) and P N Z(H) = (x3).
Since 4 fixes P, A’ must fix every element of P’ and every element of
Z(P)/P’'. Since B € A" and N(¢3) = 1, 8 does not fix {x;). By Lemma 4.2,
A’ induces a non-trivial p-group of automorphisms on Z(P). Let 4, be the
subgroup of A’ consisting of all the elements of 4’ that fix every element of
Z(P). Then 4, < A. Since Aut Z(P) has a Sylow p-subgroup of order p,
|4’/ 40| = p.

Suppose that v € 4o. Then v fixes x5, which lies in the centre of H. There-
fore, x3 € N(¢y). By hypothesis, 2, € N(¢,). Since N (¢,) < H,

VS Ny S 0.
As (V, x3) = Q, we obtain N(¢,) = Q. So v fixes Q. Since v is arbitrary,

(7.2) Ay fixes Q.

Let 4 be the group of automorphisms induced by 4 on P/Z(P), and define
A, similarly. Suppose that 44 # 1. By (7.2), the subspace Q/Z (P) of P/Z(P)
is invariant under A,. Since 4o < 4, Q*/Z(P) is also invariant under A,.
Now, Q= # Q. Suppose that Q/Z(P) and Q%/Z(P) are the only invariant
one-dimensional subspaces of P/Z(P) under 4,. Then they are permuted by
A. Thus, 0°* = Q. Moreover, since « fixes Q/Z (P), « fixes Q/Z (P). By Lemma
7.4, O« = S, contrary to our assumption that a does not interchange Q and .S.
Thus, A, fixes at least three one-dimensional subspaces of P/Z(P). Since
|P/Z(P)| = p?, 4, fixes all the one-dimensional subspaces of P/Z(P), by a
simple argument from linear algebra.

Since B8 € A’ and Qf %= Q, 8 ¢ A, Hence, |A'/Ay| = p and the auto-
morphism of P/Z(P) induced by 8 has order divisible by p. It follows that g,
and therefore 4’, fix a unique one-dimensional subspace 7°/Z(P) of P/Z(P).
Since A’ < A, A fixes T/Z(P). By Lemma 7.4, T" = S.

Clearly, [A":A" N Ag] = p. Since P/Z(P) has only p + 1 one-dimensional
subspaces and A fixes S/Z(P), [A:A4q] = p. This proves (ii) and completes
the proof of Theorem 7.6.

LeEMMA 7.7 [7, p. 416]. Suppose that T is an Abelian Sylow p-subgroup of a
finite group K. Then K' N\ Z(K) N\ T = 1.

LEMMA 7.8. Suppose that S is a Sylow p-subgroup of a finite group K. Assume
that T and U are subgroups of S enjoying the following properties:

@) || = p;
) U< Kand T ¢ U;
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(c) S=TU;

(d) T is weakly closed in S with respect to K; and

(e) K is gemerated by some conjugates of T in K.
Then U = 1.

Proof. The proof of Lemma 7.2 shows that 7' C Z(S). Hence, S = 7" X U.
Let C = Cx(U). Since T C C and C < K, (e) yields that C = K. Thus,
U C Z(K). Theretore, S is Abelian. By Lemma 7.7, K’ "\ U = 1.

Suppose that K/ U has a normal p-complement. Thus, K’ U/ U is a p’-group.
Since K'U/U=K'/(K"\NU)=K', K' is a p’-group. Since TK’' <K,
TK' = K, by (e). So T is a Sylow p-subgroup ot K, and U = 1.

Suppose that K/ U does not have a normal p-complement. By a theorem of
Burnside [5, p. 252], a Sylow p-subgroup of K/ U is not contained in the centre
of its normalizer. Hence,

S/UL Z(Ng(S)/U) and SE& Z(Nk(S)).

Take x € Nx(S) — Cx(S). Since S =T X U and U C Z(K), we obtain
[S, (x)] = [T,{x)] =T, by (@) and (d). Thus, T C K'. By (e), K = K'.
SoU=UNK = 1.

LEmMA 7.9. Suppose that K is a finite group, that S is a Sylow p-subgroup

of K, and that T is weakly closed in S with respect to K. Suppose that N 4 K.
Then TN/N 1is weakly closed in SN/N with respect to K/N.

Proof. Suppose that g € K and that (TN)? C SN. Then 79 C SN = NS.
Since S is a Sylow p-subgroup of NS, there exists 2 € N and s € S such that
(T7)*s C 5. Then 77 C S. By the weak closure of T, T% = T C T'N. Hence,
Te C (ITN)*' = T'N,and (I'N)? = TN.

ProposiTiON 7.10. The subgroup PCyx(Q)/QCx(Q) is a Sylow p-subgroup of
H/QCy(Q). Moreover, there exists an element g of H such that gh=! € Cx(Q)
and P is a Sylow p-subgroup of (P, P7).

Proof. Let T be a Sylow p-subgroup of H that contains P. Let M; = Cyx (V).
By Proposition 4.7, H/ M, =2 SL(2, p). If P; = 1, define M, = M;. If P3 # 1,
define My, = Cy(M/N), for M and N as in Proposition 4.14. Let L = M, N M,.
By Proposition 4.16, H/M,=SL(2,$) and L 2D QCx(Q); furthermore,
L centralizes every factor Q,/Q;—_; in an H-composition series

1=0CQAxC...CQh=20
of Q. By Lemma 4.2, L induces a p-group of automorphisms on Q. Hence,
(7.3) L/Cy(Q) is a p-group.

Suppose that p = 2 or p = 3. Then SL(2, p) has a normal p’-subgroup of
index p. So |H/H'M,| = p and H'M/M; is a p’-group. Since P and P*
generate H,

H=HP and PNH CPN\M, =Q, ifp<5.
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Thus, |[H/H'Q| = p. Since Q € L C M, and |H'Q| = |H'M,|,
(7.4) |H/H'Q| =p and L H'Q, ifp <5.
Moreover, H'M;/ M, is a p'-group, for 7 = 1, 2. Hence, H'/(H' N\ M;) is a
p'-group, for 7 = 1, 2. Now,
(H' N My)/(H NL) = (H N M)/H N\ My N M) =
(HI f\ M1)M2/M2 g H'M2/]l[2,

which is a p’-group. Thus,
(7.5) H'/(H NL) and H'L/L are p’-groups, if p < 5.

Suppose that p = 5. Then Z(SL (2, p)) has order two, and

SL(2, p)/Z(SL(2, $))

is simple. Let N;/M; = Z(H/M;), for ¢ = 1,2. Then H/N; is simple, for
1 =1,2.Let K = N; M\ N, We claim that Ny = N, = K. Suppose otherwise.
Since Ni/K = N1N:/Ny I H/N,, it follows that N;/K is simple and
H = NlNg. SO

H/K = N,/K X N;/K >~ H/N, X H/Ni.
Now, T'"M\ N; is a Sylow p-subgroup of N, for 2 = 1, 2, and
TK/K = (T N N)K/K X (I N N2)K/K.
Letx € P — Q. Take x; € T M N; such that
%1% = x, modulo K.

Since H = (P, P*), we have P & N;. Therefore, x5 ¢ K. Likewise, x; ¢ K.

We now obtain a contradiction. By the structure of SL(2, »)/Z(SL(2, p)),
there exists y € N; such that y~lx1y = x,?, modulo K, for some j # 1 in Z,.
Then y normalizes (7'M N;)K and centralizes (7" N.)K/K. Hence,
v normalizes 7K. So there exists z € K such that (7%)? = T'. Then, modulo K,

x'* = (x7)° = %1, x9¥° =%y, and w7V =x070 Z L
Since P¥¢ C T, P¥? = P, by the weak closure of P. Hence, P contains x, x¥?,
and x~xY%. Since x x¥? ¢ K, x~x?? ¢ P — Q. Consequently,
P = {Q,x %) C QN = Ny,

and H = (P, P*) C N,, which is a contradiction. Thus, Ny = N, = K, as
desired. Therefore,
(7.6) p? does not divide |H/K|, if p = 5.
Also, since |K/M,| = |K/M,| = 2, |K/L| is either two or four. By (7.6), p*
does not divide |H/L|. By (7.4) and (7.5), we have a similar result if p < 5.
Since P & L for any p,

7.7) PL/L is a Sylow p-subgroup of H/L, for any p.
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For every subgroup X of H, let X = XQCx(Q)/QCx(Q). By Lemma 7.9,
P is weakly closed in T with respect to H. By (7.3), L is a p-group. By the
definition of L, L centralizes V. Thus, P Z LQCx(Q). Since |P/Q| = p,
|P| = p. Now by (7.7) and Lemma 7.8, L = 1. This proves the first part of
the proposition.

Since Cr(Q) is a Sylow p-subgroup of Cy(Q), there exists ¢ € Cyx(Q) such
that Cp(Q)¢ = Cr(Q)". Let g = hc!. Then g normalizes Cr(Q), and
gh™'=hc'h = h'h =1 (modulo Cx(Q)). Let H* = (T, 77 and H** =
(P, P%. By Lemma 7.2, P is weakly closed in a Sylow p-subgroup of H**.
To prove the second part of the proposition, it suffices to prove that P is a
Sylow p-subgroup of H**. Let K* = QCr(Q) and let L* = L M H*. Since
T and g normalize Cr(Q), K* <@ H*. Since we proved that L = QCx(Q),
L*/K* is a p’-group. Therefore,

(7.8) (K* ™ H**)/Q is a normal p-subgroup of H**/Q
and (L*¥ M H**)/(K* M H**) is a p'-group.

By (7.7), PK*/K* is a Sylow p-subgroup of H*/K*. By projecting H** into
H*/K*, we see that

(7.9) P(K* N H**)/(K* N\ H**) is a Sylow p-subgroup of H**/(K M H**).
By (7.8), (7.9), and another application of Lemmas 7.8 and 7.9,
K* M\ H** = (.

By (7.9), this completes the proof of the proposition.

THEOREM 7.11. Assume that Py # 1. Then p = 3.

Proof. By Theorem 3.7, p is odd. Clearly, for every normal subgroup Q* of H
contained in Q, P/Q* is weakly closed in some Sylow p-subgroup of H/Q*.
Moreover, if Z & Q¥ then P/Q* has nilpotence class three. Hence, by
Theorem 7.6, we may assume thatv = 2,4 = 4,and { = 6.

For g as in Proposition 7.10, g and % act in the same way on Q by conjuga-
tion. Hence, we may assume that P is a Sylow p-subgroup of H.

We will not use the elements 7 and % introduced in Lemma 7.3. Therefore,
we will use the letters ‘2’ and “&” for other purposes.

By Proposition 3.4, [x1, x5] = x3% for some ¢ € Z,. Since x; € Z(P), the
group (xi, x5) has nilpotence class two; hence,

o8, w5 = (a05%)7% = ay™

Since x; was chosen only under the condition that it satisfy Proposition 2.1 (c),
we may replace x; by x;*" and then replace x; by x,7™, for j = 2,..., ¢+ 1.
Thus, we may assume that

[xl, xs] = X3.
Take 7, j, k, m € Z, such that

[%1, xe] = xptxzia ;™.
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Then [xs, x7] = x3%x4x5*x¢™. By Proposition 4.15,
(7.10) 1 and m are nonzgero.

Note that Q' = (xs). We obtain the following congruences modulo Q’:

X571 = X9, %571 = KXox3'w5 %",
x3" = «3, x3"T = X3%s,

x5°1 = x5[x1, %571 = K575, X" = X3,

x6"1 = x93 TINT" K6, X6 = .

We consider Q/Q’ to be a vector space over Z, with the basis

{sz', er’, st’, xan}-

For each g € H, let 6(g) be the matrix corresponding to the transformation
of Q/Q’ induced by conjugation by g. Then

10 0 0 \m ik
I [ R lo1 0o
0 =1 9 0 1 o@D =g 0 1 1
00 —1 1 00 01

For each g € H, let 0:(g) and 0:(g) be the upper left hand and lower right
hand corner submatrices of degree two, respectively. Since (x3;, x5) < H,
6; and 6; are homomorphisms. By Propositions 4.7 and 4.16, 6, (H) = 0,(H) =
SL (2, p). Denote by I, and I, the identity matrices of degrees two and four
over Z,.

Let N be the subgroup of H consisting of all g € G for which 6,(g) is I, or
—1I,.Since Q C Nand PEZ N, PN\ N = Q. Since P is a Sylow p-subgroup
of H, Q is a Sylow p-subgroup of N. Therefore, N/Q is a p’-group. Since
Q C Ker 6,

(7.11) 6(N) is a normal p’-subgroup of 6(H), and 6.(N) is a normal p'-sub-
group of 0.(H) (i.e., of SL(2, p)).

Let g = x;%x;. Then

0@ =[ L 1 o] 2@ =| 5 1]
and

1 — 2im 2m — 2im?
2} —
(7.12) 0:(%) = [4i2m — 41— 6im+ 4i2m2:'
Thus, 0,(g2) = —I. So g2 € N. By (7.11), 6:(g?) = £L,if p > 3. If p = 3,
then SL(2, p) has a normal quaternion subgroup of order eight and index
three. In this case, 6;(g?) is a 2-element, by (7.11); hence, 6:(g) is a 2-element
and 0;(g?) = 01(g)? = =&1,. Thus, 6:(g?) = £I,, regardless of p. Conse-
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quently, 4i2m — 41 = 0. By (7.10), ¢ # 0. Since p is odd, 47 # 0. Therefore,
(7.13) mm = 1.

Now, calculation yields

1 m 7 k
-2t —1 m—2j— 22 —2k —m — 2j

o(g) = 0(x12x7) = 0 0 1 1 ’
I_ 0 0 -2 -1
1 0 —2(m®— 2jm — 2k) —2(1 — m?® — 2k — 2jm) "
0(gt) = 0 1 —2(4ik + 2m + 45 — 242) —2(3m — 24% + 2ik + 27)
£ 0 0 1 0 '
0 0 0 1

Hence, g* € N and 6(g*)? = I.. By (7.11), 0(g*) = I.. Therefore,
0=1—m?— 2k — 2jm = 3m — 20> + 2ik + 25.
By (7.13), this yields

0=1i—m?—2k—2jm = (—m)Bm — 22 + 2ik + 2j) =
—3m? + 2 — 2k — 2jm.

So 1 — m? = 2k + 2jm = —3m? 4 24, which yields 7 = 2m? = 2i~2. Thus,
(7.14) 23 = 2.

We now apply the symmetry between ¢ and ¢! (see Lemma 3.3). Let
Vo = ®s—p) L forn =1,2,...,7. Then

¢(P)=<y1y'--yy7>r Q:<y21--~1y6>r
and ¢~ ! maps ¢(P) onto P. Just as we had [x;, x;] = x3, we have
v, 5] = [x77Y %57 = [x57Y 0717 = w57l = ys.

Define [y1, ¥6] = v2"y3"" v y:™'. The proof of (7.14) applies to give

(7.15) i’ = 2,
However, (x4, x5) = (y3, y1) = Z(¢(P)). Modulo Z (¢ (P)),

X~ s = 0¥y = [y, ve] = [ we] = [, 00] 7 = wea
Thus, ¢ =m =+¢'. By (7.14) and (7.15), 4 =43 =33 =1 in Z,.
Thus, p = 3.

8. A further result. Let C, denote a cyclic group of order p.

TrEOREM 8.1. Suppose that H is a finite group and that P is a weakly closed

subgroup of some Sylow subgroup of H with respect to H. Assume that, for some
h € H,

(P,P" = H and [P:P NP =p.

https://doi.org/10.4153/CJM-1971-106-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-106-0

FINITE p-GROUPS 1019

Let A be a subgroup of Aut P that contains the automorphisms induced by con-
jugation by the elements of Ny (P). Suppose that some element of A does not
fix Q.

Take Q* C Q maximal such that Q* < H and such that there exists an element
of A that fixes Q* but not Q. Take a € A such that a fixes Q* but not Q. Let n be
the smallest positive integer such that o fixes Q. Let P = P, = P/Q* and
P, =[P, P, fori=1,2,3. Then P, = 1. Furthermore:

(a) Suppose that Py = 1. Then |P| < p".

(b) Suppose that Py # 1, that Py = 1, and that p = 2. Then P is the direct
product of E(p) and an elementary group, and n =

(c) Suppose that Py % 1, that P; = 1, and that p 15 odd. Then n is a divisor
of p, p — 1, 0r p + 1, and either P gE(p) or P~ E(p) X C,. In the latter
case, there exists a € A’ such that o® fixes Q and o does not fix Q.

(d) Suppose that Ps # 1. Then p = 3, P =~ E*(3), and n = 2.

Proof. The proof of (a) is similar to the proof of Theorem 2 (a). The other
parts of Theorem 8.1 follow from Theorems 7.6 and 7.11 and Corollary 5.14.

Note that Theorem 8.1 can be applied when H is embedded in a group G
and 4 is the group of automorphisms of P induced by a subgroup of Ng(P)
that contains Ny (P).

9. Some examples. In this section, let p be an arbitrary odd prime. We
will construct groups P and H such that P and H satisfy the conditions of
§5and P = E*(p). If p = 3, P will be a Sylow p-subgroup of H.

Let Q be a group of order p® and exponent p isomorphic to E(p) X C, X C,.
Take x, x3, x4, x5, x¢ € Q such that

Q = (xs, x6) X (%3, x5) and [xs, x¢] = x4 # 1.

Let B be the subgroup of all automorphisms a of Q such that « is trivial on
(x3, x5) and on Q/{x;, x5). Then B is in one-to-one correspondence with the
set of all homomorphisms 7 of (xs, xs) into (xs, x4); here, n corresponds to « if

=y !, forallx € Q.

Thus, |B| = p* and B acts faithfully on Q/Q’".
Take ¢ € Z, such that 2¢ = 1. There exist unique automorphisms ai, a7 of
Q such that

X = Ko, X7 = X9%4°%6
X! = x9%4° 10, Xe*T = X,
X1 = X3, X521 = x5 %5 Xg*T = X35, X% = Xs.

Let S = (o, az). Since a; and ay fix {x3, x5), S normalizes B.
Now, for every x € Q, let x* be the unique element of Q such that (x3)? = .
(Then x* = x°.) For every x,y € Q,letxoy = abyxt,
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LeEmMA 9.1. Under the operation o, Q forms an elementary Abelian group.

Proof. We first prove that Q is an Abelian group; this result is well known
[1, § VIL.5, Example 2, p. 128]. Let x, y € Q. By Lemma 2.5,
(% 3]* = [x,9] = [x, 5]
Thus, [x, y]* = [x%,y] = [z, *]. Now,

1
2

x oy = atyxt = xyly, x?] = xy[y, «]
= yx[x, y]ly, x]* = yx[x, ¥]* = y ox.
For z € Q,
xo(yoz) =x(yoz)[yosxl’ = x(yoz)lyz x]} = xyzlz, y]}y, x]¥[z, ]},

and

(xoy)os = (xoy)zls x oyl = xyly, xlsls, «]i[5, y]t.

Thus, Q is an Abelian group. Since x? o x = x™1 for all 7 = 1, every element
of Q has order p under o.

LeEMMA 9.2. The group S is tsomorphic to SL(2, p), and S M B = 1. Further-
more, SB acts faithfully on Q/Q’.

Proof. We may consider S to be a group of automorphisms of Q under o.
Now,
X9 O Xg = xzxe[X(-;, x2]% = x2x4°‘1x6 = x¢*!
and
X2 0 X671 = x9x671 = [x67Y, xg]% = XoX1X¢ L = X7,

Consider Q (under o) to be a vector space over Z, with basis {xz, x¢, &3, %35, 4} .
Then a; and a7 are represented by the matrices

10 000 1 =10 0 0
11 000 0 100 0
00 1 00| and |0 01 1 0f,
00 —1 10 0 0010
00 001 0 00 0 1

respectively. Let D be the matrix
1 0]
0 —1]°
Then S is a subgroup of the group of all matrices of the form
M 0 0
0 D'™MD 0f,
0 0 1

for M € SL(2, p). Clearly, the latter group is isomorphic to SL(2, ). More-
over, it is generated by the matrices for o; and a7 (see the proof of Proposition
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4.7). Hence, S =< SL(2, $). In addition, SN B = 1 because no non-identity
element of S is trivial on x3 and x5. Since B acts faithfully on Q/Q’, SB acts
faithfully on Q/Q’. This completes the proof of Lemma 9.2.

We will have no further need for the operation o on Q. Define x;, x7 € Aut Q

by
X"l = %o, X951 = XX 04N %6,
x3"1 = x3, X3"7T = X3%s,
X551 = x5, X571 = X,
X"l = x93 %4 5K, x6"7 = Xg.

Then x1a:71, 70771 € B, so0 x1, x7 € SB. Note that x,7 = x7# = 1, since p > 2.
Let K be the semi-direct product of Q by SB. Let P = (Q, x1) and H = (P, x1).
Then calculations yield:

LemmA 9.3. There is a unique isomorphism ¢ of P onto {Q, x1) such that
¢(xz) = xi+1,f01’1. = 1, 2, e ey 6.

Note that P has nilpotence class three. The proof of Lemma 5.9 can be
adapted to show that P is isomorphic to E*(p). However, this will follow
from Lemmas 5.9 and 9.5.

LeMMA 9.4. We have xyxrxc1 = xx1xq. If p = 3, then (x1x771)? is an element
of order two in the centre of {(x1, x1).

Proof. Consider Q/Q’ to be a vector space over Z, with basis x:Q’, x6Q’,
x30’, x5Q’. Then x; and x7 induce automorphisms of Q/Q’ represented by the

matrices
10 00 1 —1 —1 —¢
11— 1| 10 1 0 o0
0o 1o0f?2 o o 1 1|
00 —1 1 0 0 o0 1

respectively. Hence, xxx; and x7x1x7 are both represented by the matrix

0 -1 0 —-1—-c
1 0 —1—c¢ 0
0 0 0 1
0 0 -1 0

Thus, (xyx71) (ex1x7)~! is an element of SB that acts trivially on Q/Q’.
By Lemma 9.2, x1x7¢1 = x01%7.

Suppose that p = 3. Then (xx77!)? is represented by the diagonal matrix
with every entry being —1. Apply Lemma 9.2 to the elements (x;x771)* and
[(x12771)2, ¥] for every y € SB.

LemMA 9.5. For all p, x1 is conjugate to x.
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Proof. By Lemma 9.4,
X = x7—1x1—1(x1x7x1) = x7 0T ey = X771,

LEMMA 9.6. Suppose that p = 3. Then {x1, x7) = SL(2, 3), and P is a Sylow
p-subgroup of H.

Proof. Let L = (x1,x7). Since LB/B = {ai, a7, B)/B = SB/B =S, it
follows that L has a homomorphic image isomorphic to SL(2,3). Let
z = (x17%7)%, x = %12, and ¥y = x7 2. Then, by Lemma 9.4,

x1 = xt a7 =y, xy = xr 182 = xpe Ll

So (x,y) = L and x® = 3 = (xy)? = z # 1. By [2, pp. 68-69], L is a homo-
morphic image of SL(2,3). Thus, L = SL(2,3). Since H = LQ and
|P/Q| = p, P is a Sylow p-subgroup of H.
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