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ISOMORPHIC SUBGROUPS OF FINITE ^-GROUPS. I 

GEORGE GLAUBERMAN 

1. Introduction and Notation. Let p be a prime and P be a ^-subgroup 
of a finite group G. Suppose that g Ç G and that P f\ P° has index p in P. 
In [4], we assumed that g normalizes no non-identity normal subgroup of P. 
We obtained some bounds on the order of P and some applications to the case 
in which p = 2 and P is a Sylow 2-subgroup of (P, P°). In this paper, we 
examine this situation further by considering the isomorphism <t> of P C\ P9~l 

onto P C\P° given by <j>(x) = x°. We actually consider arbitrary isomorphisms 
4> between two subgroups of index p in P. However, an easy argument 
(Lemma 2.3) shows that every such <f> can be obtained as above for some G 
and some g. We obtain some results concerning the nilpotence class rather 
than the order of P. 

Let E(p) be the non-Abelian group of order p3 which is generated by two 
elements of order p. Thus, E(p) is dihedral if p = 2, and E(p) has exponent p 
if p is odd. If p is odd, then E*(p) is defined in § 5 to be a particular group of 
order p& and nilpotence class three. Our main results are: 

THEOREM 1. Suppose that p is a prime, that P is a finite p-group, that Q and 
R are subgroups of index p in P, and that <j> is an isomorphism of R onto Q. 
Let N be the subgroup of P generated by all the subgroups of R that are fixed by <f>. 
Then 

(a) <t> fixes N and N < P, 
(b) P/N has nilpotence class at most two if p = 2, and 
(c) P/N has nilpotence class at most three if p is odd. 

THEOREM 2. Let p be a prime and let P be a p-subgroup of a finite group Ht 
Assume that, for some h Ç H, (P, Ph) = H, and that [P:P H Ph] = p. Le. 
P i = P and Pi+1 = [Pi, P],for i = 1, 2, 3. 

Suppose that a is an automorphism of P that fixes no non-identity normal 
subgroup of H contained in P . Let \P/Z(P)\ = px and let n be the smallest 
positive integer such that a71 fixes P C\ Ph. Then P 4 = 1, x is even, and, if Pi ^ 1, 
x/2 divides n. 

Furthermore, let v = x/2 and, if P 2 7e- 1, let n = qv. Then: 
(a) Suppose that P 2 = 1. Then P is an elementary Abelian group and 

\P\ ^ p\ 
(b) Suppose that P 3 = 1 and P 2 •£ 1. Then |P2 | = pv; q > 1; q = 2, if 

p = 2; and q is a divisor of p, p — 1, or p + 1, if p is odd. Moreover, P is a 
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direct product of an elementary Abelian group with a direct product of v sub­
groups isomorphic to E(p). 

(c) Suppose that P 3 9e 1. Then p is odd, v is even, |P3 | = pv, and q = 1. 
Moreover, P is a direct product of an elementary Abelian group with a direct 
product of v/2 subgroups isomorphic to E*(p). 

(d) Let Z = P r\Z(H). Define t by pl = |P| . If t ^ 2v + 2, then 

zr\z«r\.. . n r 2 " 2 ^ 1. 
(e) If P 3 9e 1 awd P is a Sylow p-subgroup of H, then p = 3. 

Theorem 2 is related to a question about Sylow ^-subgroups of finite groups. 
Let G be a finite group, p be a prime, 5 be a Sylow ^-subgroup of G, and c be 
the nilpotence class of S. Suppose that G contains a normal ^-subgroup T 
such that C(T) C P. Let a be an automorphism of S. We ask whether a 
fixes some non-identity normal ^-subgroup U of G. 

If p is odd and SL(2, p) is not involved in G, then the answer is affirmative. 
By [5, Theorems 8.1.2 and 8.2.11], we can let U = Z(J(S)); here J(S) is the 
Thompson subgroup of S, generated by the Abelian subgroups of 5 of maximal 
order. However, it is easy to construct examples in which the answer is 
negative, e.g., where \T\ = p2 and G/T is isomorphic to SL(2, p). Thus, one 
might hope that the answer is affirmative if T or S is "large" in some sense. 
Let us consider the special case in which \S/T\ = p and 

(1.1) G = (5,5*), 

for some h Ç G. Then Theorem 2 gives us an affirmative answer when c > 2 
and p 9^ 3, or when c > 3 and p = 3. 

The relation between Theorem 2 and Theorem 1 is illustrated by the fact 
that Theorem 1 already gives an affirmative answer if c > 3. To see this, take 
h as in (1.1) and consider the mapping <j>\Ta~l —> T given by 4>(x) = (xa)h, 
x Ç Ta~l. Assume that c > 3. Then we obtain N 9^ 1 in Theorem 1. A short 
argument (using Lemma 2.4) shows that N < G and hence that a fixes N. 

Theorem 1 is proved in § 3. The basic ideas of its proof stem from Sims' 
work (see Propositions 2.1 and 3.4). For Theorem 2, we are mainly interested 
in the case in which P is a Sylow ^-subgroup of H. However, we make some 
use of weaker assumptions. Thus, throughout each of §§ 4, 5, and 7, we have 
a general hypothesis, stated at the beginning of the section, which is satisfied 
if P is a Sylow ^-subgroup of H. An extension of Theorem 2 is given in § 8 
(Theorem 8.1). Note that both Theorem 2 and Theorem 8.1 yield information 
if H is embedded in a larger group G and some element of NG(P) normalizes 
no non-identity normal subgroup of H contained in P . 

Let P be an arbitrary group that satisfies Theorem 1 with N = 1. Comparing 
Theorems 1 and 2, one might suspect that P must always have a direct product 
decomposition as in part (a), (b), or (c) of Theorem 2. But this is not true. 
One may easily construct counterexamples (for example, see the note after 
Definition 5.8). In [3], J. Currano has characterized all such groups P by 
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generators and relations. Moreover, he has shown that P has a direct product 
decomposition under weaker assumptions than the hypothesis of Theorem 2 
(see Remark 5.11). 

All groups considered in this paper will be finite. Most of our notation is 
taken from [5] ; we list some special cases and exceptions. Let G be a group. 
We write H Q G if H is a subgroup of G; H C G if H C G and H ^ G; 
H < G if H is a normal subgroup of G; and H <\ G ii H < G and H 9e G. 
If ff C G, let [G:H] be the index of if in G. As in [5], let [x, y, z] = [[x, y], z] 
and [H, K, L] = [[#, X], L], for x,y,z£G and H,K,L<^ G. 

Let £ be a prime. For every group G, let 0P(G) be the subgroup of G gener­
ated by all the ^'-elements of G. Let Zp be the field of the integers modulo p. In 
discussing a ^-group, we will sometimes use ''elementary" to mean "elemen­
tary Abelian". 

For a vector space V, let SL(F) be the special linear group on V, i.e., the 
group of all linear transformations of determinant one on V. 

Acknowledgement We thank the Institute for Advanced Study, the National 
Science Foundation, and the Sloan Foundation for their partial support 
during the writing of this article. We also thank Bowdoin College for the 
opportunity to present part of this work during the Bowdoin Finite Groups 
Seminar in the summer of 1970. 

2. Preliminary results. Let G be a group and let <j> be an isomorphism 
from a subgroup H of G onto a subgroup K of G. We say that <j> fixes an element 
or subgroup of H if it maps it to itself. Suppose that L Ç G. Define 
0°(L) i n l a n d 

0-<*+D(L) = {^(x^x G <£-*'(£) ^ K}, i = 0, 1, 2, . . . . 

The following fundamental result is a restatement of some results of [10]. 

PROPOSITION 2.1 (Sims). Suppose that P is a finite p-group of order p\ that 
Q and R are subgroups of index p in P , and that <j> is an isomorphism of R onto Q. 
Let N be the subgroup of P generated by all the subgroups of R that are fixed by </>. 
Then: 

(a) <j> fixes N; 
(b) N < P; and 
(c) if N = 1, then there exists x G P such that x G 0~ ( ï _1 )(P), and such 

that (x, 0(x), . . . , <j)i~1(x)} has order p\ for i = 1 , 2 , . . . , / . 

Proof, (a) This is obvious. 
(b) If Q = R, then N = Q. Suppose that Q 9* R. Then <f> maps RC\Q 

isomorphically into Q, and maps f 1 ^ ^ (?) isomorphically into R. Since 
N QRHQ and N C ^(R C\ Q), we may assume by induction that N < Q 
and that N < R. Therefore, N < QR = P. 
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(c) Let R0 = P and J?i = 0- ' (P) , for i = 1, 2, 3, . . . . Then Rx = R and 
Ri+1 = i? H tf-1^*) £ i?, for all i ^ 0. Since iV = 1, we have R{ D Ri+1 

whenever Rt j* 1. However, for each i, 

\Ri+1\ = lieo^-H^OI = |0(i?)ni?,| = |çniî<| è |tf,|//>, 
so \Ri/Ri+i\ ^ £. Thus, |i^i/i? i+i| = p, if i?z- ^ 1. Consequently, | i ^ - i | = p. 
Moreover, for 1 ^ i ^ t — 1, we have 0(i£<) ^ i ^ and <j>(Ri) ^ i?i_i; hence, 
JRI_I = (Ri, <j)(Ri)). By induction, 

R^t-t = ( i ? , _ i , ^ > ( ^ , _ i ) , . . . , ^ ( ^ ^ i ) ) , for * = 1,2, . . . , / - 1. 

Let x be a generator of i^_i. We obtain (c). 

Our next two lemmas are special cases of results of G. Higman, B. H. Neu­
mann, and H. Neumann [8, Volume II, p. 53]. 

LEMMA 2.2. Let H and K be subgroups of a finite group G. Let S be the sym­
metric group on G. Embed G in S by identifying each element g of G with the 
permutation x —» xg(x 6 G) of G. 

Suppose that there exists an isomorphism <j> of H onto K. Then there exists 
g £ S such that g~lHg = K and g~~lhg = </>(/z), for all h Ç H. 

Proof. Let n = [G:H] = [G:K], Take xi, . . . , xn, yi, . . . , yn £ G such that 

G = \JXtH = UytK. 

In this proof, we will write xs to denote the image of an element x of G 
under an element 5 of S. Define g 6 5 by 

(Xih)° = yi<t>(h), for 1 S i S n and h £ H. 

For i = 1, . . . , n and h, z £ H, we have 

{yMz))g~lh9 = (*<*)*' 
= (pcjshy 

= yi<t>(zh) 

= yi4>(z)4>Qi) 
= (yM*))+™. 

So g~%g = <j>{h). 

LEMMA 2.3. Let H and K be subgroups of a finite group G. Let 

ft = {(a,r)\at G;r = 1,2}, 

and let S be the symmetric group on &. Suppose that there exists an isomorphism <£ 
of H into K. Then there exists an embedding of G into S and an element g of S 
such that g~lHg = K = g^Gg Pi G and g~%g = 0(A), for all h G H. 

Proof. First assume that H = 1. Embed G in S by defining 

(x, l)v = (xy, 1) and (x, 2)v = (x, 2), for x, y 6 G. 
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Define g by 

(x, 1) ' = (x, 2) and (x, 2 ) ' = (x, 1), for * 6 G. 

Now assume that ff ^ 1. Then ^ ^ 1. Take k ?* 1 in K. Define n and 
xi, . . . , xn, yu . . . , % as in the proof of Lemma 2.2. We may assume that 
#1 = y\ = 1. Embed G in 5 by defining 

(x, r)v = (xy, r), for x j f G and r = 1, 2. 

Define g by 

(x<A, l)*7 = (yMh), 1), for 1 ^ i ^ n and A G H; 

(ft, 2Y = (0(A), 2), for A 6 iJ; and 

(xji, 2)0 = (ytHih), 2), for 2 ^ i g » and H £ 

As in the proof of Lemma 2.2, we obtain g~lhg = <t>{h) for all h £ H. 
We claim that g~lGg C\ G = K = g~lHg. Suppose that this is false. Take 

x Ç G — H such that g~lxg Ç G. Let x = a f̂t, where h £ H. Then i > 1. 
Moreover, 

g~lXig = (g'^g) (g^hg)-1 G G. 

Since x\ = y\ = 1, 

Thus, g~lxtg = y,. So 

(3/,, 2) - (1, 2)"* = (1, 2)*"1*" = (1, 2)*" = (*„ 2 ) ' = (y,*, 2). 

Since & 9^ 1, this is a contradiction. 

LEMMA 2.4. Suppose that P is a finite p-subgroup of a group G. Let \f/ be an 
isomorphism of P into G such that P P\ \f/(P) has index p in P . Let N(\f/) be the 
subgroup of P generated by all the subgroups of P that are fixed by \f/. Then: 

(a) We have N&) < <P, *(P)>. 
(b) Suppose that Q = P C\ \//(P) and that \p' is the restriction of \(/ to \f^~1(Q). 

Then N(\f/) is the subgroup of P generated by all the subgroups of \p~1(Q) that are 
fixed by \pf. 

Proof. Define Q and $ as in (b). Clearly, Nty) = ifr^Nty)) C 4rl{Q). 
This yields (b). By Sims' result (Proposition 2.1), Nty) < P . Hence, 
NM = *(#(*)) < MP). 

Note. For any isomorphism \p that satisfies the hypothesis of Lemma 2.4, 
we define N(\p) as in the lemma. 

The next two lemmas are proved in [5, pp. 18-19]: 
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LEMMA 2.5. Let G be a group in which Gr C Z(G). Let x,y, z G G. Then 

[xy,z] = [x,z][y,z], 

[x, yz] = [x, y][x, z]> and 

[x\ yj] = [x, y]ij, for all integers i,j. 

LEMMA 2.6 (Three Subgroups Lemma; P. Hall). Let G be a group. 
(a) For all x, y, z G G, 

[x, y 1 , z]y[y, s -1 , x]z[z, x"1, y]x = 1. 

(b) If H,K,LQG and [H, Ky L] = [K, L, H] = 1, /Ac» [L, if, K] = 1. 

3. The general case. In this section we assume the hypothesis and nota­
tion of Proposition 2.1. We further assume that N = 1. Take x as in 
Proposition 2.1(c); let x.t = (j>i~1(x), for i = 1, 2, . . . , /. Then we have 

(3.1) (a) |P | = p\ p is a prime, and t ^ 1; 
(b) |0 | = \R\ = £<-i; 
(c) <f> is an isomorphism of R onto Q that fixes no non-identity subgroup 

ofR; 
(d) #i, . . . , x,_i G P awd #(#*) = xi+ij for i = 1, . . . , / — 1; 

(e) |(xi, . . . , Xi)\ = p\ for i = 1 , 2 , . . . , / . 

We will not use subscripts to denote terms of the lower central series of a 
group, except that we define P 2 = P'', P 3 = [P2, P ] ; and P 4 = [P3, P ] . We 
also define the parameters u, v, and k as follows. Let u = t if P is Abelian. 
Otherwise, let w be the smallest positive integer such that [xu xu+i] ^ 1 for 
some i. Let v — t — u. Let & = t if P 3 = 1. Otherwise, let k be the smallest 
positive integer such that [Xi,xk+i] G Z(P) for some i (k must exist since 
P/Z(P) is not Abelian). 

For 1 ^ i ^ j g £, we write (x*, . . . , x ;) to denote the group (xr\i S r S j). 
Similarly, we often denote an element of {xu . . . , xf) by Xie(i) . . . Xje{j) for 
some function e; here, it is understood that the subscripts on the x's increase 
from left to right in the actual product. 

Throughout this section we assume (3.1). 

From (d) and (e) we obtain easily: 

LEMMA 3.1. For every x G P , there exist unique elements e( l ) , . . . , e(t) G Zp 

such that x — Xie(1) . . . xt
e{t). 

LEMMA 3.2. (a) If 1 ^ i < j ^ t, then 

[<*<), (Xj)] £ (Xi+l, • • • , X]-l). 

(b) If P' ?^ 1 and 1 ^ i ^ , £/zen [#*, xM+J ^ 1. 

Proo/. (a) First, suppose that j = i + 1. Then (xitXj) = 0*-1((*i> #2)). 
By (3.1) (e), \(xu x2)\ = p2. Hence, (x1} x2) and (xu xf) are Abelian. 
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Now suppose that j ^ i + 2. Similar calculations show that (xu . . . , #y_i) 
and (xz+i, . . . , Xj) have index £ and are therefore normal in {xu . . . , Xj). 
Hence, 

[<**}i (xj)] € <* i , . . • , Xy-i} H (xm> . . . , xj) = ( x m , . . . , x ^ ) . 

This proves (a). 
(b) By the definition of u, we have [xj, xu+J] 7^ 1 for some j for which 

1 ^ j <; v. Hence [xu xu+i] = <£'""'([#./, ff«+J) =̂  1. 

The following symmetry principle will be quite handy: 

LEMMA 3.3. Let nbea nonzero element of 7JP. Condition (3.1) and the definitions 
of u, v, and k remain valid if we replace P by P, Q by R, R by Q, (f> by 0_1 , and 
xt by (xt+i-.t)

n,for i = 1, . . . , t. 

Recall that u = / if P is Abelian. 

PROPOSITION 3.4 (Sims [10, Lemma 2.7]). Assume that P is not Abelian. 
Then 

(a) u ^ %t; 
(b) [xi, xu+1] Ç (xv+1, . . . , ^M-H-I), and 
(c) [xu xu+i] e Q!(Z(P)),for i = 1, . . . , v. 

Proof. Since P is not Abelian, u < t. Suppose that 1 ^ i ^ v and that 
i ^ ^.Then 

and 
[xu+iy x r 1 , x^+r1] e [(x2,..., x«+i-i>, fe+i)] = 1, 

by Lemma 3.2 and the definition of u. By the Three Subgroups Lemma 
(Lemma 2.5) 

(3.2) [*! 

By Lemma 3.2,1 9^ [xu xu+i] G (#2, . . . , xu). Let [xlf xw+J = xm
e(m)... xn

e(-n\ 
where e(m)y e(n) 7^ 0. Then m ^ u. Suppose that m ^ v. Then w + m ^ £, 
and xu+m centralizes xm+i, . . . , xn but not xm (by Lemma 3.2). So 

L^i, Xu+lf Xu+m] — [Xm . . • Xn , Xu.\.m\ •?*= 1, 

contrary to (3.2). Thus, m ^ v + 1. 
Let y* = xt+i-u for i = 1, 2, . . . , L Then 

Qyi»y«+i] = [*«>**] 
= [xvi xt\ 

= </>»-1([*i,awfi]~
1) 

= ^ ^ C V H - I - - ^ • . .y<+i-m-e(m)) 
= y u + 2 _„- e W.. .y a + 2 _ m -^> . 
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By the above argument and by symmetry (see Lemma 3.3), we obtain 
w + 2 — n ^ v + 1. Therefore, 

v-\-l^m^n^ (u + 2) — (v + 1) = u — v + 1. 

Since v = t — u, this proves (a) and (b). 
Suppose that 1 ^ i S v. Then 

[Xf, Xu+i] = <j>l~ \\X\y Xu+\\) Ç \Xv+ij . . . , Xu-v+i) Ç yCv+li • • • > xu) £= Z(P), 

by (b) and the definition of u. Since every Xj has order p, this proves (c) and 
completes the proof of Proposition 3.4. 

LEMMA 3.5. (a) For i = 1, . . . , v, 

Cp(\Xi, . . . , xu)) = \Xi, . . . , xu+i-.i). 

(b) For i = u + 1, . . . , /, 

^P\\pCv+li • • • > %i)J ==: \pCi—u+li • • • > ^*/« 

(c) Moreover, Z(P) = (xv+1, . . . , xu) and Z(Q) = (x^i , . . . , xu+1); 
both are elementary Abelian. 

Proof. If F is Abelian, then u = t and v = 0, and the lemma is obvious. 
Assume that P is not Abelian. 

(a) Let C = Cp((xu . . . , xu)). By the definition of u, C contains 
(xi, . . . , xu+i-.\). Suppose that it contains some further element x. Let 
x = Xie(1) . . . xm

e(w), where m ^ u + i and e(m) ^ 0. Then i ^ m — u ^ 
£ — u ^ ti, so x G C Ç Cp(xw_M) and xm_M centralizes 

X l , 3^2, • • • , Xm Uj . . . , Xm—1. 

Hence, xm-u centralizes xm
e(w), contrary to Lemma 3.2. 

(b) Use (a) and symmetry. 
(c) Take i = 1 in (a) and i = / in (b). We obtain 

ZJ \± ) ^ \ X i , . . . , Xu) ( \ \Xv+i, . . . , X t) = \Xv+i, . . . , X w / . 

We obtain the reverse containment because [xt, Xj\ = 1 whenever 1 ^ i' ^ t 
and y + 1 S j ^ u, by the definition of u and z>. A similar argument yields 
that Z(Q) = (xv+i, . . . , xw+i). Since every xy has order p, Z(P) and Z(Q) 
are elementary Abelian. 

Recall that k = til Pz = 1. 

PROPOSITION 3.6. Suppose that Pz ^ 1. Z7^w 

(3.3) * è a + J», 

(3.4) [*i,*w-i] = x ^ . . . ^ \ 
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for some integers m, n and some e(m), . . . , e(n) G Z,v such that 
(a) 1 ^ m ^ n ^ t, 
(b) both e(m) and e{n) are nonzero, 
(c) ni = k — u+lorn = u+l, 
(d) m = k — u+lornt^v+1, and 
(e) n = it + 1 or n ^ k + 1 — v. 

Proof. If [xi, xk+1] = 1, then [XJ, xk+ J = 0*"1([^i» **+i]) = U Z(P) , for 
i = 1, . . . , / — k, contrary to the definition of k. Thus, [xi, xk+î\ 9e 1. Take 
m, n and e(m), . . . , e(n) to satisfy (3.4), (a), and (b). 

Suppose that m ^ v + 1 and that n S k + 1 — v. Then, for 1 ^ i ^ t — kf 

we have v+l^m^m + i— I and « + i — 1 ^ &; hence, 

[XU Xi+k] = ^([Xl, **+d) = V-l{Xme{n) • • . V C n ) ) 

= x w + ,_! € ^ . . . ^ M « w G <*.+i, . . . , xu) C Z(P) . 

This contradicts the definition of k. So we have 

(3.5) m^vovn^k + 2 — v. 

We will assume for a while that m ^ v. Let 

iV = \Xv+i, . . . , Xk), 

and let C = CP(N). Since ife ^ «, Lemma 3.5 yields that N^ZÇP) and that 

By our choice of k, we have [(#y), iV] C Z(P) , for j = 1, . . . , k — u. Since 
[C, iV] = 1, we have [P, TV] Ç Z ( ? ) Ç N. Therefore, N < P and C < P . 
It follows that [xi, xfc+i] G C and consequently that m ^ & + 1 — u. We will 
show that m = k + I — u. 

Let F = ([tffc+i-M, xk+i]). Then FÇZZ(P) , by Proposition 3.4. Moreover, 
[C, Xfc+i] £ Y. Hence, the coset xk+iY is in the centre of C/Y. Since C < P , 
we have C / F < P / F a n d Z(C/Y) < P/Y. Consequently, 

(3.6) [x!,xk+1]Ye Z(C/Y). 

Therefore, 

(3.7) [xm
€W . . . x/ (w), xM+m] = [xi, xk+u xu+m] e Y = (Ixjt+i-u, xk+i]). 

Let Fi = ([xfflt xu+m]}. Then Fi C Z(P), and xw+m centralizes 
modulo F L By (3.7), 

1 ^ [xn 'W . . . */ ( M \ xu+m] G Yr^Yx= YC\ *—(fc+i-")(F). 

Since \Y\ = p,m — (k + 1 — u) is zero; that is, m = & + 1 — u. 
Suppose that k < u + \v. Then 2k < 2u + v = u + t, 2k + 1 ^ u + t, 

and m + & = 2 £ + l — u ^ t. By (3.6) and the definition of C, 

[xm
e(w) . . . xn

ew, xm+k] = [xi, »*+!, xm+k] G Y C Z(P) . 
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Hence, xm+Jc centralizes xm . . . xn 

e{n) m 0 ( j u l 0 Z(P). By the definition of 
k, xm+Jc centralizes xm+i, . . . , xn modulo Z(P). As e{m) 9e 0, xm+k centralizes 
xm modulo Z(P). However, 

[Xm, Xm+k\ = (f>m~ {[Xi, X]c+i\) 

= f - 1 ^ ^ . ..*»a(n)) 
>^2m—1 • • • J'n+m— 1 

As 2m - 1 = 2(k + 1 - u) - 1 = 2k - 2u + 1 < v + I, this contradicts 
Lemma 3.5(c). Hence k ^ ^ + \v. 

We have now proved (3.3), (c), and (d) under the assumption that m ^ v. 
Let yt — xt+i-i, for i = 1, . . . , £. Then 

bi>y*+H = [^«,^f-J 

= *<-*-1([^i,^*+J-1) 
= * | - * - 1 ( y H - i ^ " 6 ( , 1 ) • • • yt+i-nTeW) 

= yk+2-n-*w ...yk+2-m-ew. 

By symmetry (Lemma 3.3) and by the above argument, we obtain (3.3) 
and k + 2 — n = k + I — u (that is, n = u + 1) if k + 2 — n ^ p (that is, 
if w ^ & + 2 — v), regardless of m. Thus, we obtain (3.3), (c), and (e) if 
n ^ k + 2 — v. By (3.5), m^vorn^k + 2 — v. This proves (3.3) and (c) 
in all cases. Since (d) is trivial if m > v and (e) is trivial iî n < k — z / + 2 , 
this completes the proof of Proposition 3.6. 

THEOREM 3.7. If p = 2, then Pz = 1. In all cases, P 4 = 1 and 

P £ \xt+l—ki • • • > #*/• 

Proof. We assume that P3 ŝ  1 and use the notation and results of Proposi­
tion 3.6. By symmetry, we may assume that 

(3.8) m = k - u + 1. 

Suppose that p = 2. Let x = Xi and y = xk+i. Then 

(3.9) x = xy2 = (x[x,y])y = x^[x, y]v = x[x, y]2[x, y, y]. 

Since 0 ^ n — m S (u + 1) — (k — u + 1) < u by Proposition 3.6, the 
group (xm, . . . , xn) is elementary Abelian. Consequently, 

[oct y]2 = [xi, xfc+i]2 = 1, 
and (3.9) yields 

(3.10) 1 = [x, y, y] = [*„•<»»> . . . *»•<»>, xk+1]. 

By (3.8), & + 1 = m + w. Hence, xk+\ centralizes xm+i, . . . , xn. Since 
6(m) 7̂  0, (3.10) yields [xm, xk+î\ = 1, which is a contradiction. Thus, p 9^ 2. 

Let 
iVi = \xc+i, . . . , xk), N2 = {xt+i-k, . . . , xw), 
Ci = {xk+i—Ui • . . , xt), and C2 = (xi, . • • , xt+u-.k). 
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By the definition of ife, we have [NUP] C Z(P) C iV,, for i = 1, 2. By 
Lemma 3.5, Ct = Cp(Nt), for i = 1, 2. Thus, iVi, N2 < P . Hence, G, C2 < P. 

Suppose that l ^ i ^ j g ^ and that [x*, x j ^ 1. Then j — i ^ w, so 
j ^ M + l ^ î i + l ^ i - M + 1 . Thus, x;- G Ci and [x*, x j Ç Ci. Similarly, 
i g n ^ - f M - & and [xu xj\ € C2. Since d C\ C2 <1 P , we obtain 

(3.11) ? ' C Ci H C2 = (xk+i-u, . . . , x*+M_*). 

Since & ^ w + |u, 2fe ^ 2w + «/ = / + w. Hence, k+1—u^t+1 — k 
and * + u - k ^ jfe. By (3.11), 

(3.12) P ' C <*!+!-»,...,*»>. 

By (3.12) and the definition of k, we have P 3 = [P', P] C Z(P) . Therefore, 
P 4 = 1. 

Example 3.8. Let P = E(p) and let a and & be two generators of P that 
have order p. Let 

Xi = a, x2 = [a, 6], and x3 = fr. 

Let P = (xi, x2) and <2 = (x2, x3). Then Ç and R are elementary Abelian 
groups of order p2 and are isomorphic under a mapping 0 that satisfies (3.1). 
Here P has nilpotence class two. 

Example 3.9. Assume that £ is odd. Take a and b as in Example 3.8, and let 
c = [a, b]. Let Q be the direct product of (a, 6) and an elementary group 
(d, e) of order p2. Then there exists a unique automorphism a oî Q given by 

aa = a,ba = a-^c, ca = c, da = d, g« = drle. 

(Since p is odd, (a~1bc)p = 1.) Moreover, ap = 1. 
Let P be the semi-direct product of Q by (a). Let 

Xi = a, x2 = a, #3 = d, x± = c, X5 = £, and X6 = b. 

Let P = (xi, x2, x3, Xt, X5) = (a, e) X (#, c). Then Q and P are isomorphic 
under a mapping 0 that satisfies (3.1). Since P' = (a, c, d) and P 3 = (c), 
P has nilpotence class three. 

Remark 3.10. It is easy to see that in (3.1), P is elementary Abelian if 
v = 0 and P is a direct product of E(p) and a (possibly trivial) elementary 
Abelian group if v = 1. On the other hand, it is easy to construct examples 
for which v = 0 and t is an arbitrary positive integer, or for which v = 1 and 
t is an arbitrary integer greater than two. In [3], J. Currano has classified all 
groups P and isomorphisms <j> that satisfy (3.1). 

4. A restricted case. Suppose that P satisfies (3.1). In Lemma 2.2, we have 
shown that P can be embedded in some finite group G such that <j> is effected 
by conjugation by some element g of G. Suppose that P is thus embedded; 
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let H = (P, P°) and xt+1 = xt°. Since [P°: Q] = p, Q is normal in P° and 
therefore in H. Then H = (Q, Xi, xt+i). In this section we investigate the 
structure of P when P and H satisfy the following restrictions: 

(4.1) P is not Abelian; 

(4.2) H = CH(Q)Op(H)P*. 

It is of interest to show that (4.2) depends only on P and 0, and does not 
depend on the group G in which P is embedded. Let \f/ be the homomorphism 
of H into Aut Q that maps each h £ H to the automorphism of Q given by 
x —» x \ Let H* be the image of ^, and let P* be the image of Pg under yj/. 
Then (4.2) is equivalent to the condition that H* = Op(H*)P*. However, 

H* = (f(xt)\l ^iût+1) and P* = (f(xt)\2 ^ i ^ t + 1). 

Now, ^(Xi) is determined by the structure of P , for i — 1, . . . , t. Moreover, 
yf/{xt+\) is determined by the condition 

= (x , - i ' )*" 

= fa-!*')' 
= 0(x,_ixO, for i = 2, . . . , J. 

Thus, (4.2) is determined solely by P and 0. 

Throughout the remainder of this section we assume (3.1), (4.1), and (4.2). 

By Proposition 3.4, [xly xu+{\ £ (xv+i, . . . , xM_w+i). Define 

c(v + 1), . . . , c(u — v + 1) 6 Zp 

by 

(4.3) [xi, xw+1] = ^ ! ^ « . . . x ^ + i ^ - ^ . 

If P 3 5* 1, define d(k - u + 1), . . . , d(w + 1) Ç Zp by 

(4.4) [xi, x,+1] = x^+fo™*» . . . xu+1
d^\ 

By Proposition 3.6, these exponents exist. 
Let us recall some notation from [5]. A series 

O = uo ~2 *^1 _ • • • ==2 *̂w == 1 

in a group 5 is a normal series if 5* < S*-i, for i = 1, 2, . . . , n. A subgroup i£ 
of Aut S stabilizes this series if it fixes Si, 52 , . . . , Sn and fixes every coset of 
Si in 5*-!, for / = 1 , 2 , . . . , n. 

LEMMA 4.1 (Maschke [5, p. 69]). Suppose that S is an elementary Abelian 
p-group, that K is a p'-group of automorphisms of S, and that S± is a subgroup 
of S fixed by K. Then there exists a subgroup S2 of S fixed by K such that 
S = Si X S2. 
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LEMMA 4.2 ([5, pp. 178-179]). Suppose that S is a p-group and that K is a 
group of automorphisms of S that stabilizes a normal series of S. Then K is a 
p-group. 

LEMMA 4.3. Suppose that Q2 C Qi Q Q and that Qi, Q2 < H. Assume that 
H/CH{Q1/Q2) is a p-group. Then H = CH(Q1/Q2)P

ff. 

Proof. Clearly, CH(Q)0>(H) C CH(<2i/<22). Apply (4.2). 

LEMMA 4.4. The group H/CH(Z(Q)) is not a p-group. 

Proof. Suppose that this is false. By Lemma 4.3, 

H= CH(Z(Q))Pff^CH(xu+1), 

contrary to [xi, xu+i] 5* 1. 

PROPOSITION 4.5. We have c(v + 1) ^ 0 and c(u — v + 1) ^ 0. 

Proof. Suppose that c(u — v + 1) = 0. Let N\ = Z(P) = (x„+i, . . . , xu) 
and let N2 = (xv+2, . . . , xu). Then N2 C Z(P) C\ Z(P°) Q Z(H). Since 

[xv+llxt+i] = [xi, xu+i]9V 

= ^ ( * H . 1 * C H - l ) . . . X l | _ H . 1 c ( « - H - l ) ) 

x,+i centralizes i \ V ^ 2 . So Nx < H and N^N^Q. Z(H/N2). Moreover, 
Z(Q) <H and Z(Q) = {Ni, xu+i), by Lemma 3.5. As [xu xu+1] G iVi and 
[xu+i, xt+1] = 1, we have Z(Q)/Ni C Z(H/Ni). Let us regard H/CH(Z(Q)) 
as a group of automorphisms of Z(Q). Then it stabilizes the normal series 

Z ( Q ) D J V i D i V 2 3 1 

of Z(Q). By Lemma 4.2, H/CH(Z(Q)) is a £-group, contrary to Lemma 4.4. 
Hence, c(u — v + 1) T6- 0. 

If c(i> + 1) = 0, a symmetric argument (by Lemma 3.3) yields again that 
H/CH(Z(Q)) is a £-group, contrary to Lemma 4.4. 

Notation. Let 2i = [xi, xu+i\. For i = 2, . . . , v + 1, let zt = [#*, xw+ J = 
4>*-1(zi). Let Z = {zu . . . , z9) and let F = (zu zv+1). 

LEMMA 4.6. We have Z(Q) = (Z(P), zv+i) and 

( Z , s D + 1 ) n Z ( P ) = Z . 

Proof. For i = 1, . . • f v, 

zt = <t>i-1(z1) = XH-«C W 1 ) . . . x,-»+ic(M-*+1) € ( % i , . . . , Xu) ç Z(P) , 

by (4.3). Since c(w - v + 1) ^ 0, we obtain zv+1 & Z(P) and (Z(P), zv+i) = 
(Z(P), xu+i) = Z(Q), by a similar argument. 

https://doi.org/10.4153/CJM-1971-106-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-106-0


996 GEORGE GLAUBERMAN 

PROPOSITION 4.7. We have Z(Q) = VX {QC\Z{H)) and V < H. More­
over, consider V to be a vector space over Zp; then the elements of H determine by 
conjugation the elements of SL(F) . Thus, H/CH(V) = SL(2, p). 

Proof. By parts (a) and (b) of Lemma 3.5, Q H Z(H) = (xv+2, . . . , xu). 
Since c{v + 1) ^ 0 and c{u — v + 1) j* 0, we obtain 

Z{Q) = V(Qr\Z(H)) and VPi (Qr\Z(H)) = 1. 

Thus, Z(<2) = F X (QnZ(H)). 
Let 5 = (Z((?),#i) = (Z(P), xi, xu+i). Since [xi, xM+i] G 2 ( P ) , the group 

S/Z(P) must be Abelian. So 5 ' £ Z(P) C Z(S). By Lemma 2.5, 

(ZH-I^HZH-I)*1 = l>*+i, *i] 
= [x2v+1

c^K . . xu+1^
u-v^\ Xl] 

So (zp+i)zi = zrc{u~v+1)zv+i. A similar argument shows that ZiXt+1 = ZiZv+1
civ+1). 

Let us consider Z\ and zv+i to form a basis of F as a vector space. Since 
[xi, Zi] = [xt+ll zv+i] = 1 and since V C Z(Q), we find that V < H and that 

(4.5) /fee automorphisms of V induced by conjugation by xi and xt+i are repre­
sented by the matrices 

f 1 0*1 and f l c(v+ 1)1 

[_̂ _, + 1) ij Lo i J' '"Way-
It is well known [9, pp. 115-118] that these matrices generate SL(2, p), since 
c(u — v + 1) and civ + 1) are nonzero, by Proposition 4.5. As 

H = Q(xlfxt+i) = CH(V)(xi,xt+1), 

this completes the proof of the proposition. 

Remark 4.8. In [3], J. Currano has obtained the conclusion of Proposition 
4.7 by assuming (3.1), (4.1), and a weaker condition than (4.2). 

LEMMA 4.9. Let N = (xt+2-jc, . . . , xk). Then [H, N] C Z(Q) and 
[Op(H),N] ç V. 

Proof. Since u + 1 S k ^ t, Z(Q) ^ N ^ Q. By the definition of jfe, we 
have [P, TV] ç Z(P) C Z(<2). Similarly, [P' , iV] ç Z(Ç). Hence, 

N/Z(Q)ŒZ(H/Z(Q)), 

which yields [H, N] C Z(Q). By this calculation and by Proposition 4.7, the 
automorphisms of N/V induced by conjugation by elements of H stabilize 
the normal series 

i V / F 3 Z ( < 2 ) / F 2 V/V = 1 

of N/V. By Lemma 4.2, H/CH(N/V) isa^-group. Hence, Op(H) C CH(N/V). 
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We will say that a series of the form 

(4.6) l = <2o C <2i C . . . Qn = Q 

is an H-composition series of Q if Qt < H, for each i, and there is no normal 
subgroup S oi H such that Qz_i d S C Q% for some i> 1 g i ^ ». We note 
that the Jordan-Holder theorem applies to i?-composition series [6, Theorem 
8.4.3, p. 126]. 

PROPOSITION 4.10. Assume that P 3 = 1. Suppose that (4.6) is an H-com­
position series of Q. Then precisely one of the factors Qi/Qi-i (1 ^ i ^ n) has 
order p2, and all of the other factors Qi/Qt-i have order p and are centralized by H. 

Proof. By the Jordan-Holder Theorem, it is sufficient to find one il-composi-
tion series of Q that satisfies the conclusion of the lemma. Let Qi = V. By 
Proposition 4.7, F is a minimal normal subgroup of H and Z(Q)/V is cen­
tralized by H. Since Pz = 1, we have k = t. By Lemma 4.9, H centralizes 
Q/Z(Q). 

Consider the series 

1 = QoCQi^Z(Q)QQ. 

After deleting repeated terms, if any, we may refine this series to an iJ-com-
position series of Q that has the desired properties. 

LEMMA 4.11. For i = 1, . . . , k — u> 

[P, (xu+i)] C (zu . . . , zt). 

Proof. Use induction on i. Suppose that 1 ^ r ^ k — u and that the result 
is true whenever 1 ^ i < r. Let M = (zi, . . . , zr) and N = (M, zv+i). Then 
M C Z(P) a n d F Ç ^ Ç VZ(H). So N < H. 

We first show that xu+rN is in the centre of H/N; that is, that 

(4.7) [H, (xu+r)] ç N. 

By (4.2), H = CH(Q)Op(H)P9. Certainly, CH(Q) centralizes the coset 
xu+rN. By Lemma 4.9, Op(H) centralizes xu+TN. Thus we must show that 
[xt, xu+T] 6 N, for i = 2, . . . , / + 1. For this, we may assume that r ^ 2. 
Now, 

[*,, xM+r] = 0([x2-_i, xw+r_i]) G *([P, (*„+r_i)]) 

C 0 « Z l > . . . , « r _i» = (02, • • • , Zr) Q M C JV, 

by induction. This proves (4.7). 
Since u + r ^ fe, we obtain [P, (xM+r)] Ç N C\Z(P) = M, by (4.7) and 

Lemma 4.6. 

LEMMA 4.12. Suppose that I ^ i ^ k — u. Then 

[P , <*<+1_t>] £ <*<+«-*» • • • , «•)• 
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Proof. Let Y = (zt+i-k, . . . , zv). Then Y C Z(P) . We must show that 
[xt+i-k, Xj] Ç F, for j = 1, 2, . . . , t. Now, 1 ^ / + i — k S v < u. If j g u, 
then [xf+f_fc, x j = 1. Assume that j ^ u + 1. Let r = j — (t + i — k — 1). 
Then 

j > » ^ / + i - k and 1 ^ r è t - (t + i - k - 1) S k - i + 1 ^ £. 

Hence, by Lemma 4.11, 

[xt+i_k, Xj] = 0 l+i-*-1([^l, *r]) G *<+^ f r"1«2l, • • • , * M » 
= \2^+t-fc, . . . , Zj-u) £ Y, 

as desired. 

PROPOSITION 4.13. Let Z* = (Z, zv+i) = (zi, . . . , zv+i) and let 

N = {xt+2-k, • • • ,Xk). 
Then: 

(a) Z* < H; 
(b) N <H and [H, N] ç Z*; 
(c) if P 3 = 1, *&e» P' = Z and [Q, H] = Z*; a«d 
(d) if P 3 ^ 1, / ^ n PzQZ <^ P'. 

Proof. Since F ç Z* C Z(Q) C F Z ( ^ ) , we obtain (a). Let 

L = (xt+1-k, N). 

By Lemmas 4.11 and 4.12, we have 

(4.8) [P, N] Ç [P, L] £ Z. 

Hence, [P' f iV] C [P'f Z/] C Z ' ç Z* C iV. This yields (b). 
Since JS* = [xiy xu+i] £ P ' , for i = 1, . . . , v, we have Z C P ' . 
Suppose that P 3 = 1. Then k = J and iV = Q. By Lemmas 4.11 and 4.12, 

P ' Ç Z, so P' = Z. By (b), [Q, H] C Z*. Thus, 

Z* = (Z, [x„+1, xt+1}) ç [(2, fl] ç Z*, 

which proves (c). 
Finally, assume that P 3 ^ 1. By Theorem 3.7, P' £ L. Hence, by (4.8), 

Pz £ [L, P] £ Z. This yields (d) and completes the proof of Proposition 4.13. 

PROPOSITION 4.14. Assume that P 3 ^ 1. Take m and n as in Proposition 3.6 
and Z* and N as in Proposition 4.13. Let 

M = (xt+1-kl . . . , xk+i) = (N, xt+i-.k, xk+i). 

Then: 
(a) [Q, H]QM, [Q, M] ç N, and M < H; 
(b) if M/N C Z(H/N), then m ^ v + 1; 
(c) # ikf/JV g Z(H/N), then k = u + %v; and 
(d) n = u + 1. 
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Proof, (a) By Theorem 3.7, P ' C (xt+1-k, ...,xk)QM. Hence, M < P . 
Similarly, 

(P'Y = *(P ' ) c (x,+2_„ . . . , x*+1> ç M, 

and M < P ' . So M < H. Moreover, [Q, H] Q M because 

Q/M ç Z{P/M) r\ Z{Pd/M) Ç Z(H/M). 

By the definition of jfe, we have [Q, M]QZ(P) Q N. 
(b) Assume that M/N Ç Z(H/N). By Proposition 4.13 (b), the elements 

of i f determine by conjugation a group of automorphisms of M/Z* that 
stabilizes the normal series 

M/Z* D N/Z* D Z*/Z* = 1. 

By Lemmas 4.2 and 4.3, H/CH(M/Z*) is a £-group, and 

(4.9) H = CH{M/Z*)P°. 

By the definition of k, 

[x,, x,+1] = [*<_!, * j ' e z(P)' = Z(PO e z(Ç), 
for i = 2, . . . , t + 1. Hence, tf*+iZ((?) 6 Z(P°/Z(Q)). Since Z* C Z ( Q ) , 
(4.9) yields that [H, (xk+1)] Q Z(Q). In particular, 

xm
em • • • *ne(w) = [*i, **+i] € Z(Ç) = (xv+i, . . . , xM+i). 

Since k < t, k — u+l<v-\-l^m. By Proposition 3.6 (c), n = u + I. 
This proves (b) and proves (d) when M/N Q Z(H/N). 

(c) Assume that M/N £ Z(H/N). Let C = CH(M/N). By (a), C 3 Q. 
Suppose that C 3 P*. Then if = <P, P ' ) = PC. Therefore, H/C is a 

^>-group. By Lemma 4.3, H = CPg = C, contrary to assumption. Thus, 
C ^ Pg. Since C 2 & we must have fft+i (? C. As fe+i, xz+i] = 1, we obtain 
[xt+i-k, xt+i] ^ 1, modulo N. Now, 

[*,+!-*, xt+i] = (t>t-k([xuxk+1]) 

V V^w • • • *̂ n / 

*"m-\- t—k • • • *vra+ f—fc 

Since 

[xi+i-jt, Xt+i] Ç (*«+2-*, . . . , xt) H M = (N, tfit+i), 

we obtain 

(4.10) » + * - * = * + 1. 

Thus, » = 2Jfe — * + l > J f e + « — * + l = * — 0 + 1 . By Proposition 3.6 (e), 
n = u + 1. By (4.10), 2k = t + u = 2(u + \v). This proves (c) and com­
pletes the proof of (d) and of the proposition. 
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We now consider some consequences of assuming the following statement, 
symmetric to (4.2): 

(4.11) H = CH(Q)0*(H)P. 

We continue to assume (3.1), (4.1), and (4.2). Recall that, if P 3 ^ 1. certain 
exponents d(i) are denned by (4.4). 

PROPOSITION 4.15. Assume (4.11). Suppose that P 3 ^ 1. Then: 
(a) v is even, m = 1 + \v, and k = u -\- %v, 
(b) both d(k — u + 1) and d(u + 1) are nonzero, and 
(c) P 3 = Z. 

Proof. Take m and n as in Propositions 3.6 (and 4.14). By Proposition 
4.14 (d), n = u + 1. Since (4.11) is symmetric to (4.2), Proposition 4.14 (d) 
yields the symmetric result that m = k — u + 1 (see Lemma 3.3 and 
Proposition 3.6). Hence, m < t — u + 1 = v + 1. By Proposition 4.14, 
k = u + lb- Thus, we obtain (a) and (b). 

By Proposition 4.13, P 3 Q Z. Now, z1 Ç Z. Let d = d(w + 1). Then 
d ?* 0. By Lemma 2.5, 

|_Xi, Xft-j-i, %\\ = \Xm . . . XM-j_i , XiJ 

^ \Xu+\ » # i ] 

= [xi, xu+1]~d 

= zrd 9* l. 

Therefore, Z\ G P3. For i = 1, 2, . . . , v/2, we have k + i ^ t and 

0*, xfc+z-, xt] = <l>1r"l([xltxk+uxl]) = 0t'~1(^i~tf) = Zi~a\ 

thus, 2̂  6 P3. Let w = v/2. For the same values of i, similar calculations yield 
that 

Zw+i ~ = [Xu xJc+iy Xk+i] G P 3 . 

This proves (c). 

PROPOSITION 4.16. Assume (4.11). Suppose that P 3 ^ 1. Let w = v/2. 
Define 

M = (xw+i,. . . , xu+w+i) and N = {xw+2i . . . , xu+w). 

Then: 
(a) [Q, fl] ç Af and [0, M] ç JV; 
(b) M,N <H and H/CH(M/N) ^ SL(2, p); and 
(c) /or any H-composition series 

1 = Go C Qi C . . . C Qn = e 

0/ Ç, precisely two of the factors Qi/Qi-i(l = ^ = w) ^ a ^ order £2, w/u/e a// //ze 
other factors Qt/Qi-i have order p and are centralized by H. 
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Proof. Since w = k — u, M and N have the same definitions as in Proposi­
tions 4.13 and 4.14. This proves (a) and yields that M, N < H. 

By Proposition 4.15, d(w + 1) and d(u + 1) are both nonzero. We may 
complete the proof of Proposition 4.16 by arguing as in Propositions 4.7 and 
4.10 and using (4.4) instead of (4.3). 

Remark 4.17. Suppose that p = 2 or p = 3. Then SL(2, p) has a normal 
^-complement. Using Proposition 4.7, we can obtain (4.11) from (3.1), (4.1), 
and (4.2). If p = 2, then (xi,xt+i) is a dihedral group, and (4.2) yields a 
stronger result: PCH(Q)/CH(Q) and P9CH(Q)/CH(Q) are Sylow ^-subgroups 
olH/CH(Q). 

5. The conjugate case. Suppose that P satisfies (3.1). As in § 4, we may 
and will assume that P is contained in a group G possessing an element g 
for which <j>{x) = x° (x Ç R). In this section, we extend $ to an isomorphism 
of P into G by defining 4>(x) to be x° for all x G P . Let H = <P, *(P)) . We 
assume that 

(5.1) P is not Abelian, and 

(5.2) (f)(P) is conjugate to P in H. 

We will determine the structure of P (Theorem 5.10), and other information 
(Corollary 5.14) that will be applied in the proof of Theorem 2. 

Let w = v if Pz = 1 and w = v/2 if P 3 ^ 1. Since <f> has been extended, 
there is no further need for the element g given above; we will therefore use 
the letter "g" to denote an arbitrary element of H. 

Throughout this section we assume (3.1), (5.1), and (5.2), and use the letters 
"g" and "w" as in the previous paragraph. 

LEMMA 5.1. We have 

(5.3) H = Op(H)P = Op{H)<j>(P), 

and, for some hf G Op(H), Ph' = 4>(P). Moreover, 

(5.4) P H 0 ( P ) = G. 

Proof. Clearly, Op(H) is a normal subgroup of H and H/Op(H) is a ^-group. 
Suppose that POv (H) ^ # . Then POp (H) is contained in a maximal subgroup 
i7* of H. Since H/Op(H) is a ^-group, H*/Op(H) is a normal subgroup of 
H/Op(H). Hence, # * < jff. By (5.2), 

tf = (P,4>(P))QH*CH, 

which is a contradiction. Thus, H = POp{H). Similarly, H = Op(H)<j>(P). 
Take g Ç JET such that P ' = 0(P) . Take ^ f P and V G Op(#) such that 

k'W = g. Then P»' = P° = 0(P) . 
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Obviously, Q C P C\ <t>{P) C P . Suppose that P C\ 4>{P) ^ Q. Then 
P r\4>{P) = P . Since P is finite, 0(P) = P . Therefore, 0(P ' ) = P ' . By (3.1), 
P ' = 1, contrary to (5.1). Thus, P H 4>(P) = Ç. 

By Lemma 5.1, £T satisfies (4.2) and (4.11) (for some g Ç G). Therefore, 
all the results of § 4 are ya/id in this section. In particular, if P 3 ^ 1 ^e?z t> w 
e#£?z aw^ & = u + w. 

Because of (5.4), we will use Lemma 2.4 to discuss various isomorphisms^ 
of P o n t o 0 ( P ) . 

Take A 6 H" such that P* = 0(P) . Define a :P -> P by 

(5.5) x« = M*))*"1, 

for all x Ç P . Then a is an automorphism of P and <£(x) = (x a ) \ for all x 6 P . 

Henceforth, we will assume that h and a are fixed elements of H and Aut P 
that satisfy (5.5). 

LEMMA 5.2. For i = 1, 2, . . . , v — 1, JS/* = s ï + 1 and s i+i Ç Z(H); also, 
{zv)

a = (si). Therefore, v divides the order of a. 

Proof. Let g = Zr1. By Lemma 4.6, Z = (zu . . . , zv) C Z(P) . Therefore, 

<z2,..., *,> s z(P) n <#>(z(P)) = z(P) r\ z{<t>(P)) c z(#) . 

For i = 1, 2, . . . , v - 1, s*« = (0(*,)) ' = («i+i)' = *w-i. 
By Lemma 4.6 and Proposition 4.7, F = <2lf z^ i ) < H and F H Z(P) = 

(si). Since zv Ç Z(P), 

*.« = (*(*•))' = (*H-I) ' € F H Z(P) = <«!>. 

Hence, (zv)
a = (zi). Since a permutes the subgroups (zi), . . . , (zv) cyclically, 

v divides the order of a. 

LEMMA 5.3. Let z = zv+i and c = c(u — v + 1). For i — 0, 1, . . . , w9 there 
exist ji^ (xv+i, . . . , xu+i) such that 

(5.6) *•' = yi(xu+i+l)
c (0 SiSw - 1), 

and 

(5.7) (**•)* = yw(xu+w+1y. 

Furthermore, suppose that P 3 ^ 1. Let z* = (&*v)h. For i = 0, 1 , . • . , w, 
there exist y* G (xw+i, . . . , xu+w+i) such that 

(5.8) (z*)«* = yi*(xu+w+i+1)
c (0 ^ i ^ w - 1), 

ana7 

(5.9) ((2*)"T = V(* , + 1 )< . 
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Proof. We prove (5.6) by induction on i. It is clear for i — 0 (e.g., see the 
proof of Lemma 4.6). Suppose that 0 ^ i S w — 2 and that (5.6) holds 
for i. Let g = hrl. Then 

*"*+1 = (*(**'))' = (*Cy^+<+ic))' = <K:y*rfe+*+2c)'. 

By Proposition 4.13, 

[{xv+1, . . . , *„+„,), iJ] C (zi, . . . , s,+i) QZ(Q) = (% i , . . . , xw+i). 

Since ^ + '̂ + 2 ^ ^ + ^, 

(t>(yi)0(xu+i+2c)a = <ACyzK+z+2c, modulo Z(Ç). 

Since 4>(yt) € (x»+2, . . . , xu+i+i), we obtain (5.6) for i + 1. This completes 
the proof of (5.6). 

Now let i = w — 1. Then 

which yields (5.7). 
Suppose that P 3 ^ 1. Then [Ç, H] C (xw+i, . . . , xu+w+i), by Proposition 

4.16. We obtain (5.8) and (5.9) by the arguments used to prove (5.6) and (5.7). 

For our next results, recall the definition and properties of N(\[/) for an 
isomorphism \f/ (Lemma 2.4). 

LEMMA 5.4. Define an isomorphism $ of P onto Ph by 

ip(x) = (x<*w)\ x e P. 

Let <2* = N(f). Then: 
(a) Q* < H and aw fixes Q*; 
(b) if P 3 = 1, then Q* C\ Z = (z2, . . . , *,); and 
(c) if P 3 5* 1, then Q* C\ Z = (z2, . . . , zw; zw+2, . . . , zv). 

Proof, (a) By Lemma 2.4, Ç* < H. Hence, Ç* Ç P H P = Ç and 

(b) Suppose that P 3 = 1. By Lemma 5.2, each subgroup {zt), 2 ^ i ^ v, 
is fixed by av. Moreover, each such subgroup is contained in the centre of H. 
Therefore, 

<2* H Z 2 <s2, . . . , *,>. 

Suppose that Ç* H Z D <«2> . . . , zv). Then Ç* 3 Z. By Proposition 4.7, V is 
a minimal normal subgroup of H. Since Si G <2* C\ V, V Q Q*. So zv+i £ G*. 
Therefore, yp(zv+\) — (zv+iaV)h £ Ç*, contrary to Lemma 5.3. 

(c) Suppose that P 3 9* 1. Let F = (z2, . . . , zw; zw+2, . . . , zv). Using 
Lemma 5.2 as in (b), we obtain Y C Q* H Z. Suppose that F C Ç* H Z. 
Then there exists xG Q* C\ Z and 2, j G Zp such that # = Zi{zw+ij 9^ 1. 
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Since aw fixes <2* and interchanges (21) and (zw+i), we may assume that i ^ 0. 
Then x (£ Z(H) and, since zw+\ G Z(H), 

1 ^ [<*>, H] = [<2l), fl] C 7. 

Since <2* <] H and F is a minimal normal subgroup of H, F £ Q*. Hence, 
^2(Zfl+i) Ç Q*. Take z* as in Lemma 5.3; then 

which is a contradiction. 

LEMMA 5.5. Define \p and Q* as in Lemma 5.4, and let P = P/Q* and 
H = H/Q*. Let P 2 = P' and P 3 = [P2, JP]. denote Jfte cassf &Q* by h. Define 
a mapping $ of P into H by $(xQ*) = ^ (#)(?*, for all x G P. Then: 

(a) ^ is aw isomorphism of P onto Pl; 
(b) [P: Pr\P~h] = p and JV(#) = 1/ 
(c) if P3 = 1, then \P2\ = £ and P 3 = 1; a«d 
(d) # P 8 5* 1, **«» | A | = p\ 

Proof. Since ^ is an isomorphism that fixes Q*, \p is well defined and satisfies 
(a). Likewise, (b) is easy. Clearly, Pt = PiQ*/Q*, for i = 2, 3. If P 3 = 1, 
then P 3 = 1 and 

|P2| = |P2<27<2*I = |ze*/e*| = | z / ( z n <2*)| = P, 
by Proposition 4.13 (c) and Lemma 5.4 (b). This yields (c), and (d) follows 
similarly from Proposition 4.15 (c) and Lemma 5.4 (c). 

Note that, by Lemma 5.5, J/ is an isomorphism of P into H that satisfies the 
assumptions of this section, i.e., (3.1), (5.1), and (5.2). 

LEMMA 5.6. Define \f/ and <2* as in Lemma 5.4. Then Op(H) centralizes Q*. 

Proof. Suppose that P 3 = 1. Let 

i = 0 o c . . . c e « = Q*c...cG. = e 
be an ^"-composition series of Q that contains <2*; here, m may be zero. By 
Proposition 4.10, precisely one of the factors Qi/Qi-i has order p2, while all 
the other factors have order p and are centralized by H. Because of Lemma 5.5, 
a similar statement is valid for the series 

l = Q*/Q* = QJQ* c . . . C Qn/Q* = Q/Q*. 

Therefore, the factors Qi/Qi-i, 1 ^ i ^ w, must have order p and must be 
centralized by H. By Lemma 4.2, H/CH(Q*) is a ^-group. Therefore, Ov(H) 
centralizes Q*. 

The proof for the case in which P 3 9^ 1 is similar, but requires Proposition 
4.16 (c) instead of Proposition 4.10. 
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LEMMA 5.7. Assume that p is an odd prime. Then there exists a group S of 
order p* generated by elements af b, c, d, e, f subject to the following relations: 

(5.10) a? = bp = cv = d* = ev = fv = 1; 

(5.11) ab = ba, ac = ca, be = cb; 

(5.12) ad = da, bd = db, d~lcd = cb; 

(5.13) ae = ea, be = eb, ce = ec, e~lde = db; 

(5.14) af = /a , bf = fbj^cf = ca,f~Wf = d<r\ ef = fe. 

Moreover S is unique up to isomorphism and satisfies 

(5.15) Z(S) = [S,S,S] = (a,b). 

Proof. To construct 5, let D be the direct product of E(p) and a group of 
order p. Then there exists a set {a, b, c, d) of generators of D that satisfies 
(5.11) and (5.12). Also, there exist e,f 6 Aut D for which 

a* = a
f = a, be = bf = b, ce = c, cf = ca, de = dô, d r = dc -1 . 

Note that ef = /e. 
Since £ is odd, J9 has exponent p and e and / have order p. Let S be the 

semi-direct product of D by {e,/ ). Then we immediately obtain (5.10)-(5.14), 
and easy computations yield (5.15). 

Now suppose that S* is an arbitrary group generated by elements satisfying 
(5.10)-(5.14). Let D* = (a,b,c,d). Then D* < £* and S* = (D*,e,f). 
Hence, \D*\ g £4 and |S*/Z>*| ^ £2. Assume that |5*| = p\ Then D* ^ D 
and D* r\ (e,f ) = 1. Therefore, 5* is a semi-direct product of D* by (e , / ), 
and 5* ÊÉ 5. 

Definition 5.8. Suppose that £ is an odd prime. Let E*(p) be the group 
defined in Lemma 5.7. 

Note that, by (5.15), E*(p) is not isomorphic to the group of Example 3.9. 
We return to the isomorphism 0. 

LEMMA 5.9. (a) Suppose that P 3 = 1 and that v = 1. Then P is isomorphic 
to the direct product of E(p) and an elementary group. 

(b) Suppose that P 3 ^ 1 and that v = 2. Then p is odd and P is isomorphic 
to the direct product of E*(p) and an elementary group. 

Proof, (a) In this case, \P\ = pu+l and Z(P) = <x2, . . . , xu). By Proposi­
tion 4.13, P' = Z = <2i) C Z(P) . Let 5 = (xu xu+i) and let F be a comple­
ment of Z in Z(P) . Since #ip = xw+ip = 1, we have 

S^E(p),Sn Y = 1, 

and 

P - fa, Z(P) , xw+1> - (5, F) = 5 X F. 
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(b) Here, \P\ = pu+2 and Z{P) = <x3, . . . , xu). By Theorem 3.7, p is odd. 
Let 

c = [xi, xM+2], a = [c, xi], & = [c, xu+2]y d = xM+2, 
e = x2

_d(2), / = xi, and 5 = (a, b, c, d, e , / ). 

A few calculations suffice to verify (5.10) through (5.14) and to show that 
5 = (xi, X2, xu+2) and that |5 | = pe. Let F be a complement to Z = (zi, z2) 
in Z(P). By Lemma 5.7 and Proposition 4.15, 

5 ^ E*(p) and Z(S) = (a, &> C P 3 = Z. 

Thus, Z(S) = Z and 5 H F = 1. Since c € 5 and d(« + 1 ) ^ 0 , 

P = <*i, . . . , xw+2) = (5, *8, . . . , Xu) = 5Z(P) = 5 X F. 

THEOREM 5.10. / / P 3 = 1, then P is a direct product of an elementary group 
of order pu~2v with a direct product of v subgroups isomorphic to E(fi). If P 3 ^ 1, 
then p is odd, v is even, and P is a direct product of an elementary group of order 
pu-2v w ^ a direC£ product of v/2 subgroups isomorphic to E*(p). 

Proof. As before, let w = v if P 3 = 1 and w = v/2 if P 3 ^ 1. Define Q* as 
in Lemma 5.4. By Lemmas 5.5 and 5.9, P/<2* is isomorphic to the direct 
product of E(p) and an elementary group if P 3 = 1, and to the direct product 
of E*(p) and an elementary group if P 3 ^ 1; also, in the latter case p is odd 
and, by Proposition 4.15, v is even. Let Ft = P/<2*a', for i = 0, 1, . . . , w — 1. 

Let F be the direct product of the groups Po, Pi, . . . , P^-i. Let 

For each i, there is a natural map of P onto Ft ; these maps yield a homomor-
phism 0 of P into F. Clearly, Q** is the kernel of 0. 

By Lemma 5.4, aw fixes Q*. Therefore, 

e**« = rii^o*"* = e*aWn (n^^-iç*at) = <2**. 
Since <2* < P , <2*at' < -P, for each i. Hence, <2** < P . By Lemma 5.6, O p (#) 
centralizes <2**. Since i?" = Op(H)P, by Lemma 5.1, Ç** < H and 

0(<2**) = (((?**)«)* = (Q**)» = Q**. 

Since <t> fixes no non-identity subgroup of P , <2** = 1. Consequently, 6 is an 
isomorphism of P into P. 

As a is an isomorphism, Ft = P0, for i = 1, 2, . . . , w — 1. Therefore, 
F = F* X S, where S is an elementary group and P* is a direct product of 
v groups isomorphic to E(p), or of w groups isomorphic to E*(p). For each i, 
the natural map of P onto Ft must map Z(P) into Z(F/). Hence, 

(5.16) 6(Z(P)) C Z(F) = Z(F") X S. 

Suppose that P 3 = 1. Then |P*'| = |E (£ )T = pv = |P ' | . Since 

0(P') £ P ' = P*', 
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we have 6(P') = F*' = Z(F*). Thus, 

(5.17) Z(F*) C B(Z(P)). 

Suppose that P$ 5̂  1. By Lemma 5.7 and Proposition 4.15, we find similarly 
that Z(F*) = [F, F,F] = 0(P3). Thus, (5.17) is valid in this case as well. 

Let Si = 6(Z(P)) r\ S. By (5.16) and (5.17), 6{Z(P)) = Z(F*) X Si. Let 
S2 be a complement of Si in 5. Since S2 Q Z{F), 

8(P)r\S2 = 6(Z(P))r\S2 = 1. 

Therefore, the mapping of P into F/S2 given by x —* 9(x)52 is an isomorphism 
into F/St. Since \E(p)/Z(E(p))\ = p2 and \E*(p)/Z(E*(p))\ = p\ 

IF/5,1 = |F/Z(P) | |Z(P)/S 2 | 
= \F*/Z(F*)\\e(Z(P))\ 

= /»"|Z(P)| 
= p^p"-" 

= /»'• 

Thus, P ^ P/S2 ̂  P* X 5i. This completes the proof of Theorem 5.10. 

Remark 5.11. In [3, Theorems 2.3.2 and 2.4.1], J. Currano has proved 
Theorem 5.10 without assuming (5.2). He requires only the assumptions 
(3.1), (4.1), (4.2), and (4.11). 

LEMMA 5.12. Every automorphism of P that fixes Q also fixes (zi). 

Proof. Since Z(Q) = (xv+i, . . . , xu+i), we have (zi) = [P, Z(Q)]. 

Recall that R = (xi, . . . , xt-i) and that Z(R) = (x9, . . . , xu). 

LEMMA 5.13. Suppose that P 3 ^ 1 and that v = 2. r&ew 
(a) <2' = (z2) and R' = (zi), awd 
(b) ^ e r j automorphism of P fixes or interchanges Q and R. 

Proof. Part (a) is obvious. Since k = u + 1, 

(Q H R)/Z(P) = <x2, . . . , x t t+1)/Z(P) = ZiP/ZÇP)). 

Thus, Ç H P is a characteristic subgroup of P . 
Let S be an arbitrary subgroup of P that contains Q C\ R as a subgroup of 

index £. If 5 is Q or P , then |5 ' | = p. Suppose that S ?£ R, Q. Then there 
exist y £ Q r\ R and j ^ 0 in Zp such that xr^x^V G «5. 

S' 2 [5, G H P] 2 <*i, *2> = Z. 

Thus, |S' | > p. This yields (b). 

COROLLARY 5.14. Let n be the smallest positive integer for which an fixes Q. 
If P 3 ^ 1, then n = v. If P 3 = 1 and p = 2, /Aew w = 2v. If Pz = 1 awd £ is 
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odd, then n = qvfor some q > 1, and q divides p, p — 1, or p + 1. Consequently, 
if a has odd order, then P 3 = 1 and p is odd. 

Proof. We first reduce to the case in which w = 1. Assume that the result 
is true in this case, and consider the general case. By Lemmas 5.2 and 5.12, 
v divides n. So w divides n. Define Q* as in Lemma 5.4. Let n = n'w\ then n' 
is the smallest positive integer i for which {awY fixes Q (or, equivalently, 
fixes Q/Q*). By Lemma 5.5 and our assumption, n' = 2 if P 3 F^ 1 or if P 3 = 1 
and p = 2; while, otherwise, w' > 1 and nf divides p, p — 1, or p + 1. Hence, 
w satisfies the conclusion of the theorem. 

Thus, we may assume that w = 1. Since Q < i J and 0 does not fix <2, 
o: does not fix Q. So n > 1. Suppose first that P 3 = 1 and that £ is odd. By 
Theorem 5.10, P is isomorphic to the direct product of E(p) and an elementary 
group. Therefore, |P /Z(P) \ = p\ Now, Z(P) CZ(Q) = Q and \Q/Z(P)\ = p. 
We may consider P/Z(P) to be a two-dimensional vector space over Zp. 
Thus, Aut (P /Z(P)) ÊË GL(2, p). Let X = GL(2, p). Then every element of 
Z(X) fixes every one-dimensional subspace of the vector space. Therefore, 
n divides the order of an element of X/Z(X). By considering eigenvalues, one 
sees that the order of every element of X/Z(X) divides p, p — 1, or p + 1. 

Suppose that P 3 = 1 and that p = 2. Since P/Z{P) is an elementary group 
of order four, P has precisely three subgroups of index two that contain Z(P) . 
These are Q, R, and (Z(P), Xixt). Clearly, Q and R are elementary. However, 

[X\Xt) = X\XiX\Xi = X\ Xi X\Xi = \X\, %tl = L^i) ^w+ij ^ L 

Hence, a fixes (Z(P), XiXt). Since a does not fix Q, a interchanges Q and R. 
Thus, n = 2. 

Suppose P 3 ^ 1. Then v = 2. By Lemmas 5.2 and 5.13, a interchanges 
Q and P . Thus, n = 2. 

The following result is used in § 7. 

LEMMA 5.15. Suppose that w = 1. Le/ /3 G Aut P . Assume that 
(a) P 3 = 1 and Q* ^ Ç, or 
(b) P 3 ^ 1 <md P interchanges {z\) and (s2), 0f 
(c) P 3 ^ 1 and QV ^ Q. 

Define an isomorphism 6 of P onto Ph by 

e(x) = (**)*, x g P . 
TAe» iV((9) H Z = 1. 

Proof. Let <2* = N(6). By Lemma 2.4, Q* < H. Hence, Q* ^ P H Ph = Q 
and 

0*0 = (ACQ*))*"1 = Ç*7*"1 = Ç*. 

(a) Since v = 1, Z(P) = <x2, . . . , xu) and Z = <*!>. Thus, \Q/Z(P)\ = p. 
Since Qf>*Q, QC^Q^ = Z{P). So Ç* C Z(P). Now, F = <*lf *2>. By 
Proposition 4.7, F is a minimal normal subgroup of 77. Since z2 (? Z(P), 
z2 Q Q*. Hence Z\ $ Q*, as desired. 

https://doi.org/10.4153/CJM-1971-106-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-106-0


FINITE ^-GROUPS 1009 

(b), (c) By Lemma 5.13, fi interchanges Q and R. Hence, 

Q* = Q*e Ç Q r\ R = (x2, . . . , xu+1). 

Define M = (x2, . . . , xu+2) and N = (x3, . . . , ffM+i) = Z(Q), as in Proposi­
tion 4.16; then, by the proposition, M/N is a minimal normal subgroup of 
H/N. Since iVQ* C M, Q* C N. Thus 

Q* = Q*f>QNnN0 = Z(Q) r\ Z(R) = Z(P) . 

Similarly, 

<2* = 0*" £ z(P) n z(Ph) = QC\ z(H). 
Therefore, 

Q* n>ZQZ(H)r\Z = (z2). 

So 2i (2 <2*. Since <s2>" = <*i>, <2* H Z = 1. 

6. Proof of Theorem 2(a), (b), (c), (d). Suppose that P , H, h, and a 
satisfy the hypothesis of Theorem 2. Define an isomorphism 0 of P onto Ph by 

<l>(x) = (xa)\ x e P . 

Let Q = Pr\P\ R = <j>~1(Q), and S = N(4>) (see Lemma 2.4). Then 
Q,RCP and [P: (?] = [P: P] = />. By Lemma 2.4, S < H. Hence, 

s« = ((s-yy-1 = (0(S))*_1 = s»-1 = s. 
By the hypothesis of Theorem 2, 5 = 1. Consequently, the restriction of <j> 
to R fixes no non-identity subgroup of R and satisfies (3.1). 

Suppose that P is Abelian. Then P is elementary and Q Q P C\ Ph C Z(H). 
As in Theorem 2, let n be the smallest positive integer such that an fixes Q. Let 

Then Q*a = Q* and <2* Ç Z(ff). Hence, <£>(<2*) = (Q**)7* = Q*, and, there­
fore, <2* = 1. Consequently, 

|P | = [P:<2*] g [P:ffl[P:<2a] • • • [P:^1] = P\ 

which yields part (a) of Theorem 2. 
Suppose that P is not Abelian. Since </>(P) = (Pa)h = Pn, <t> and P satisfy 

(5.1), (5.2), and (5.5). Hence, parts (b) and (c) of Theorem 2 follow from 
Propositions 4.13 (c) and 4.15 (c), Theorem 5.10, and Corollary 5.14. 

Suppose that u ^ v + 2. By an argument similar to the proof of Lemma 5.2, 
xt

a = xi+i, for i = v + 1, v + 2, . . . , u — 1. Hence, 

v — v * a — v «a2 — — T . au~~v~2 

•Asy "— ./V^—1 ~ *V^—2 —"" • • • ""— «^î)-f-2 • 

Since xv+2, . • . , ocu £ P C\ Z(H), this proves part (d) of Theorem 2. 
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7. The weakly closed case. In this section, we resume the hypothesis 
and notation of § 5. Suppose that 5 is a Sylow ^-subgroup of H that contains P . 
Then P is said to be weakly closed in S with respect to H if, whenever g G H 
and P9 C 5, then P° = P. Throughout this section, we will assume the follow­
ing condition: 

(7.1) P satisfies (3.1), (5.1), and (5.2), and P is weakly closed in some Sylow 
p-subgroup of H. 

We will show (Theorem 7.11) that if P 3 F^ 1, then p = 3. This immediately 
yields Theorem 2 (e). Another result (Theorem 7.6) will be used in § 8. Note 
that (7.1) is satisfied whenever P satisfies (3.1) and (5.1) and P is a Sylow 
^-subgroup of H. 

Take h G H and a G Aut P as in § 5. 

LEMMA 7.1. Suppose that g G H. PAew P awd P^ are conjugate in (P, P*7). 

Proof. Choose a Sylow ^-subgroup S of i ï in which P is weakly closed. Let 
K = (P, P*7) and let P be a Sylow ^-subgroup of K that contains P . Take 
k £ K and / G # such that (P*)* C P and P / C 5. Then P ' Ç T' ç 5 and 
pa*/ ç p Ç 5 . By the weak closure of P in 5, P = P / = P '* ' . Hence, / and 
gk normalize P , and Pff = P*"1. 

LEMMA 7.2. Le/ P &e awy p sub group of H that contains P . Then P is weakly 
closed in T with respect to H, and P/Q C Z(T/Q). 

Proof. Suppose that g G H and P9 C P, but P* ^ P . Let P* = (P, P ' ) 
and let M be a maximal subgroup of P* that contains P . Since P* is a ^-group 
M < P*. By Lemma 7.1, P9 is conjugate to P in P*. Hence, P* = (P, P ' ) Ç Jkf, 
which is a contradiction. Thus, P is weakly closed in P with respect to H. In 
particular, P = P9 for all g G P. So P < P. Since P /Ç is a p-group and 
contains P/Q as a normal subgroup of order p, P/Q C Z{T/Q). 

LEMMA 7.3. LeJ i be a primitive (p — 1)/A r00£ 0/ zmity in Zp. Then N(P) 
contains a pf-element k having the following properties: 

(a) k~lZ\k = Zil; 
(b) k~lzv+1k = ZH-I*"1; 
(c) krhzk = x'2, modulo Q, for all x G P ; and 
(d) &_1xM+i& = xM+ii_1, modulo Z(P). 

Proof. Recall that V = (zu zv+1). By Proposition 4.7, Z((?) = V X 
(Qr\Z(E)), and H/C(V) is isomorphic to SL(F) for F considered as a 
vector space over Zp. For every g G -H", let 0(g) be the matrix, with respect 
to the basis {zi, zv+i}, of the automorphism of V given by conjugation by g. 
Then 0(P) is the group of all matrices of the form 
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Since 6(H) = SL(2, p), there exists/ G H such that 

Since 0(f) normalizes 0 ( P ) , / normalizes PC(F) . 
Now, <P, Pf) C PC(F) . By Lemma 7.1, there exist e G P and c G C(F) 

such that Pec = P ' . Then Pf = P c ; / r"1 normalizes P . However, flCfr"1) = 
6(f)6(c~x) = #(/)• Let g be the £-part of fc~l and k be the //-part of fr1-, i.e., 
let ^ be a ^-element and k be a //-element such that gk = kg = fc~1. Since 
flCftr1) has order £ - 1, 0(g) = 1 and 6(k) = 6(kg) = 6(fc~1) = 0(/) . Thus, 
& satisfies (a) and (b). A calculation shows that, for each x f P , 
6(k~1)d(x)d(k) = d(x)i2; therefore, 6(k~1xkx~i2) = 1 and 

k~lxkx~i2 £ PH C(V) = Q. 

This yields (c). Finally, (d) follows from (b) because 

Z(P) = {xv+1, . . . ,xu), 

zv+i = x2v+1
c(°+» ...xu+1«

u-^\ 

and 
C(U - V + 1) 9* 0. 

LEMMA 7.4. Suppose that p is odd, that P 3 = 1, awd that v = 1. Define i and k 
as in Lemma 7.3. r&e?z P contains a subgroup S with the following properties: 

(a) Z(P) CSandSk = S; 
(b) P / Z ( P ) = S/Z(P) X Q/Z(P); 
(c) Q a ^ •S are the onh subgroups of P that are normalized by k and contain 

Z(P) as a subgroup of index p; 
(d) k~lxk = xi2, modulo Z(P), for all x € S; and 
(e) k~lxk '= xi_1, modulo Z(P), for all x 6 (?. 

Proof. Since i; = 1, Z(P) = <x2, . . . , xu). Hence, | P / Z ( P ) | = p2 and 
P = (Z(P), xi, xu+i). Let P = P/Z(P). Consider F to be a vector space 
over Zp. By parts (c) and (d) of Lemma 7.3, conjugation by k induces a 
transformation on F having eigenvalues i2 and i~l and such that i~l is an 
eigenvalue for the subspace Q/Z(P). Thus, we obtain (e). Since p is odd and 
i has order p — 1, i2 9^ i~~l. Hence, there exists a unique one-dimensional 
subspaceS/Z(P) for which i2 is an eigenvalue. This gives (a), (b), (c), and (d). 

Recall that z3 = [xJf xu+3], for j = 1, . . . , v, and that Z = (zlf . . . , zv). 

LEMMA 7.5. Suppose that p is odd, that P 3 = 1, and that v = 1. Define k as in 
Lemma 7.3 and S as in Lemma 7.4. Let K be the automorphism of P induced by 
conjugation by k. Let 13 = K~la.Korl and y = K~1a~1Ka. Then: 

(a) /3 and y fix Z\ and fix every element of Z(P)/{zi); and 
(b) if Q0 = Q7 — Qy then a interchanges Q and S. 
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Proof. Since v = 1, (21) = Z = P'. So (21) is a characteristic subgroup of P. 
As Aut(zi) is cyclic, /3 and 7 fix Z!. By Proposition 4.7, & centralizes Z(P)/(zi). 
Consequently, we obtain (a). 

Suppose that ÇP = Q. Then Q = Q*-1***-1 = Q<**«-\ and <2« = (<2a)K. 
By Lemma 7.4 (c), (> is Q or 5. Since Q* ̂  0, Ça = S. Similarly, if Q* = Q, 
then (K 1 = 5 and Sa = Ç. This proves (b). 

THEOREM 7.6. Define k as in Lemma 7.3, and let K be the automorphism of P 
induced by conjugation by k. Let A = (a, K). For every /3 G A, define an iso­
morphism <j>$ of P onto Ph by ^(x) = (x&)A. 

Suppose that, for every (3 £ A} Nfo) is 1 or N(<t>p) 3 Z. Then w = 1. 
Assume further that p is odd. Then: 
(a) Suppose that P% 9^ 1. Then u = 2v — 4 cmJ / = 6. 
(b) Suppose that P 3 = 1. Define S as in Lemma 7.4. Let AQ be the set of all 

13 £ A that fix Q. Then either 
(i) u — 2v = 2 and t = 3, or 

(ii) « = 3, t = 4, 4 ^xes S, and [^L:^0] = [,4':,4' Pi AQ] = £. 

Proof. By Lemma 5.4, w = 1. Now assume that £ is odd. 
(a) Suppose that P 3 ^ 1. Then v = 2 and Z = (21, 22). By Lemma 5.2, 

a interchanges (21) and (22). Since 22 £ Z(H), Lemma 7.3 (a) yields that 
K fixes (21) and (22). Therefore, A has a normal subgroup J5 of index two in 
which every element fixes (21) and (22). Let X be the 2-part of K(P~1)/2 and let 
i 2 be a Sylow 2-subgroup of A that contains X. By Lemma 7.3 (a), K{P~1)/2 

maps Z\ into zf1. Hence, 2ix = 2i -1. By Proposition 4.7, 

z(P) = (Zl)x (z(P)r\z(H)). 
Therefore, the fixed points of Z(P) under X are just the elements of 
Z(P)r\Z(H). 

Since \A/B\ = 2, A2 £ B. Take 0 £ A2 - B, and let C = (X, 0>. Then C 
is a 2-group and, by Lemma 5.15 (b), Nifo) C\ Z = \. Hence, N(4>p) = 1. 
Since X fixes every element of Z{P) C\ Z(H), X fixes every element of Z(P)/Z. 
By Lemma 4.1, there exists F C Z(P) such that C fixes F and Z(P) = Y X Z. 
Then X fixes every element of F. Therefore, F Ç Z ( ? ) n Z ( i î ) . Since /3 £ C, 
0 fixes F and F C Nfa) = 1. 

(b) Suppose that P 3 = 1. Then v = 1 and Z = (21). Since Z = P ' , 4̂ fixes Z. 
Assume a interchanges Q and 5. Then A has a normal subgroup B of index two 
in which every element fixes Q and S. Define X, ^42, P, and C as in the preceding 
argument. Then Q? = S. By Lemma 5.15, Nfa) Pi Z = 1. So iV(^) = 1. 
Let F be a complement of Z in Z(P) that is fixed by C. As before, we obtain 
F C Z(P) H Z(H) and F ç JV(^) = 1. Therefore, Z(P) = Z and 
w = 2 = 2z>. So (i) holds. 

Assume that (i) does not hold; i.e., u ^ 3. Then a does not interchange 
Q and 5. By Lemma 7.5, there exists some element /3 in A' such that Q& 9e Q, 
13 fixes 21, and /5 fixes every element of Z(P)/(zi). As before, Nfap) = 1. 
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We claim that u = 3. Note that xz G Z(H). The hypothesis of the theorem 
is satisfied if <j> is replaced by fo. Thus, to prove that u = 3, we may replace 
a by 0; equivalently, we will assume in this paragraph alone that a fixes Z\ 
and every element of Z(P)/(zi). (This permits us to retain our present nota­
tion.) In particular, x2 = x2

a = (<t>(x2))
h = (x^)71'1 = xz, modulo (21). So 

x2~
1xz G (21). Since Zi = x2

d(2) . . . x/ (w) and d(w) ^ 0, we obtain u = 3. 
We now have Z(P) = (x2j xz) = (zu xz) = (P', x3) and P C\ Z{H) = (xz). 

Since 4̂ fixes P ' , ^4' must fix every element of Pf and every element of 
Z(P)/Pf. Since 0 G 4 ' and iV(^) = 1, 0 does not fix (xz). By Lemma 4.2, 
^4' induces a non-trivial £-group of automorphisms on Z(P). Let A0 be the 
subgroup of .4/ consisting of all the elements of A' that fix every element of 
Z{P). Then A0 < ^4. Since Aut Z(P) has a Sylow ^-subgroup of order p, 
[A'/Ao\ = P. 

Suppose that 7 G A0. Then 7 fixes xZl which lies in the centre of H. There­
fore, xz G N(<t>y). By hypothesis, zx G iV(*y). Since iV(07) < i7, 

As (Vt Xz) = <2, we obtain N(<t>7) = Q. So y fixes Q. Since 7 is arbitrary, 

(7.2) A 0 fixes Q. 

Let Z be the group of automorphisms induced by A on P/Z(P), and define 
J o similarly. Suppose that IQ 9* 1. By (7.2), the subspace Q/Z(P) of P/ZÇP) 
is invariant under ^40. Since AQ < A, Qa/Z(P) is also invariant under A0. 
Now, Qa ^ Q. Suppose that Q/Z(P) and Qa_/Z(P) are the only invariant 
one-dimensional subspaces of P/Z(P) under ÂQ. Then they are permuted by 
A. Thus, <2«2 = (?. Moreover, since K fixes Q/Z(P), K fixes Q*/Z(P). By Lemma 
7.4, <2a = 5, contrary to our assumption that a does not interchange Q and 5. 
Thus, ÂQ fixes at least three one-dimensional subspaces of P/Z(P). Since 
| P / Z ( P ) | = p2, Âo fixes all the one-dimensional subspaces of P/Z(P)f by a 
simple argument from linear algebra. 

Since 0 G 4 ' and Q* ^ (?, 0 g <40. Hence, \Â'/Â0\ = £ and the auto­
morphism of P/Z(P) induced by 0 has order divisible by p. It follows that 0, 
and therefore i ' t (ix a unique one-dimensional subspace T/Z(P) of P/Z(P). 
Since 4 ' < A, A fixes T/Z(P). By Lemma 7.4, 7̂  = S. 

Clearly, [Ar:Af C\ AQ] = p. Since P/Z(P) has only £ + 1 one-dimensional 
subspaces and A fixes S/Z(P), [A:AQ] = p. This proves (ii) and completes 
the proof of Theorem 7.6. 

LEMMA 7.7 [7, p. 416]. Suppose that T is an Abelian Sylow p-subgroup of a 
finite group K. Then K' C\ Z(K) C\ T = 1. 

LEMMA 7.8. Suppose that S is a Sylow p-subgroup of a finite group K. Assume 
that T and U are subgroups of S enjoying the following properties: 

(a) | r | = p; 
(b) U < K and T £ U; 
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(c) 5 == TU; 
(d) T is weakly closed in S with respect to K; and 
(e) K is generated by some conjugates of T in K. 

Then [ 7 = 1 . 

Proof. The proof of Lemma 7.2 shows that T C Z(S). Hence, S = T X U. 
Let C = CK{U). Since T C C and C < K, (e) yields that C = K. Thus, 
U C Z(X). Therefore, 5 is Abelian. By Lemma 7.7, r H [ / = l . 

Suppose that K/ U has a normal ^-complement. Thus, K' U/ U is a //-group. 
Since K'U/U^K'/(K' n U) £*K', K' is a //-group. Since TK' < K, 
TK' = K, by (e). So T is a Sylow ^-subgroup ot K, and £ 7 = 1 . 

Suppose that K/ U does not have a normal ^-complement. By a theorem of 
Burnside [5, p. 252], a Sylow ^-subgroup of K/ U is not contained in the centre 
of its normalizes Hence, 

S/U£Z(NK(S)/U) and S £ Z(NK(S)). 

Take x Ç ^ x ( 5 ) - CK(S). Since 5 = T X £/ and £7 Ç Z(X), we obtain 
[5, <*)] = [P, <*>] = P, by (a) and (d). Thus, P Ç JE'. By (e), K = K'. 

So u = ur\Kf = l. 
LEMMA 7.9. Suppose that K is a finite group, that S is a Sylow p-subgroup 

of K, and that T is weakly closed in S with respect to K. Suppose that N < K. 
Then TN/N is weakly closed in SN/N with respect to K/N. 

Proof. Suppose that g e K and that (TN)° C SN. Then TQ C SN = NS. 
Since 5 is a Sylow ^-subgroup of NS, there exists k £ N and s £ S such that 
(T*)*' £ 5. Then T°k C 5. By the weak closure of P, Tffk = T C PiV. Hence, 

r* c (riv)*-1 = 7W, and (TW)' = TW. 
PROPOSITION 7.10. The subgroup PCH(Q)/QCH(Q) is a Sylow p-subgroup of 

H/QCH(Q). Moreover, there exists an element g of H such that ghr1 £ CH(Q) 
and P is a Sylow p-subgroup of (P, P°). 

Proof. Let T be a Sylow ^-subgroup of H that contains P. Let Mi = CH(V). 
By Proposition 4.7, ff/Afi ^ SL(2, p). If P 3 = 1, define M2 = Mx. If P 3 ^ 1, 
define M2 = CH (M/N), for M and TV as in Proposition 4.14. Let L = Mx C\ M2. 
By Proposition 4.16, H/M2^SL(2,p) and L^QCH(Q); furthermore, 
L centralizes every factor Qt/Qt-i in an iPcomposition series 

1 = Go C <2i C . . . C Qn = Q 

of Q. By Lemma 4.2, L induces a ^-group of automorphisms on Q. Hence, 

(7.3) L/CH(Q) is a p-group. 

Suppose that p = 2 or p = 3. Then SL(2, £) has a normal ^'-subgroup of 
index p. So | # / i P M i | = p and H'M^Mi is a £'-group. Since P and Ph 

generate H, 

H = HfP and P C\ H' ç P H Mi = <2, if p < 5. 
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Thus, \H/H'Q\ = p. Since Q Q L ç M1 and |iï 'Q| = |iPikfi|, 

(7.4) |#/# '<2| = P and LQ H'Q, if p < 5. 

Moreover, H'MJMi is a £'-group, for i = 1, 2. Hence, H'/(H' C\ Mt) is a 
^'-group, for i = 1,2. Now, 

(H' r\ Mj/iH' n L) ^ (Hf n Mi)/(ir n Mi n jif2) ^ 
(JET r\ M1)M2/M2 C H'M2/M2, 

which is a £>'-group. Thus, 

(7.5) H'/ (Hf H L) a»d H'L/L are p''-groups, if p < 5. 

Suppose that p ^ 5. Then Z(SL(2, £)) has order two, and 

SL(2,p)/Z(SL(2,p)) 

is simple. Let Nt/Mt = Z(H/Mi), for i = 1, 2. Then if/iV, is simple, for 
i = 1, 2. Let X = iVi H iV2. We claim that iVi = iV2 = X. Suppose otherwise. 
Since Ni/K ^ NiN2/N2 < #/iV2, it follows that N i /X is simple and 
H = NXN2. So 

i J / X = N^K X iV2/i£ ^ H/N2 X ff/iVi. 

Now, P r\ Ni is a Sylow ^-subgroup of Nit for i = 1,2, and 

ri£/x = ( r n NJK/K x ( r n N2)K/K. 

Let x G P - Ç. Take x* Ç T C^Nt such that 

Xxx2 = x, modulo i£. 

Since if = (P, PA), we have P $£ iVi. Therefore, x2 g X. Likewise, Xi g i£. 
We now obtain a contradiction. By the structure of SL(2, p)/Z(SL(2, p)), 

there exists y € iVi such that ;y-1Xi;y = Xij, modulo K, for some j 7^ 1 in Zp. 
Then y normalizes (P Pi Ni)K and centralizes (P Pi N2)K/K. Hence, 
y normalizes TK. So there exists z Ç K such that (Py)z = P. Then, modulo K, 

Xl
vz == (xiO2 = x^', x / 2 == x2, and x~V 2 s x^""1 ^ 1. 

Since P y 2 C P, P^z = P , by the weak closure of P . Hence, P contains x, x^2, 
and x~lxyz. Since x - ^ 2 $ i£, x - V 2 £ P - Q. Consequently, 

p = <<2, x - V 2 ) c <2Ari = iVi, 

and PT = (P, P7*) C iVi, which is a contradiction. Thus, Ni = N2 = K, as 
desired. Therefore, 

(7.6) p2 does not divide \H/K\, if p ^ 5. 

Also, since \K/Mi\ = \K/M2\ = 2, |i£/L| is either two or four. By (7.6), p2 

does not divide \H/L\. By (7.4) and (7.5), we have a similar result if p < 5. 
Since P ^ L for any £, 

(7.7) PL/L is a Sylow p-subgroup of H/L, for any p. 
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For every subgroup X of H, let X = XQCH(Q)/QCH(Q). By Lemma 7.9, 
P is weakly closed in T with respect to H. By (7.3), L is a ^-group. By the 
definition of L, L centralizes V. Thus,_P £ LQCH(Q). Since |P/<2| = p, 
| p | = £. Now by (7.7) and Lemma 7.8, L = 1. This proves the first part of 
the proposition. 

Since CT(Q) is a Sylow ^-subgroup of CH(Q), there exists £ G CH(Q) such 
that CV(<2)C = CT(Q)h. Let g = Ar"1. Then g normalizes CT(Q), and 
gA-i = hc-% = h-% s 1 (modulo C*((?)). Let fl* = (T, T9) and i7** = 
(P, P*7). By Lemma 7.2, P is weakly closed in a Sylow ^-subgroup of iJ**. 
To prove the second part of the proposition, it suffices to prove that P is a 
Sylow ^-subgroup of H**. Let K* = QCT(Q) and let L* = L H if*. Since 
P and g normalize CT(Q), K* <\ H*. Since we proved that L = QCH(Q), 
L*/K* is a ^'-group. Therefore, 

(7.8) (K* r\ H**)/Q is a normal p-subgroup of H**/Q 

and (L* H H**)/(K* r\ if**) is a pf-group. 

By (7.7), PK*/K* is a Sylow ^-subgroup of H*/K*. By projecting if** into 
H*/K*, we see that 

(7.9) P(K* H H**)/(K* r\ if**) w a Syfow p-subgroup of H**/(K n if**). 

By (7.8), (7.9), and another application of Lemmas 7.8 and 7.9, 

x* n H** = ç. 
By (7.9), this completes the proof of the proposition. 

THEOREM 7.11. Assume that P 3 ^ 1. Then p = 3. 
Proof. By Theorem 3.7, p is odd. Clearly, for every normal subgroup <2* of H 

contained in Q, P/Q* is weakly closed in some Sylow ^-subgroup of H/Q*. 
Moreover, if Z ^ Q*, then P/Q* has nilpotence class three. Hence, by 
Theorem 7.6, we may assume that v = 2, u = 4, and t — 6. 

For g as in Proposition 7.10, g and A act in the same way on Q by conjuga­
tion. Hence, we may assume that P is a Sylow ^-subgroup of H. 

We will not use the elements i and k introduced in Lemma 7.3. Therefore, 
we will use the letters "i" and "k" for other purposes. 

By Proposition 3.4, [xi, x{\ = xz\ for some i Ç Zp. Since x3 Ç Z(P), the 
group (xi, x5) has nilpotence class two; hence, 

Since Xi was chosen only under the condition that it satisfy Proposition 2.1 (c), 
we may replace Xi by Xi*-1 and then replace Xj by x/ _ 1 , for j = 2, . . . , t + 1. 
Thus, we may assume that 

[xlt x{\ = x3. 

Take i, j , k, m Ç Zp such that 

[xi, x6] = x2*x3
yx/x5

w. 
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T h e n [x2, x-j] — X3 X4 X5 XQ . By Proposition 4.15, 

(7.10) i and m are nonzero. 

Note that Q' = (xA). We obtain the following congruences modulo Q'\ 

x2
 l = x2, x2 

XzXl = x3 , xz
x 

X5*1 = X5[XU X 5 ] _ 1 = X3 _ 1 X5, Xb
X7 = X 5 , 

Xe*1 = x2~
iXz~jx5~

mXe, 

x2x3
lx5 Xe 

X3X5, 

1 0 0 0 "1 m i k 
— i 

0 
1 
0 

-j 
1 

— m 
0 

,e(pc7) = 
0 
0 

1 
0 

0 
1 

0 
1 

0 0 - 1 1 0 0 0 1. 

We consider Q/Q' to be a vector space over Zv with the basis 

{x2Q
f, X&, xzQ', xbQ'}. 

For each g £ H, let 0(g) be the matrix corresponding to the transformation 
of Q/Q' induced by conjugation by g. Then 

B(xi) = 

For each g £ H, let 0i(g) and 02(g) be the upper left hand and lower right 
hand corner submatrices of degree two, respectively. Since (x3, x5) <\ H, 
0i and 02 are homomorphisms. By Propositions 4.7 and 4.16, 61(H) = 62(H) = 
SL(2, p). Denote by I2 and I A the identity matrices of degrees two and four 
over Zp. 

Let N be the subgroup of H consisting of all g G G for which 02 (g) is I2 or 
- 7 2 . Since Ç C N and PÇtN,PC\N = Q. Since P is a Sylow ^-subgroup 
of i / , Q is a Sylow ^-subgroup of N. Therefore, N/Q is a £>'-group. Since 
0 C Ker 0, 

(7.11) 0(iV) is a normal pf-subgroup of 6(H), and 6i(N) is a normal p'-sub­
group of 61(H) (i.e., qfSL(2, £)) . 

Let g = Xi2x7. Then 

* & > - [ - * I-"**]'*<*>- [-2 - I ] ' 
and 

(7.12) W) [_4r 
— 2ira 2m — 2im 

m M 1 — 6ira + 
wz2 "j 
4i2m2J 

Thus, 02(g
2) = - J2. So g2 G iV. By (7.11), 0i(g2) = ± I 2 if £ > 3. If p = 3, 

then SL(2, p) has a normal quaternion subgroup of order eight and index 
three. In this case, 0i(g2) is a 2-element, by (7.11); hence, 61(g) is a 2-element 
and 0i(g2) = 61(g)2 = ±I2. Thus, 0i(g2) = ± J 2 , regardless of £. Conse-
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quently, U2m — U = 0. By (7.10), i ^ 0. Since p is odd, U j& 0. Therefore, 

(7.13) im = 1. 

Now, calculation yields 

0(g) = eipc^x,) 

\ m i k 
— 2i — 1 m — 2/ — 2i2 — 2ife — m — 2j 

0 0 1 1 
0 0 - 2 - 1 

0(g4) = 

"1 0 - 2 ( m 2 - 2jm - 2k) -2(i - m2 - 2k - 2jm) 
0 1 - 2 ( 4 i * + 2m + 4/ - 2i2) -2(Sm - 2i2 + 2ik + 2j) 
0 0 1 0 
0 0 0 1 

Hence, #4 6 N and 0(g4)* = J4. By (7.11), 0(g4) = /4. Therefore, 

0 = i - m2 - 2k - 2jm = 3m - 2i2 + 2iè + 2/. 

By (7.13), this yields 

0 = i - m2 - 2k - 2/7» = ( - m ) (3m - 2i2 + 2ife + 2j) = 
- 3 m 2 + 2i - 2k - 2jm. 

So i — m2 = 2k + 2jm = —3m2 + 2i, which yields i = 2m2 — 2i~2. Thus, 

(7.14) i* = 2. 

We now apply the symmetry between </> and </>-1 (see Lemma 3.3). Let 
yn = (xs-J"1 , for n = 1, 2, . . . , 7. Then 

*(P) = <?i, • • • , :V7>, Ç = <y2> . . . . y e ) , 

and <jrl maps 0(P) onto P. Just as we had [xi, x5] = x3, we have 

bu ydl = [^7-1, X3-1] = [X3-1, X7-1]-1 = xr1 = y*. 

Define [yi,y%\ = yi'y/yf'y™'. The proof of (7.14) applies to give 

(7.15) Ï* = 2. 

However, <x4, x5> = <yi,yi) = Z(4>(P)). Modulo Z(</>(P)), 

X6~^3""w' = yi'y™' = [yi, ye] = [xr1, ^2_1] = [x2, x7]_ 1 = XQ-mxr\ 

Thus, i' = m = i'1. By (7.14) and (7.15), 4 = « / 3 = « ~ 3 = 1 in Zp. 
Thus, p = 3. 

8. A further result. Let Cp denote a cyclic group of order p. 

THEOREM 8.1. Suppose that H is a finite group and that P is a weakly closed 
subgroup of some Sylow subgroup of H with respect to H. Assume that, for some 
he H, 

(P, Ph) = H and [P: P C\ Ph] = p. 
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Let A be a subgroup of Aut P that contains the automorphisms induced by con­
jugation by the elements of NH(P). Suppose that some element of A does not 
fixQ. 

Take Q* C Q maximal such that Q* < H and such that there exists an element 
of A that fixes Q* but not Q. Take a 6 A such that a fixes Q* but not Q. Let n be 
the smallest positive integer such that an fixes Q. Let P = Pi = P/<2* and 
Pi+i = [Pi, P], for i = 1, 2, 3. Then PA = 1. Furthermore: 

(a) Suppose that P_2 = 1. Then \P\ ^ pn. 
(b) Suppose that P2 ^ 1, that P 3 = 1, and that p = 2. Then P is the direct 

product of E(p) and an elementary group, and n = 2. 
(c) Suppose that P2 9e 1, that P% — 1, and that p is odd. Then n is a divisor 

of p, p - 1, or p + 1, and either P ^ E(p) or P ^ E{p) X Cv. In the latter 
case, there exists a Ç A' such that dP fixes Q and a does not fix Q. 

(d) Suppose that P 3 ^ 1. Then p = 3, P ^ £*(3), and n = 2. 

Proof. The proof of (a) is similar to the proof of Theorem 2 (a). The other 
parts of Theorem 8.1 follow from Theorems 7.6 and 7.11 and Corollary 5.14. 

Note that Theorem 8.1 can be applied when H is embedded in a group G 
and A is the group of automorphisms of P induced by a subgroup of NG(P) 
that contains NH(P). 

9. Some examples. In this section, let p be an arbitrary odd prime. We 
will construct groups P and H such that P and H satisfy the conditions of 
§ 5 and P ^ E*(p). If p = 3, P will be a Sylow ^-subgroup of H. 

Let Q be a group of order pb and exponent p isomorphic to E(p) X Cv X Cp. 
Take X2 , X3 , X4, X5, XQ 6 Q such that 

Q = (x2, x&) X (x3, x5) and [x2, x6] = x4 ^ 1. 

Let B be the subgroup of all automorphisms a oi Q such that a is trivial on 
(x3, x5) and on <2/(x3, x5). Then 5 is in one-to-one correspondence with the 
set of all homomorphisms rj of (x2, x6) into (x3, x4); here, rj corresponds to a if 

x* = xax~1, for all x Ç Q. 

Thus, | 5 | = £4 and 5 acts faithfully on Q/Q'. 
Take c £ Zp such that 2c = 1. There exist unique automorphisms «i, a7 of 

<2 such that 

xfl = x2, x2
a7 = x2x4

cx6~
1, 

x6
al = x2X4c-1X6, x6

a7 = x6, 
X 3

a l = X3 , X5 a l = X 3
_ 1 X 5 X 3

a 7 = X3X5 , X 5
a 7 = X5 . 

Let 5 = (au OL-J). Since ai and a7 nx (x3, x5>, 5 normalizes £ . 
Now, for every x G (?, let x^ be the unique element of Q such that (x*)2 = x. 

(Then x* = xc.) For every x, y 6 <2, let x o y = x^yx*. 
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LEMMA 9.1. Under the operation o, Q forms an elementary Abelian group. 

Proof. We first prove that Q is an Abelian group; this result is well known 
[1, § VII.5, Example 2, p. 128]. Let x,y € Q. By Lemma 2.5, 

[x%y]2 = [x,y] = [x,y*]2. 

Thus, [x, y]* = [x^,y] = [x, 3^]. Now, 

xo}? = x^yx* = xy[y, x*] = xy[y, x]* 

= yx[xt y][y, x]1 = yx[Xj y]* = y o x. 
For s G Ç , 

x o f y o z ) = x(y o z)[y o z,x]* = ^(310 s)[y2, x]^ = xyz[z, y]^[y, xf2[z, x]% 

and 

(x oy) o z = (x o y)s[2i, x o ;y]* = xj/f ,̂ x]^[s, x]*[z, y]K 

Thus, Q is an Abelian group. Since xi o x = x*+1 for all i ^ 1, every element 
of Q has order p under o. 

LEMMA 9.2. The group S is isomorphic to SL(2, p), and S C\ B = 1. Further­
more, SB acts faithfully on Q/Q'. 

Proof. We may consider S to be a group of automorphisms of Q under o. 
Now, 

X 2 O X6 = X 2X 6[X 6 , X 2 ] ^ = X2X4C _ 1X6 = X 6
a i 

and 
X2 O X 6

_ 1 = X 2 X 6
- 1 = [ X 6

_ 1 , X 2 ]* = X2X4
CX6~1 = X 2

a 7 . 

Consider Q (under o) to be a vector space over Zp with basis {x2, x6, x3, x5, x4}. 
Then a\ and at are represented by the matrices 

1 0 0 0 0~ "1 - 1 0 0 0 
1 1 0 0 0 0 1 0 0 0 
0 0 1 0 0 and 0 0 1 1 0 
0 0 - 1 1 0 0 0 0 1 0 
0 0 0 0 1_ 0 0 0 0 1 

respectively. Let D be the matrix 

1 0" 
.0 - 1 . 

Then S is a subgroup of the group of all matrices of the form 

~M 0 (T 
0 D~lMD 0 

.0 0 1_ 

for M 6 SL(2, p). Clearly, the latter group is isomorphic to SL(2, p). More­
over, it is generated by the matrices for ax and ai (see the proof of Proposition 

https://doi.org/10.4153/CJM-1971-106-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-106-0


F I N I T E ^ - G R O U P S 1021 

4.7). Hence, S ~SL(2,p). In addition, S H B = 1 because no non-identity 
element of 5 is trivial on #3 and X5. Since B acts faithfully on Q/Q', SB acts 
faithfully on Q/Q'. This completes the proof of Lemma 9.2. 

We will have no further need for the operation o on Q. Define Xi, X7 G Aut Q 
by 

x2
Xl = x2, 

XzXl = x 3 , 

x5' 
xi = X3 X5, 

XQXI = X2XZ~CX4C~1X5XQ1 

x2
Xl = X2Xf-1Xicx5-

cXfT1, 

XzXl = x 3 x 5 , 

X5 — X5, 

XQXI = X6 . 

Then Xiai-1, Xiai~l Ç ̂ , so Xi, X7 Ç 5 5 . Note that Xip = X7P = 1, since p > 2. 
Let X be the semi-direct product of Q by 5 5 . Let P = (Q, Xi) and H = (P, X7). 
Then calculations yield: 

LEMMA 9.3. There is a unique isomorphism <f> of P onto (Q, X7) such that 
(j)(xi) = xi+1,for i = 1, 2, . . . , 6. 

Note that P has nilpotence class three. The proof of Lemma 5.9 can be 
adapted to show that P is isomorphic to E*(p). However, this will follow 
from Lemmas 5.9 and 9.5. 

LEMMA 9.4. We have X1X7X1 = X7X1X7. If p = 3, then (xix^1)2 is an element 
of order two in the centre of (xi, #7). 

Proof. Consider Q/Q' to be a vector space over Lip with basis x2Q\ XQQ', 
XzQ', XbQ'- Then xi and X7 induce automorphisms of Q/Q/ represented by the 
matrices 

0 0 

0 0 
0 0 

— c 
1 

- 1 

and 

-1 
1 
0 
0 

-1 
0 
1 
0 

respectively. Hence, X1X7X1 and X7XiX7 are both represented by the matrix 

-1 0 
0 - 1 - c 
0 0 
0 - 1 

-1 - c 
0 
1 
0 

Thus, (x!X7Xi) (X7X1X7)""1 is an element of SB that acts trivially on Q/Q'. 
By Lemma 9.2, X1X7X1 = X7X1X7. 

Suppose that p = 3. Then (xiX7-1)2 is represented by the diagonal matrix 
with every entry being — 1 . Apply Lemma 9.2 to the elements (X1X7"1)4 a n d 
[(xix7

-1)2, y] for every y G SB. 

LEMMA 9.5. For all p, xi is conjugate to X7. 
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Proof» By Lemma 9.4, 

Xi = X^lXi~l(X\X1Xi) = X7~
1Xi~1X7X±X1 = X7XlXl. 

LEMMA 9.6. Suppose that p = 3. Then (xi, x7) = SL(2, 3), and P is a Sylow 
p-subgroup of H. 

Proof. Let L = (xh x7). Since LB/B = (ah a7, B)/B = SB/B ^ S, it 
follows that L has a homomorphic image isomorphic to SL(2, 3). Let 
z = (xr_1X7)2, x = X\Z, and y = xflz. Then, by Lemma 9.4, 

Xi = x 4 , X7 = y2, xy = X\Xi~lz2 = XiX7_1. 

So (x, y) = L and x3 = y3 = (xy)2 = z ^ 1. By [2, pp. 68-69], L is a homo­
morphic image of SL(2,3). Thus, L ^ SL(2, 3). Since H = LQ and 
1^7(?l = £, P is a Sylow ^-subgroup of H. 
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