BuLL. AUSTRAL. MATH. Soc. ' 47006, 34G10
VoL. 63 (2001) [123-131]

NONUNIQUENESS AND WELLPOSEDNESS OF
ABSTRACT CAUCHY PROBLEMS IN A FRECHET SPACE

PEER CHRISTIAN KUNSTMANN

Suppose that A is a closed linear operator in a Fréchet space X. We show that there
always is a maximal subspace Z containing all z € X for which the abstract Cauchy
problem has a mild solution, which is a Fréchet space for a stronger topology. The
space Z is isomorphic to a quotient of a Fréchet space F, and the part Az of AinZ
is similar to the quotient of a closed linear operator B on F for which the abstract
Cauchy problem is well-posed. If mild solutions of the Cauchy problem for A in X
are unique it is not necessary to pass to a quotient, and we reobtain a result due to

R. deLaubenfels.
Moreover, we obtain a continuous selection operator for mild solutions of the

inhomogeneous equation.

1. INTRODUCTION

Let X be a Fréchet space and let A be a closed linear operator in X. We shall be
concerned with solutions of abstract Cauchy problems

)’ "(0) =z

(1) u/(t) = Au(?), (t>
20), u0)=gz,

0
(2) u'(t) = Au(t) + f(t), (=0
where z € X and the continuous function f : [0,00) = X are given.

It is well-known that, if A is the generator of a Cy-semigroup T’ = (T3),5 in X, then
one gets mild solutions of (1) and (2) by u(t) =Tiz,t >0, and u(t) =Tz + T * f(t) =
Tz + [ Ti-sf(s)ds, t > 0. It is also well-known that A generates a Cy-semigroup if
and only if (1) is well-posed, that is, there exists a unique mild solution of (1) for any
z € X. In the general case, however, there might be no nontrivial solution to (1), and, if
solutions exist, they need not be unique.

Nevertheless, there are — under different additional assumptions — some results on
“automatic well-posedness”. If X is a Banach space, Kantorowitz {6] has constructed a
maximal subspace H of X (the Hille-Yosida space) which is a Banach space for a stronger
topology (H <> X) and on which the part Az of A in H generates a Co-semigroup of linear
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contractions. Recall that the part Ag of Ain H is given by z € D(Ag) and Agz =y if
and only if z € D(A)N H, y € H and Az = y. He assumed that (0,00) C p(A) where
p(A) denotes the resolvent set of A. Recall that if we assume in addition to (0, 00) C p(A)
the well-known condition of Lyubich [8] on the growth of the resolvent R(), A) as A — oo,
then solutions of (1) are unique in X.

Assuming the uniqueness of solutions of (1) in X, deLaubenfels [3, 2, 4] has con-
structed a maximal subspace Z — X (the solution space of A) on which the part Az
of A in Z generates a Cp-semigroup. In general this space is a Fréchet space even if the
original space X is a Banach space. Using the semigroup, one gets by the variation of
constants formula unique (mild) solutions of (2) for f € C ([O, ), Z), z€Z.

Recently, Herzog and Lemmert [5] used what they called nonlinear fundamental
systems for continuous linear operators A in a Fréchet space X under the assumption
that (1) is solvable on [0, T] for any z € X, and they used them to get solutions of (2)
where f € C ([O,T],X ), z € X. A nonlinear fundamental system can be regarded as a
substitute for a strongly continuous semigroup generated by A since solutions of (2) are
obtained in [5] by a variations of constants formula.

In this paper we consider solution spaces and solutions of (2) for arbitrary closed
linear operators A. Our results are a “non-uniqueness analogue” to the construction of the
solution space Z in [3], and they shed some light on the role the uniqueness assumption
plays in the construction.

It is easy to see that, even if an operator A is well-posed in X and Y is an A-invariant
subspace of X, one might lose existence of mild solutions of the abstract Cauchy problem
for the part Ay of Ain Y, and one might lose uniqueness of mild solutions for the quotient
operator [A]x;y in the quotient X /Y, see Section 2.

Our main result shows that this is as bad as it can get in the general situation: a
linear operator A for which solutions of (1) are not unique does not behave as badly as one
might think, there always is a subspace Z of X which is a Fréchet space for a stronger
topology and which is a quotient space of a Fréchet space on which a corresponding
operator is well-posed. Precisely we shall show the following result.

THEOREM 1. Let A be a closed linear operator in a Fréchet space X. Then there
is a subspace Z of X which is a Fréchet space for a stronger topology such that Z is a
quotient of a Fréchet space F and the part Az of A in Z is the quotient of a closed linear
operator B in F for which the abstract Cauchy problem is well-posed. The subspace Z
is maximal in the sense that it contains all z € X for which there is mild solution of (1).

Moreover, there is a continuous function T : Z x C([O, ©0),Z ) -C ([0, 00), Z) such
that T'(z, f) is a mild solution of (2) forallz € Z, f € C([O, 0), Z).

The last statement allows us to use fixed point arguments to treat semilinear equa-
tions. For a situation were this has been done for a compact semilinearity we refer to

(5]-
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The paper is organised as follows. In Section 2 we discuss well-posedness for the
abstract Cauchy problem in subspaces and quotient spaces, and in Section 3 we prove
Theorem 1. In Section 4 we illustrate our result by considering the heat equation in
spaces of entire functions.

The author thanks G. Herzog and R. Lemmert for the inspiration for this work and
for a copy of their preprint [5].

2. WELL-POSEDNESS IN SUBSPACES AND QUOTIENT SPACES

Suppose that A is a closed linear operator in a Fréchet space X which generates a
Cy-semigroup of continuous linear operators (Tt)tzo' Let Y be a closed linear subspace
of X.

It is easy to see and well-known that if Y is invariant under each 7T, then the
restricted operators (T;|y) and the quotient operators ([Td x/y) are again Cy-semigroups
in Y and X/Y, respectively, with generators Ay (part of AinY’) and [A]x/y, respectively.
Here [A]x/y means the quotient of A in X/Y, that is, [A]x/y := {([z], [y]) z,y) € A}.

If X is Banach space then Y is invariant under each T} if and only if Y is invariant
under the resolvents (A — A)™! of A for X large. This is because, for ) large, (A — A)~!
is obtained by a Laplace transform from the semigroup, and, conversely, the semigroup
operators T; may be obtained as a strong limit of the sequence ((n/ t)*(n/t — A)"'). The
equivalence no longer holds in a general Fréchet space since the resolvent set p(A) of A
may be empty.

" If the subspace Y is A-invariant, that is, Ay € Y for any y € D(A)NY, then the
operator [A]x/y is still a closed linear operator in X/Y. If Y is invariant under the
semigroup then Y is A-invariant, hence A-invariance is a weaker assumption. If A is a
bounded operator and X is a Banach space then A-invariance implies invariance under
the semigroup generated by A. In general this is not the case as the following example
shows.

ExaMPLE 2. Let X denote the space of all bounded uniformly continuous scalar func-
tions f on [0, 00) that satisfy f(0) = 0. Let A := —d/dz with D(A) := {f € X : f'€ X}.
The operator A generates the Co-semigroup (Tt) given by

T.f(z) = f(z—1t) if z2>t,=0 otherwise .

Let Y be the linear span of the function z — sinz. Since D(A)NY = {0}, the subspace
Y is A-invariant. But for any f € Y \ {0} and any ¢ > O the function T:f does not
belong to Y. Hence the Cauchy problem for Ay in Y has no nontrivial solution, and for
any f € Y'\ {0}, the function ¢t — T;f + Y is a nontrivial mild solution of v’ = [A]x,yu,
u(0) =0, in X/Y.
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3. THE MAXIMAL SOLUTION SPACE

We assume that A is a closed linear operator in a Fréchet space X with domain
D(A). We consider mild solutions of (1) and (2), that is, continuous solutions of

3) u(t)=A(/otu(s)ds)+:c >0,
@) ﬁ(t):A(/otu(s)ds)+/otf(s)ds+z t > 0).

From now on we shall denote by 1 * u the function ¢ +— f§ u(s) ds on [0,00) where u is a
given function on [0, co).
Let E denote the space C ([0, ), X ) Then E is a Fréchet space for the family
of seminorms pea(f) = ZI[:J,P;] Gn ( f(s)), k,n € N, where (gn), N is a defining family of
s

seminorms for the topology of X. The space
F:= {u e E:Vvt2>0, 1xu(t) € D(A), u(t) = A(l * u(t)) + u(O)}

is a closed linear subspace of E. Indeed, u, — u in E for a sequence (u,) in F means
gm(tn — u) — 0 uniformly on compact intervals for any m € N. This implies 1 * u,(t) —
1xu(t) and u,(0) — »(0). On the other hand, it also gives A(l *u,,(t)) = up(t) —u,(0) =
u(t) — u(0) which implies u € F by the closedness of A. Clearly, F is the space of all
continuous solutions of (3).

For each t > 0, we define the linear continuous map &®; : F — X, u — u(t), and let
Z denote the range ®o(F) of ;. We equip Z with the topology of the quotient space
F/ker ®, induced by the factorisation &, : F/ker ®; — Z of ®. Then Z is a Fréchet
space and ® : F — Z is continuous and onto. By [1, Chapter 4, Proposition 12], there
exists a continuous right inverse @ : Z — F, that is, Q satisfies ;0 @ = Idz. Of course,
if ®p is injective (the case of uniqueness) then F is isomorphic to Z and Q = &' is
linear and continuous. If &, is not injective, @ can be chosen to be linear if and only
if ker ®, is a complemented subspace of F, that is, if and only if there is a continuous
linear projection p : F' — ker &, the relation being Idz —p = Q o ®,. Hence in general
Q@ is not linear. In any case, however, @ can be interpreted as a selection of solutions
to (1) which depend continuously (in the topology of Z) on the initial value z. The
following proposition collects the properties of this construction and proves the first part
of Theorem 1.

ProrPOSITION 3.
(i) Foreacht> 0 themap ®,: F — Z is linear and continuous;
(ii) Foreacht> 0themapT;: F— F, uw u(- +t) is linear and continuous;
(iii) The family (T),5, defines a Cy-semigroup in F' whose generator B is given
by Bu = u' on D(B) := {u eC? ([0, 00) ,X) tu,u’ € F}; here u' denotes
the derivative taken pointwise in X.
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(iv) For eacht > 0 we have & B C Az®,, the space ker ®, is B-invariant and
Az = ®0|Blp/ker 5,20
ProoF: (i) follows from (ii) by ®; = ®,T;, so we start with the proof of (ii). If
u € F and t > 0 then, for any s > 0, we have

u(s+1) —u(t) = A(l*u(s+1) - 1+ u(t)) + u(0) — u(0)

= A(/:-H u(r) dr)

= A1+ u(- +1))(s)

which implies Tyu € F. The continuity of T; is clear since p(Tiu) < Pma(u) for any
m2k+t,neN,andue F.

Any u € F is uniformly continuous on compact intervals which implies Tyu — u
in F as t — 0, that is, (T;) is a strongly continuous semigroup in F. Let B denote its
generator. If u € D(B) and Bu = v then (Tzu — u)/t converges to v in F as t — 0 hence
also pointwise in X. This gives v = «’. On the other hand, if u € Cl([O,oo),X) with
u,u’ € F then the uniform continuity of u' on compact intervals gives (T;u — u)/t = v’
in f as t — 0. So (iii) is proved.

(iv) Let t > 0 and » € D(B). Then, for s > 0,

1 54t u(T)

~(utt +5) - ult)) = A([ —s—dr).
The integral on the right hand side tends to u(t) in X as s — 0 and, since u is differentiable
in ¢, the left hand side tends to v'(t) in X as s — 0.

By the closedness of A we get u(t) € D(A) and u'(t) = Au(t), that is, &, Bu = Ad,u,
which means $;B C Az®, since, by (i), ®:u,®.Bu € Z. In particular we have B C
Azq’o.

If u € D(B) Nker ®y, that is, u, v’ € F and u(0) =0, then

u'(0) = (Bu)(0) = ®oBu = Az$ou = Au(0) =0,

that is, Bu = u' € ker ®,. Hence ker ®; is B-invariant.
Recall the definition of the quotient operator and note that [B] := [B], /kerdo =

{([u], [u’]) tu € D(B)}. Now let u € D(B). Then, by the above, $[B]fu] = ®Bu =

Az®ou. Hence &[B] C Az®,, which implies $;[B]®;' C Az. To prove the reverse
inclusion let z € D(Az), that is, z € D(A)NZ and Az € Z. Choose v € F such that
v(0) = Az. Let u := 1* v+ z. Then u(0) = z and for any ¢ > 0 we have by the choice
of u:

Y (t) = v(t) = A(1*v(t)) + Az = A(1 = v(t) + 7) = Au(2).
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Hence u is a classical (in particular, a mild) solution for the initial value z, that is,
[u] = ®5'z. By the arguments used in the proof of (ii) we have u € D(B), which implies
ze D(@o[B]ZI;g 1), and the proof of (iv) is complete. g
The remaining part of Theorem 1 is proved in the following
PROPOSITION 4. There is a continuous function T : Z x C([0,00),2) —
C([O, o0) ,Z) such that T(z, f) is a solution of (4) forallz € Z, f € C([O, o), Z).

PROOF: It is well-known that the map, S : (u,g) = T(yu+ T * g is a continuous
function F x C([0,00), F) — C([0,00) , F) such that S(u, g) is a solution of

(5) v(t) = B(1*v)(@t)+ (1*g)t)+u (¢t =0).

Define T by T(z, f) := $S5(Qz,Q o f). By the continuity of Q, S and &, the function
T is continuous from Z xC ([0, o), Z) to C([O, 00), Z). By applying ®, to (5) and using
Proposition 3 (iv), we see that T'(z, f) is a continuous solution of (4). 0

REMARK 5. (i) The solution T'(0, f) in the proof of Proposition 4 is given by
t
u(t) = @ [ T.Q(f(s)) ds

= [‘e.(Q(f(5))) @s
- [(a)e-ne

The last expression appeared in [5] for continuous operators A in a Fréchet space X for
which Z = X. It justifies the term nonlinear fundamental system used by G. Herzog and
R. Lemmert for the (in general nonlinear) selection operator Q. Notice that in [5] any
mild solution is a classical solution due to the continuity of A.

(i1) Solutions of (1) are unique if and only if ®y is injective. In this case, g : F — Z
is an isomorphism, @ = &5 and U, := $,T;®;! = &, o Q defines, by similarity, a C-
semigroup (U;),, in Z whose generator can be shown to be the part Az of A in Z given
by Azz = Az on D(Az) = {z € D(ANZ : Az € Z}. This result is due to deLaubenfels
[3, 4]. The arguments used in the construction of Z and the semigroup generated by the
part of A in Z are similar to ours but are carried out directly in Z rather than in F.

(iii) Notice that the operators Q; := &, o @ are in general nonlinear, and it is not
clear if @ can be chosen in such a way that Q; 0 @; = Q.4 for all s, > 0, in which case
(Qt);>o would be a strongly continuous semigroup of continuous nonlinear operators in
the Fréchet space Z.

It will in general be impossible to construct the solution space Z for a given operator
A. The following corollary is easier to apply since it only requires finding sufficiently many
initial values for which (1) has a (mild) solution.
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COROLLARY 6. Let W — X be an ultrabornological topological vector space
such that (1) has a mild solution for any = € W in the sense of (3). Then (2) has a mild
solution for any f € C ([0, 00), W) in the sense of (4).

Proor: We have W C Z, and the inclusion is closed. By the closed graph theorem
[7, p.57, (2)], and [7, p.55, (4)], we get W — Z. Hence C ([0, 00) ,W) - C([O, 00), Z),
and Proposition 4 gives the assertion. 0

4. THE HEAT EQUATION IN SPACES OF ENTIRE FUNCTIONS

In this section we consider the one-dimensional heat equation
(6) Y =Um, t20,2€R, u(0,7)=f(z), z€R

in spaces of entire functions. For simplicity we only consider even functions
(7) f@) =32 2 cec
' =41 . '

By the Cauchy-Hadamard formula, (7) defines an entire function if and only if the se-
quence (ci) satisfies

(8) SUp ——— 'k'<oo h>0.

k>0 (2Kk)!
The space of all these functions is clearly a Fréchet space which we denote by E. More
generally, we consider function spaces E, C E where w : [0,00) — [0,00) is a non-
decreasing continuous function satisfying

@) w@r)=0(w() (r— o),
() v7F=0(w() (r— o),
(i) ¢:t > w(e?) is convex.

We denote by ¢* the convex conjugated function ¢*(s) := sup (st - (t)) and define E,,
to be the space of all functions f of the form (7) such that (ck) € A, where

A, = {(Ck) :Vm € N, gum(ce) := sup |cxle™™ */m < oo}.
k

Observe that E, = E for w(r) = /7 by Stirling’s formula and (8), and that (ii) implies
that E, C E. Clearly A, is a Fréchet space for the family of norms (gu,m),,cn and we
consider the topology on E, induced by the linear bijection f ~ (cx).
Then a mild solution to the heat equation in E,, corresponds to a continuous function
= (gx) : [0,00) — A, satisfying the infinite system

) =gen(t), t=0;  g(0) =c.
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By induction we see that gy = gt(,k) for all k € Np. Hence a solution corresponds to an
element of the space
E = {g € C*[0,00): Ym,n €N, p}.. (g):= sup sup lg(")(t)le""“"("/’“) < oo}.
0<t<n keNo
The family of seminorms (pz’m’,,)mn turns £ into a Fréchet space. We also define the

space &, of all functions g € C®(R) such that p,m(9) < 0o where p, mn is defined as

P} ma With sup replaced by sup. Then solutions of the heat equation in E,, are unique
o 0<t<n itln

if and only if g € £ and g*)(0) = 0 for all k € Ny imply g = 0, that is, if and only if £+
is quasi-analytic, which is known to be the case if and only if w satisfies

® w(r)
(9) A 7 dr = oo.
(This is a version of the Denjoy-Carleman Theorem [9, Theorem 19.11}: letting M, =
exp(mw‘(k/m)) we obtain by ¢ = ¢** that log g(z) ~ mw(z); see also [10].) Hence we
concentrate on the case [{°w(r)r"2dr < co. In this case the heat equation has a mild
solution for all initial values f € E,, if and only if the map § : £ — A,,, g+ (g(")(O))
is surjective. Since it is easy to see that §} is surjective if and only if §, : &, — A, is
surjective we have by [10, Theorem 3.10] that this is the case if and only if

© wlyr
(10) /o i-i‘_’—errscw(yHC, y>0.

This condition holds for w(r) = r%, 1/2 € a < 1 (actually also for 0 < a < 1/2 but (ii)
requires @ > 1/2) whereas it does not hold for w(r) = r(logr) ™ (see [10, Example 1.8}).

Thus we have the following: if (10) holds then the solution space is E,; if (10)
does not hold then the solution space is imd} # E,,. In either case the solution space is
isomorphic to the quotient space £} /ker 6% If h : [0, 00) — imd? is a continuous function
then there exists a mild solution u : [0, c0) — E,, of the equation u; = uz. +h(t, z),t > 0,

u(0) = 0.
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