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Abstract. This paper studies various aspects of inverse limits of locally expanding affine
linear maps on flat branched manifolds, which I call flat Wieler solenoids. Among the
aspects studied are different types of cohomologies, the rates of mixing given by the Ruelle
spectrum of the hyperbolic map acting on this space, and solutions of the cohomological
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1. Introduction and statement of results
In his book on thermodynamic formalism [Rue04], Ruelle introduced the concept of Smale
spaces, which intended to axiomatically generalize the concept of a smooth hyperbolic
map to the setting of compact metric spaces. This general framework was a unified theory
under which many types of chaotic systems could be included. Some of the systems
included under this umbrella are Anosov systems, basic sets of Axiom A systems, mixing
shifts of finite type, hyperbolic toral automorphisms, etc. One of the many features shared
by these systems is the existence of stable and unstable sets, generalizing the concept
of stable and unstable manifolds found in some smooth systems. Later, Wieler [Wie14]
characterized Smale spaces with zero-dimensional stable sets as inverse limits satisfying
certain conditions.

This paper studies various aspects of inverse limits of locally expanding affine linear
maps on flat branched manifolds, which I call flat Wieler solenoids since they are a
subclass of the types of Smale spaces classified by Wieler. They are spaces which are
in a sense of intermediate type: on one extreme, Anosov maps are defined on smooth
manifolds whereas mixing subshifts of finite type are defined on totally disconnected sets.
Flat Wieler solenoids lie somewhere between these two extremes and it is this intermediate
position that makes them particularly interesting. Although this is a subclass of Wieler’s
more general classification, it is a class with a lot of rich examples. In particular, it includes

https://doi.org/10.1017/etds.2024.41 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0
http://dx.doi.org/10.1017/etds.2024.41
https://orcid.org/0000-0001-7818-5103
mailto:rodrigo@trevino.cat
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2024.41&domain=pdf
https://doi.org/10.1017/etds.2024.41


2 R. Treviño

the tiling spaces of self-similar tilings, or tilings built using a substitution rule. They are
also related to primitive substitution systems in symbolic dynamics.

Let me be more precise (all the following terms are defined in §2): let � be a flat
branched manifold of dimension d > 0 and γ : �→ � be a locally expanding affine linear
map. This means that γ has constant derivative Dγ ∈ GL(d , R) outside the branch points
of �, with smallest eigenvalue λ0 satisfying |λ0| > 1. The inverse limit of the pair (�, γ ) is

�γ := {(z0, z1, z2, . . .) ∈ �∞ : zi = γ (zi+1) for all i ≥ 0}.
This is a flat Wieler solenoid. It has a local product structure of the form Bε × C, where Bε

is the ε-ball of dimension d and C is a Cantor set. It becomes a Smale space when paired
with the ‘hyperbolic’ map � : �γ → �γ defined by applying γ to every coordinate of
z ∈ �γ . Under this map, the Cantor sets in the local structure become stable sets and
the Euclidean components become the unstable sets. Under suitable conditions, �γ is a
foliated space with each leaf dense in �γ and homeomorphic to R

d .
Although �γ is not a manifold, it still has a rich topological and geometric structure.

First, the Čech cohomology can be computed as the direct limit of the cohomologies
of � under the induced map γ ∗. Another way to recover this topological information,
à la de Rham, is to consider the set of functions with the highest possible regularity
on �, consider differential forms with coefficients in this space of functions, and then
compute the cohomology of this complex of forms defined by the natural leafwise de
Rham differential operator [KP06]. The space of functions which serves this role are the
leafwise C∞, transversally locally constant functions, denoted by C∞t lc(�). These functions
have the highest regularity in the smooth direction (C∞) as well as the highest regularity
in the transverse, totally disconnected direction (locally constant).

One of the motivations behind the paper is a lack of good spaces of functions on �γ of
intermediate regularity. The usual tricks afforded by Sobolev spaces on smooth manifolds
are not immediately available in this setting since it is not clear how they can afford an
accounting of the regularity of a function in the totally disconnected direction. I propose
that looking at the Hölder regularity in the totally disconnected direction can get us started
in working with spaces of functions with intermediate regularity. Unlike Euclidean spaces,
the space of α-Hölder functions on a Cantor set is non-trivial for all α > 0 and thus
α-Hölder functions do supplant the notion of regularity in this setting.

To get a grasp on a good space of smooth functions on �, in §2.1, I define the set Sr
α of

functions on � which are roughly described as functions which are Cr in the leaf direction
and α-Hölder in the transverse direction. This is how one can handle different degrees of
regularity in the smooth and non-smooth directions of the space �. It will be shown that
Sr

α is, in a sense, dense in the space Cr
α of leafwise Cr functions which are α-Hölder in the

transverse direction up to r derivatives.
The concept of α-Hölder functions implicitly makes reference to a metric on � and

so a function which is α-Hölder in one metric may be α′-Hölder in another metric for
some α′ �= α. In these types of spaces, there is a natural metric in reference to which all
statements will be made. One of the properties of this metric is that, for any leafwise
first-order differential operator ∂ and f ∈ Sr

α , the derivative satisfies ∂f ∈ Sr−1
α+1. In

other words, leafwise differentiation reduces leafwise regularity, but increases transverse
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On transversal Hölder regularity for flat Wieler solenoids 3

regularity. It seems to me like this has gone unnoticed, and there is much to gain from this
observation.

Let H ∗r ,α be the cohomology of the complex of leafwise smooth forms with coefficients
in Sr

α . The first result gives a lower bound on the regularity of functions in this complex,
above which the usual real cohomology of � can be recovered.

THEOREM 1.1. Let � be a flat Wieler solenoid and H ∗r ,α(�) the cohomology of tangential
forms on � with coefficients in Sr

α(�). If r ∈ N and α > 1, then

H ∗r ,α(�) ∼= Ȟ ∗(�; R).

This theorem should remind one of de Rham regularization. Indeed, part of the proof
uses de Rham regularization (to find bounds for r). However, more needs to be done
to ensure that α > 1 guarantees that the cohomology is finite dimensional. The first
immediate application of this theorem is for the speed of ergodicity of functions in Sr

α for
r ∈ N and α > 1. This essentially follows from the arguments in [ST18] and it is discussed
in §3.1. It improves previous results on deviations of ergodic integrals in that it increases
the set of functions for which the deviation results hold.

As mentioned above, there is a self-homeomorphism � : �γ → �γ which makes a flat
Wieler solenoid a Smale space. This map preserves an absolutely continuous probability
measure μ and is topologically mixing [AP98, Proposition 3.1]. The second application
of the careful study of transverse Hölder regularity is to the speed of mixing of the map
� : �→ �. To do this, the notion of the Ruelle spectrum has to be defined.

Definition 1.2. Let � : �→ � be a map preserving a probability measure μ and F a
space of bounded functions on �. Let I be a finite or countable set, 
 = {λi}i∈I a set of
complex numbers with |λi | ∈ (0, 1] such that for any ε > 0, there are only finitely many i
such that |λi | > ε, and let {Ni}i∈I be non-negative integers. Then � has Ruelle spectrum

 with Jordan block dimension {Ni} on F if, for any f , g ∈ F and ε > 0, there is an
asymptotic expansion∫

�

f · g ◦�n dμ =
∑
|λi |≥ε

∑
j≤Ni

λn
i n

j ci,j (f , g)+ o(εn),

where ci,j (f , g) are non-zero bilinear functions of f and g of finite rank.

Note that these asymptotics give precise information on the rates of mixing. Moreover,
if f ∈ F is an eigenfunction for � with eigenvalue ν and the essential spectrum for �∗
is reduced to {0}, then ν ∈ 
. Thus, the search for the Ruelle spectrum reduces to the
search of generalized eigenfunctions for the pullback operator defined by �, called the
transfer operator L = �∗, on a good space of functions F . To find a good F , the use of
the so-called anisotropic Banach spaces will be employed.

Computing the Ruelle spectra of systems has become fashionable in the last half-decade,
especially through the use of anisotropic Banach spaces. In [FGL19], using transfer
operator techniques and anisotropic Banach spaces, the authors noticed that the Ruelle
spectrum for linear pseudo-Anosov maps on Riemann surfaces is composed entirely
from cohomological information. Using different techniques, this was soon reproved in
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4 R. Treviño

[For22a], and that point of view was extended to the case of nonlinear pseudo-Anosov
actions on surfaces [For22b]. Those works were followed by [BKL22] and the recent
PhD dissertation of D. Galli—both using transfer operators and anisotropic Banach
spaces—where the focus has been to extract resonances from the cohomology spectrum
in a larger class of nonlinear systems. They concluded that the Ruelle spectrum contains
cohomological information, but is not necessarily made up exclusively of cohomological
information. The results here are of that type.

I will define anisotropic Banach spaces Br ,α
m as the completion of the space of tangential

m-forms with coefficients in Sr
α with respect to an anisotropic norm, and then study the

spectrum of the transfer operator on these spaces. The spaces of functions for which part
of the Ruelle spectrum can be identified will be B∞,α

0 =⋂
r>0 Br ,α

0 for α large enough.
Let htop be the topological entropy of γ : �→ � and χ− the smallest Lyapunov

exponent of γ . Let σ− be the set of eigenvalues ν of �−1∗ : Ȟ d(�; R)→ Ȟ d(�; R)

which satisfy log |ν| < χ− − htop. Note that when d = 1, this is the set of all contracting
eigenvalues.

THEOREM 1.3. Let � : �→ � be the topologically mixing map on the solenoid which
preserves the absolutely continuous probability measure μ. For α > htop/χ− and r ∈ N,
the following hold.
(i) If d = 1, then the set of eigenvalues for L = �−1∗ acting on Br ,α

0 contains σ− \
{e−htop}. In addition, if ν is an eigenvalue in Br ,α

0 and k < α − (htop/χ−), then
e−khtopν is an eigenvalue in Br+k,α−k

0 . It follows that if F :=⋂
α>0,r>0 Sr

α , then the
Ruelle spectrum for functions in F contains the set of numbers of the form e−khtopν

with ν ∈ σ− \ {e−htop} and k ∈ N;
(ii) If d = 2, then the set of eigenvalues for L = �−1∗ acting on Br ,α

0 contains σ− \
{e−htop}. If S∞α :=⋂

r>0 Sr
α , then the Ruelle spectrum for functions in S∞α contains

the set σ− \ {e−htop}.

Remark 1.4. Some remarks.
(i) Since the tiling spaces of self-similar tilings are flat Wieler solenoids [AP98] of this

type, Theorem 1.3 gives the rate if mixing of the substitution rule on these spaces.
This can be interpreted as the rates of decay of correlations of the different scales
of the tiling.

(ii) Let me connect the one-dimensional case with the Pisot conjecture. The hypotheses
of the homological Pisot conjecture assert that σ−1 \ {e−htop} = ∅ (see the survey
[ABB+15]). Thus, under the hypothesis of the homological Pisot conjecture, I find
no obstruction to having super exponential decay of correlations, which is a feature
of algebraic systems. Thus, showing that σ− \ {e−htop} is the entire spectrum would
be very valuable.

(iii) Examples of two-dimensional solenoids for which σ−1 \ {e−htop} �= ∅ include the
tiling spaces of self-similar tilings which are weakly mixing under the translation
action along leaves, such as the Godrèche–Lançon–Billard tiling and one of
Danzer’s sevenfold tilings. See [BG13, §6.5] for more details.
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On transversal Hölder regularity for flat Wieler solenoids 5

Finally, another application of the study of transverse Hölder regularity in these spaces
is to the solution of the cohomological equation in the setting of primitive substitution
subshifts. Let A be a finite set and let � be a primitive substitution rule on A (all of
these terms are defined in §5). Let σ : X� → X� be the minimal subshift defined by
this substitution rule. Let Hα(X�) be the space of α-Hölder functions on X� (this is
with respect to some natural ultrametric; the following results are stated with respect to
a specific, natural ultrametric). Let H 0

α (X�) be the quotient of Hα(X�) with respect to the
equivalence relation f ∼ g if there exists a u ∈ Hα−2(X�) such that f − g = u ◦ σ − u.
This is the α-Hölder cohomology of X�.

THEOREM 1.5. Let A be a finite set and let � be a primitive substitution rule on A. If
α > 2, then H 0

α (X�) is finite dimensional. That is, if α > 2, there are finitely many obstruc-
tions to finding a solution u ∈ Hα−2(X�) to the cohomological equation f = u ◦ σ − u for
f ∈ Hα(X�).

Remark 1.6. Some remarks.
(i) The locally constant, integral cohomology has been thoroughly studied for minimal

Cantor systems. More precisely, the structure of the set of equivalence classes
of C(X, Z) up to coboundaries is a fundamental invariant in the theory of orbit
equivalence for Cantor minimal systems [GPS95]. However, as far as I know, the
problem of solving the cohomological equation for varying degrees of regularity on
Cantor sets has not been considered before.

(ii) The ideas leading up to the theorem above do not only hold for substitution systems.
In fact, with the right use of Oseledets theorem, I expect the theorem above to hold
for a large class of minimal Cantor systems, including a large class of so-called
S-adic systems. This will be pursued in a future paper.

(iii) It is unclear whether a loss of regularity of order 2 is optimal. Although a loss of
1 may be necessary, a loss of 2 may be a feature of the way the theorem is proved.
I would like to see a proof of this statement which does not rely on embedding X�

into a solenoid as it does here.

This paper is organized as follows. Background material is covered in §2, including
the function spaces Sr

α , which, as far as I know, are new. Section 3 deals with proving
that the r , α cohomology is isomorphic to the usual real cohomologies (Theorem 1.1) for
r , α large enough. Section 4 is devoted to the study of the Ruelle spectrum: anisotropic
Banach spaces of forms are introduced and the action of the transfer operator on them
is studied leading to Theorem 1.3. Finally, in §5, the solutions of the cohomological
equation on X� are studied by relating them to solutions of the cohomological equation
on one-dimensional solenoids, proving Theorem 1.5.

2. Wieler solenoids of flat branched manifolds
Let � be a connected, flat branched manifold of dimension d. This means that � is obtained
by gluing several polytopes of dimension d along their faces in such a way that every
k-dimensional face meets another of the same dimension. This branched manifold has a
natural CW structure and flat metric; denote by I k its kth-skeleton. Let B be the branching
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set, that is, the set of points x such that a small ball around x is not homeomorphic to an
open Euclidean ball. If B = ∅, then � is a manifold. The focus here will be on cases where
B �= ∅. Setting Bk := (I k \ I k−1) ∩ B, it is worth pointing out that every point on Bk is a
k-dimensional flat manifold and, as such, it has well-defined tangent and cotangent spaces.

Let γ : �→ � be a locally expanding and surjective map with constant compatible
derivative. This means that the derivative map is non-singular and on I d \ I d−1, the
derivative Dγ can be identified with some Dγ ∈ GL(d , R). Let λ1, . . . , λd > 1 be the
eigenvalues of Dγ and set λ0 = mini |λi | and λ = det Dγ .

The solenoid defined by γ is the space

� = �γ = {z̄ = (z0, z1, . . .) ∈ �∞ : γ (zi+1) = zi for all i ≥ 0}. (1)

It can also be defined as an inverse/projective limit: the inverse limit

�γ = lim← (�, γ ) (2)

can easily be seen to match the first definition. This is a flat Wieler solenoid since it is
part of Wieler’s classification of Smale spaces with totally disconnected stable sets (this
structure will be examined below). The γ -solenoid comes equipped with a probability
measure which is compatible with the inverse limit structure. To describe this more
precisely, denote by πk : z̄ �→ zk the projection onto the kth coordinate, and denote by
�k to be the kth copy of �: �k = πk(�). Let μk be the normalized Lebesgue measure
on �k induced from the flat metric. Since γ preserves Lebesgue measure, it follows that
γ∗μk = μk−1. Thus, if we equip � with μ := ⊗kμk , we have that πk∗μ = μk for every k.

Two assumptions need to be made on the pair (�, γ ).
(i) The map γ : �→ � is primitive: there exists a K > 0 such that for any two faces

F1, F2 ⊂ �, there is a point x ∈ F1 such that γ K(x) ∈ F2.
(ii) The map γ : �→ � forces the border. Although I will not discuss what is meant

here, an implication of this assumption will be pointed out below.
(iii) The map γ is recognizable: roughly speaking, all d-cells have distinct images.

The solenoid � has a local product structure of Bε(0)× C, where Bε(0) is an ε-ball
in R

d and C is a Cantor set. Indeed, if z = (z0, z1, . . .) ∈ �, then points close to z come
from either varying the z0 coordinate by a small amount (this is parameterized by Bε) or
by varying in π−1

0 (z0), which amounts to picking one of (potentially several) points in
γ−1(z0), then one of (potentially several) points in the γ -preimage of that point, and so
on. It follows that since λ > 1, this sequence of choices naturally gives a Cantor set.

There are two complementary dynamical systems defined on �. First, there is a
self-homeomorphism � : �→ � which preserves the special measure μ. In coordinates,
the map is defined by

� : (z0, z1, z2, . . .) �→ (γ (z0), z0, z1, . . .),

which, by construction, preserves the measure μ. The inverse is obtained by deleting the
first coordinate.

For z ∈ �, define its kth transversal set as

C⊥k (z) := {z′ ∈ � : z′i = zi for all i ≤ k}.
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On transversal Hölder regularity for flat Wieler solenoids 7

The sets C⊥0 (x) are all ultrametric sets which will be endowed with the metric

d(y, z) = dx(y, z) := λ
−k(y,z)
0 , (3)

where k(y, z) is the smallest integer i such that yi �= zi ; equivalently, the smallest integer
i such that C⊥i (y) �= C⊥i (z). These transversal sets can be seen to be the local stable set of
x: if y ∈ C⊥0 (x), then d(�n(x), �n(y))→ 0 as n→∞. The local unstable sets can also
be seen, in the coordinates Bε × C around z, to be the Euclidean balls Bε × {c} for c ∈ C.

Second, there is the R
d action on � given by translating along unstable sets. More

precisely, for z ∈ � with z0 = π0(z) not in a branch of � and t ∈ R
d of small norm, the

translation of z = (z0, z1, z2, . . .) by t is

ϕt (z) := (z0 − t , z1 −D−1
γ t , z2 −D−2

γ t , . . .), (4)

which is seen to preserve the condition in equation (1). The assumption that (�, γ ) forces
the border implies that this extends to an action of R

d on �; the primitivity condition
implies that this action is minimal, that is, every orbit is dense. Finally, the recognizability
condition implies that the action is free and so every orbit is homeomorphic to R

d . Under
these conditions, the action of Rd is uniquely ergodic [Sol97, Theorem 3.1], where the
unique invariant probability measure is μ.

Since the solenoid � has a local product structure of Bε(0)× C⊥k (x), where Bε(0) is
an ε-ball, the �-invariant measure μ has a local product structure of Leb× νx,k , where
Leb is Lebesgue measure and νx,k is a measure on a local transversal C⊥k (x). This measure
assigns to each local transversal C⊥k (x) the measure νx,k(C

⊥
k (x)). Since {νx,k} forms a

system of transverse invariant measures for the R
d action in the sense of [BM77], they

will all be denoted by ν unless not doing so leads to ambiguity. Define

ν̂x,k := νx,k(C
⊥
k (x)).

LEMMA 2.1. There exists a Cμ > 1 such that for any x ∈ � and k ∈ N0,

C−1
μ λ−k ≤ ν̂x,k ≤ Cμλ−k .

Proof. Since � preserves μ, μ has local product structure Leb× ν, and the Lebesgue
measure scales as λ = det(Dγ ) =∏

λi under �, ν scales as λ−1 under �. So it follows
that ν(C⊥1 (x)) = ν(�(C⊥0 (�−1(x)))) = λ−1ν(C⊥0 (�−1(x))). By compactness, there are
finitely many values of ν(C⊥0 (�−1(x))), and so iterating the calculation gives the desired
bound.

2.1. Function spaces. Let Cr(�) be the space of functions on the branched manifold
which are Cr smooth at the branch set. More precisely, let ik : Bk → � be the inclusion
of the kth-dimensional part of the branched set. A first order differential operator X on
� is one for which there exists a first order differential operator Xk on Bk which can be
extended to X on �, that is, so that Xki

∗
k (f ) = i∗k (Xf ) for all k. In other words, Cr(�) is
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8 R. Treviño

the set of functions f ∈ Cr(�) such that

Cr(�) Cr(Bk)

Cr−1(�) Cr−1(Bk)

i∗k

X Xk

i∗k

(5)

for some Xk and for all k > 0. Thus, a first order differential operator X can be identified
with a d-tuple {X1, . . . , Xd} of first order differential operators, where Xk on Bk satisfies
equation (5).

Another way to characterize Cr(�) is as follows: since R
d acts on � by translation

along unstable leaves, any v ∈ R
d defines the leafwise differential operators ∂v as

∂vf (z) = lim
s→0+

f (z+ sv)− f (z)

s
. (6)

Let Cr(�) be the set of leafwise-Cr functions on � with respect to the family of operators
∂e1 , . . . , ∂ed

. Thus, f ∈ Cr(�k) if and only if π∗k f ∈ Cr(�). Let

Cr
tlc(�) :=

⋃
k

π∗k Cr(�k) and C∞t lc(�) :=
⋃
k

π∗k C∞(�k).

For an h ∈ C∞t lc(�) and fixed p ∈ �, the function fh(t) := h ◦ ϕt (p) : Rd → R is called
p-equivariant.

For a function f on �, define the transversal Hölder seminorm

|f |⊥α = sup
x∈�γ

sup
x �=y∈C⊥0 (x)

|f (x)− f (y)|
d(x, y)α

, (7)

and let H⊥α (�) be the Banach space of transversally α-Hölder functions with norm

‖f ‖⊥α = ‖f ‖C0 + |f |⊥α . (8)

Note that for any 0 < β < α, there is a compact inclusion H⊥α ⊂ H⊥β .

Remark 2.2. Since the local transversals C⊥k are totally disconnected sets, the spaces
H⊥α (�) are non-trivial for every real α > 0. This is a significant difference from stable
sets which are smooth, and α here controls the analogous quantity for smoothness in a
totally disconnected direction of �.

Let Cr(�) denote the set of functions f on � such that ∂vi1
· · · ∂vir

f is continuous for
any choice of r vectors vij in an orthonormal basis {v1, . . . vd} of Rd . Finally, define for
r ∈ N and α > 0,

Cr
α(�) =

{
f ∈ Cr(�) ∩H⊥α (�) :

∑
0≤p≤r

∑
|i|=p

‖∂if ‖C0 + |∂if |⊥α <∞
}

(9)

to be the space of functions which not only are Cr smooth in the leaf direction but also
whose derivatives up to order r are transversally α-Hölder. Here the traditional multiindex
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On transversal Hölder regularity for flat Wieler solenoids 9

notation i = (i1, . . . , id) has been used, with |i| = i1 + · · · + id . This is a Banach space
under the norm

‖f ‖r ,α :=
∑

0≤p≤r

∑
|i|=p

‖∂if ‖C0 + |∂if |⊥α . (10)

Given a function f ∈ L1(�) and k ∈ N0 := N ∪ {0}, set

�kf (x) := ν̂−1
k,x

∫
C⊥k (x)

f (z) dνk,x , �kf := f −�kf , and δkf := �kf −�k−1f .

(11)

These functions will be crucial for most results of this paper, so let me take some time
to discuss how one can think of them. Any f ∈ L1

μ(�) is a function of infinitely many
variables, since this is how the solenoid is defined. The function �kf is obtained by
integrating along local transversals and consequently �kf is transversally locally constant.
This means that �kf only depends on finitely many coordinates, that is, there is a
function gk ∈ L1(�) such that �kf = π∗k gk . Thus, �kf can be thought of as the best
approximation to f if we can only consider the first k coordinates. We will see below that
�kf → f in a satisfying sense as k→∞.

If �kf is an approximation to f using the first k coordinates, then �kf is the error in this
approximation. If �kf → f in some sense, then one should expect that �kf → 0 in the
same sense (this will come up later). Finally, if �kf is an approximation to f using the first
k coordinates, then fk := δkf is the best approximation to f using only the kth coordinate.
So after setting �−1f = 0, the approximation �kf can be written as the finite sum

�kf =
k∑

i=0

δkf =
k∑

i=0

fk

and so if �kf → f , then f can be written as a sum f =∑
fk in a canonical way. These

of course are rough descriptions of how one can think of these functions but since they
will appear regularly in this paper, one should have a good way to think of them.

A more precise description of what is happening involves conditional expectation. For
k ∈ N0, let Ak be the σ -algebra generated by the preimages π−1

k (A) of Borel sets A ⊂ �k .
This is an increasing sequence of sub-σ -algebras of the Borel σ -algebra A of �. The
conditional expectation E(·|Ak) : L1(�, A, μ)→ L1(�, Ak , μ) map coincides with �k ,
that is, for any f ∈ L1(�, μ), E(f |Ak) = �kf , and νk,x is the conditional measure of
this conditional expectation. By the increasing martingale theorem [EW11, Theorem 5.5],
�kf → f almost everywhere and in L1.

Using the notation fk = δkf from above, for r , α ≥ 0, let

Sr
α(�) :=

{
f : �→ R : f=

∑
k≥0

fk ,
fk = π∗k (f (k)) for some f (k) ∈ Cr(�) and

there exists a Cf such that ‖f (k)‖Cr(�) ≤ Cf λ−kα
0

.
}

Let me make two comments which motivate the definition of these function spaces. The
first one comes from the algebraic setting: if S is the inverse limit of locally expanding
affine linear maps of T

d , then L2
μ is spanned by a Fourier basis, and so one needs to

quantify the decay rates of the Fourier coefficients to capture degrees of regularity. The
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generalization of this idea leads to the space Sr
α as defined above. The second reason is that

the representation of a function as a sum of pullbacks of distinct functions on approximants
is canonical: if f = π∗0 f (0), then f is transversally locally constant, so δkf = 0 for all
k > 0, and so the f is uniquely represented as a sum of finitely many terms.

PROPOSITION 2.3. For the spaces Sr
α(�) and Cr

α(�) defined above with r ∈ N, α > 0:
(i) for any v ∈ {v1, . . . , vd}, if f ∈ Sr

α(�), then ∂vf ∈ Sr−1
α+1(�),

(ii) for any ε ∈ (0, α), Sr
α(�) ⊂ Cr

α(�) densely with respect to the norm of Cr
α−ε(�).

Remark 2.4. I would like to remark on the surprising feature in item (i): taking leafwise
derivatives increases regularity in the transverse direction. Since this is the Hölder
regularity, this depends on the metric used. The form adopted here is the one which
corresponds to the natural choice of transversal metric in equation (3), as well as using
the same number λ0 in defining the spaces Sr

α(�).

Proof of Proposition 2.3. For item (i), if f ∈ Sr
α , then using equations (4) and (6),

∂vf (z) =
∑
k≥0

∂vfk(z) =
∑
k≥0

π∗k (∇f (k) ·D−k
γ v)(z)

and

‖∇f (k) ·D−k
γ v‖Cr−1(�k)

≤ λ−k
0 ‖f ‖Cr(�k) ≤ Cf λ−k

0 λ−αk
0 = Cf λ

−(α+1)k
0 .

So ∂vf ∈ Sr−1
α+1(�).

For item (ii), for f ∈ Cr
α , consider the approximations �kf . For every k, these

approximations are all in Sr
α for any α > 0 since they are transversally local functions.

What needs to be proved is that for any multiindex i with |i| ≤ r ,

‖∂i�kf − ∂if ‖C0 + |∂i�kf − ∂if |⊥α−ε → 0

as k→∞.
Let i be one such multiindex. Then

|∂i�kf (x)− ∂if (x)| = ν̂−1
k,x

∣∣∣∣
∫

C⊥k (x)

∂if (z)− ∂if (x) dνk,x

∣∣∣∣
≤ ν̂−1

k,x

∫
C⊥k (x)

∣∣∣∣∂if (z)− ∂if (x)

∣∣∣∣ dνk,x ≤ C∂if λ−αk
0 (12)

and so ‖∂i�kf − ∂if ‖C0 → 0. Here it was used that not only f but its derivatives are
transversally α-Hölder.

Let x ∈ � and suppose that a, b ∈ C⊥� (x). Then if � ≤ k,

|(�k∂
if − ∂if )(a)− (�k∂

if − ∂if )(b)|
λ
−(α−ε)�
0

≤ λ
(α−ε)�
0 2C∂if λ−kα

0 ≤ 2C∂if λ−εk
0 ,

where equation (12) was used in simplifying the numerator. If � > k,

|(�k∂
if − ∂if )(a)− (�k∂

if − ∂if )(b)|
λ
−(α−ε)�
0

= λ
(α−ε)�
0 |∂if (a)− ∂if (b)| ≤ C∂if λ−εk

0 .
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On transversal Hölder regularity for flat Wieler solenoids 11

And so |∂i�kf − ∂if |⊥α−ε → 0, so the proof is concluded.

3. Transversal Hölder cohomology for Wieler solenoids
Wieler solenoids, being defined as an inverse limit of surjective and locally expaning maps
have the advantage that their (Čech) cohomology can be explicitly computed. At the most
basic level, this can be done with coefficients in Z through

Ȟ ∗(�; Z) = lim
n→∞(Ȟ ∗(�; Z), γ ∗).

By the universal coefficient theorem and universality of inverse limits, the cohomology
with real coefficients is

Ȟ ∗(�; R) = lim
n→∞(Ȟ ∗(�; R), γ ∗). (13)

Likewise, since there is a free R
d action on �, there is an associated Lie-algebra

cohomology defined as follows. Let X1, . . . , Xd be an orthonormal frame of Rd . Define
the operators ∂i using Xi as in equation (6). Let C∞(�; 
R

d∗) be the space of
leafwise smooth sections of � to 
R

d∗, the graded exterior algebra of R
d∗. In other

words, C∞(�; 
R
d∗) is the space of functions f : �→ 
R

d∗ such that ∂i1 · · · ∂ikf ∈
C∞(�; 
R

d∗) for any finite collection of indices i1, . . . , ik .
Let d : C∞(�; 
k

R
d∗)→ C∞(�; 
k+1

R
d∗) be the exterior differential operator

defined as follows. Let {dx1, . . . , dxd} denote the dual frame to {X1, . . . , Xd}. Then

d(f dxi1 ∧ · · · ∧ dxik ) =
d∑

i=1

∂if dxi ∧ dxi1 ∧ · · · ∧ dxik .

It is immediate to verify that this operator satisfies d2 = 0. Moreover, there is natural
subcomplex C∞t lc(�; 
k

R
d∗) of sections with tlc coefficients.

Definition 3.1. The Lie-algebra cohomology H ∗(�) of � is the cohomology of the
differential complex (C∞(�; 
R

d∗), d). That is,

H •(�) := ker{d : C∞(�; 
•Rd∗)→ C∞(�; 
•+1
R

d∗)}
Im {d : C∞(�; 
•−1Rd∗)→ C∞(�; 
•Rd∗)} .

The transversally locally constant (tlc) Lie-algebra cohomology is the cohomology of the
subcomplex of tlc functions:

H •t lc(�) := ker{d : C∞t lc(�; 
•Rd∗)→ C∞t lc(�; 
•+1
R

d∗)}
Im {d : C∞t lc(�; 
•−1Rd∗)→ C∞t lc(�; 
•Rd∗)} .

Finally, there is one more type of cohomology which is relevant here: since for p ∈ � a
form η ∈ C∞(�; 
∗Rd∗) defines a p-equivariant form ωη(t) := ϕ∗t η : Rd → 
∗Rd∗, the
p-equivariant cohomology H ∗p(�; R) is defined as the cohomology of this subcomplex of
the de Rham complex of Rd .

Kellendonk and Putnam [KP06] proved that the p-equivariant cohomology is iso-
morphic to the tlc Lie-algebra cohomology, which in turn is isomorphic to the Čech
cohomology in equation (13) with coefficients in R. In general, it is not true that H •t lc(�)
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12 R. Treviño

is isomorphic to H •(�). These two cohomologies capture two extremes of regularity
in the transverse direction: functions in C∞ satisfy |f |⊥0 <∞, whereas g ∈ C∞t lc has
|g|⊥α <∞ for all α ≥ 0. Thus, it is natural to ask how much regularity is needed in the
transverse direction to recover the real Čech cohomology. This is the transversally Hölder
cohomology.

The rest of the section is devoted to proving that instead of looking at the cohomology
of C∞t lc sections, one could consider the cohomology of sections with coefficients in Sr

α(�)

or Cr
α . To do this, a name for this type of cohomology is needed.

Definition 3.2. The space �m
r ,α is the space of m-forms η : �→ 
m

R
d∗ with coefficients

in Sr
α . That is, an element �m

r ,α can be written as

η =
∑
I∈Im

ηI dxI ,

where each dxI is an m-form of the form dxi1 ∧ · · · ∧ dxim , and ηI ∈ Sr
α for all I ∈ Im.

Let

Zm
r ,α := ker{d : �m

r ,α → �m+1
r−1,α+1} and Bm

r ,α := Im {d : �m−1
r+1,α−1 → �m

r ,α},
and define the Sr

α-cohomology of � as

H∗r ,α(�) := Z∗r ,α/B∗r ,α ,

which is the Lie algebra cohomology with coefficients in �∗r ,α .

THEOREM 3.3. Fix r ∈ N and α > 1, and let η ∈ Zm
r ,α . Then there exists η′ ∈

C∞t lc(�; 
m
R

d∗) and ω ∈ �m−1
r+1,α−1 such that η − η′ = dω. That is, for r ≥ 1 and α > 1,

H∗r ,α(�) ∼= H ∗t lc(�) ∼= Ȟ ∗(�; R).

The rest of this section is devoted to the proof of this theorem. First, we start by
reviewing de Rham cohomology for branched manifolds, then de Rham regularization for
branched manifolds, and finally we put all of this together in the inverse limit structure.

Let H ∗r ,t lc(�) be the Lie-algebra cohomology with Cr
tlc coefficients. That is, two forms

η1, η2 are in the same cohomology class if there exists an ω ∈ Cr
tlc such that η1 − η2 = dω.

PROPOSITION 3.4. For r ∈ N, H ∗r ,t lc(�) ∼= H ∗t lc(�).

Proof. The goal is to show that for any closed η ∈ Cr
tlc(�; 
∗Rd∗), there is an

η′ ∈ C∞t lc(�; 
∗Rd∗) and ω ∈ Cr
tlc(�; 
∗Rd∗) such that η − η′ = dω. This will be

done through the use of de Rham regularization [dR84, §III.15] applied to p-equivariant
cohomology, since it is isomorphic to Lie-algebra cohomology.

Let p ∈ � and let η : Rd → 
∗Rd∗ be a p-equivariant form with Cr coefficients. This
means there is an Rη > 1 such that if the tiling around the point x in a ball of radius Rη

is the same as the one around y in a ball of radius Rη, then η(x) = η(y). This follows
from the fact that η(t) = η̄ ◦ ϕt (p) for a transversally locally constant form η̄. As such,
there is a k such that η̄ is constant on C⊥k (x) for any x, and so if x, y ∈ R

d are such that
ϕy(p) ∈ C⊥k (ϕx(p)), then η(x) = η(y).
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Pick ε ∈ (0, 1/2) and let U = {Ui}i∈N be a cover of Rd such that:
(i) U is locally finite;

(ii) Ui is an Euclidean ball of radius 1+ ε for all i;
(iii) U is p-equivariant with radius 6Rη, that is, if Ui is centered at xi and y has the same

pattern as xi does inside a ball of radius 6Rη centered at y, then y is the center of
some Uj ∈ U .

This type of cover is called a p-equivariant cover adapted to η. A way to construct this
type of cover is to cover �k with finitely many balls of the appropriate size so that when
they lift to �, the intersection of leaves with these lifts are balls of size 1+ ε.

Now, de Rham regularization can be invoked [dR84, Theorem 12 in §III.15]: there exist
operators R and A such that:

(i) Rη − η = dAη + Adη;
(ii) Rη ∈ C∞(Rd ; 
∗Rd∗); and

(iii) if η ∈ Cr(Rd ; 
∗Rd∗), then Aη ∈ Cr(Rd ; 
∗Rd∗).
Thus, if dη = 0, then dRη = 0, and they differ by the exact Cr from dAη. It remains to
show that Aη is p-equivariant, that is, has something to do with �.

Since U is a p-equivariant cover adapted to η, if x, y ∈ R
d have neighborhoods of

radius 6Rη which are translation equivalent, then η ◦ ϕτ (x) = η ◦ ϕτ (y) for all τ such
that ‖τ‖ ≤ 5Rη and the union of the sets Ux

1 , . . . , Ux
k which contain x is a set which is

translation equivalent to the union of the sets U
y

1 , . . . U
y
k which contain y. As such, the

regularization at x is the same as the one at y, that is, Aη(x) = Aη(y), which means that
Aη is p-equivariant.

Let � be a flat branched manifold of dimension d, where the set of branches is denoted
by B ⊂ �. Denote by I k the k-skeleton of �. For each x ∈ Bk := B ∩ (I k \ I k−1), there
is a natural tangent space Tx� of dimension k and a corresponding cotangent space. Let
�k

� be the set of smooth �-forms on Bk , on which there is the usual de Rham differential
operator dk : �k

� → �k
�+1 and which are included in � using maps ik : Bk → �. To give

the entire branched space a smooth structure, consider the space of smooth maps

�k(�) = {ω : �→ 
k
R

d∗}
with coboundary operators d : �k(�)→ �k+1(�) satisfying dk ◦ i∗k = i∗k ◦ d for all
k ≥ 0, that is, the operators which are conjugated to dk by i∗k for all k:

��(�) �k
�(Bk)

��+1(�) �k
�+1(Bk)

i∗k

d dk

i∗k

(14)

Another way to characterize �m(�) is the set of m-forms η on � such that π∗k η is a C∞
m-form on �.

Definition 3.5. The de Rham cohomology H ∗dR(�) of the flat branched manifold � is the
cohomology of the complex (�∗(�), d) of smooth forms satisfying equation (14).
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Sadun [Sad07] proved that H ∗dR(�) is isomorphic to the real Čech cohomology of �.

LEMMA 3.6. For ρ ∈ [1,∞], let ‖ · ‖′ : H ∗ρ,t lc(�)→ R be a norm. Then there exists a K
depending on the norm and on γ such that

‖[π∗k η]‖′ ≤ K‖η‖Cr(�k)

for any closed η ∈ �∗(�k) which is Cr , k ≥ 0, and r ∈ [1, ρ].

Proof. Since Hi
tlc(�) is finite dimensional, by Proposition 3.4, it will suffice to prove it

for some norm. Let ‖ · ‖ be some norm on Hi(�k; R) and denote by ‖ · ‖ the dual norm on
Hi(�k; R). That is, for a closed i-form η ∈ �i(�k),

‖[η]‖ = sup
0�=[c]∈Hi(�k ;R)

∣∣∣∣ [η]([c])
‖[c]‖

∣∣∣∣ = sup
0�=[c]∈Hi(�k ;R)

‖[c]‖−1
∣∣∣∣
∫

c

η

∣∣∣∣.
The ith skeleton of �k is finitely generated and so there is a collection of rep-
resentative cycles c1, . . . , cm of a basis of Hi(�k; Z). Thus, for an integral class
[c] =∑m

j=1 aj (c)cj ∈ Hi(�k; Z), the absolute value of
∫
c
η can be bounded as

∣∣∣∣
∫

c

η

∣∣∣∣ =
∣∣∣∣

m∑
j=1

aj (c)

∫
cj

η

∣∣∣∣ ≤
m∑

j=1

|aj (c)|
∣∣∣∣
∫

cj

η

∣∣∣∣ ≤ ‖η‖Cr(�k)

m∑
j=1

|aj (c)

∣∣∣∣Voli (cj )

≤ K ′(max
j

Voli (cj ))‖[c]‖‖η‖Cr (�k) ≤ K ′′‖[c]‖‖η‖Cr(�k), (15)

where K ′ comes from the equivalence of the L1 norm and ‖ · ‖ in Hi(�k; R), and Voli (cj )

is the i-dimensional volume of the cycle cj . Here, it was used that
∫
cj

η can be bounded

by the volume of the cycle times the C1 norm of η. Thus, it follows that

‖[π∗k η]‖ = ‖[η]‖ = sup
0�=c∈Hi(�k ;R)

‖c‖−1
∣∣∣∣
∫

c

η

∣∣∣∣ ≤ K‖η‖Cr(�k)

for any r ≥ 1.

The following completes the proof of Theorem 3.3.

PROPOSITION 3.7. If r ∈ N, α > 1, then H∗r ,α(�) ∼= H ∗t lc(�).

Proof. Let η : �→ 
∗Rd∗ be a closed form with coefficients in Sr
α(�) with r ≥ 1 and

α > 1. By Proposition 3.4, it suffices to show that there is a form η′ ∈ H ∗r ,t lc(�) such that
η − η′ = dω for some ω with coefficients in Sr+1

α−1.
By the definition of Sr

α(�) for each k ≥ 0, there exists ηk ∈ �∗(�k) such that η

is canonically expressed as η =∑
k≥0 δkηk =∑

k≥0 π∗k ηk (see §2.1), where there are
infinitely many non-zero terms, as that would otherwise make η a tlc form. Note that this
expression for η has the property that ηk �= γ ∗η′ for some η′ ∈ �∗(�k−1). Now define the
sequence of forms

η(n) :=
n∑

k=0

π∗k ηk .
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Each of these forms is a closed tlc form. Indeed,

0 = dη = d

( ∑
k≥0

π∗k ηk

)
=

∑
k≥0

dπ∗k ηk =
∑
k≥0

dδkη =
∑
k≥0

δkdη,

since d�kη = �kdη by the preservation of the transverse measure. Thus, dδkη = δkdη =
δk0 = 0 for all k. It follows that η(n) has a tlc cohomology class [η(n)] ∈ H ∗r ,t lc(�). Observe
that [η(n)] is a convergent sequence. Indeed, by Lemma 3.6, for n > m > 0,

‖[η(n)]− [η(m)]‖ ≤
∥∥∥∥

∑
k>m

[π∗k ηk]
∥∥∥∥ ≤ K

∑
k≥m

‖ηk‖Cr(�k) ≤ K ′Cηλ
−αm
0 .

Thus, [η] should be assigned the cohomology class limn→∞[η(n)] ∈ H ∗r ,t lc(�) and so the
goal is to find a tlc representative of this class and show that η is cohomologous to it.

Recall the eventual range

ERi(�) := (γ ∗)βi Ȟ i(�; R) ⊂ Ȟ i(�; R),

where βi = dim Hi(�; R). Any class c ∈ Ȟ i(�; R) is represented by a class in ERi(�) ⊂
Ȟ i(�βi

; R). Since Ȟ i(�; R) is isomorphic to Hi
dR(�) [Sad07, Appendix A], any class

c ∈ Hi
tlc(�) has a representative π∗βi

ηc coming from the β th
i projection map.

Let π∗βi
η′k be the form cohomologous to π∗k ηk and let

η(n) =
n∑

k=0

π∗βi
η′k = π∗βi

( n∑
k=0

η′k
)

.

Then η(n) − η(n) = dωn for all n. In addition,

η(∞) := lim
n→∞

n∑
k=0

π∗βi
η′k = π∗βi

(
lim

n→∞

n∑
k=0

η′k
)

is a Cr tlc function which is cohomologous to η.

3.1. Application: deviations of ergodic averages. The spectrum of �∗ : Ȟ d(�; R)→
Ȟ d(�; R) gives rates of convergence of ergodic integrals. This was first proved in [Sad11]
in the self-similar case and later in [ST18] in the self-affine case. The class of functions
used in those results were C∞t lc. Theorem 3.3 implies that the same rates of convergence
can now be given for functions in Sr

α for r ∈ N and α > 1. The statement will be provided
here without proof as Theorem 3.3 allows the argument in [ST18] to carry over verbatim.

Before stating the theorem, some notation needs to be established. Denote by
|ν1| > · · · > |νr | > 0 the norms of the r distinct eigenvalues of the map �∗ acting on
Hd . Let Ei be the generalized eigenspaces for the action of � on Hd(�; R) induced by
the map �∗ corresponding to the eigenvalue νi . The subspaces Ei are decomposed as

Ei =
κ(i)⊕
j=1

Ei,j ,
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where κ(i) is the size of the largest Jordan block associated with νi , as fol-
lows. For each i, we choose a basis of classes {[ηi,j ,k]} with the property that
〈[ηi,j ,1], [ηi,j ,2], . . . , [ηi,j ,s(i,j)]〉 = Ei,j and

�∗[ηi,j ,k] =
{
νi[ηi,j ,k]+ [ηi,j−1,k] for j > 1,
νi[ηi,j ,k] for j = 1.

(16)

Definition 3.8. The rapidly expanding subspace E+(�) ⊂ Hd(�) is the direct sum of all
generalized eigenspaces Ei of �∗ such that the corresponding eigenvalues νi of �∗ satisfy

|νi | ≥ λ

λ0
. (17)

The subspace E++ ⊂ E+ consists of all vectors for which the inequality in equation (17)
is strict.

We order the indices of distinct subspaces of E+(�) as follows. First, we set
I+ = I+,> ∪ I+,= to be the index set of classes [ηi,j ,k] which form a generalized
eigenbasis for E+(�), where the indices in I+,> contain vectors corresponding to a strict
inequality in equation (17) and the indices in I+,= correspond to vectors associated to
eigenvalues which give an equality in equation (17). The set I+,= can be empty but I+,>

always has at least one element. The set I+ is partially ordered: (i, j , k) ≤ (i′, j ′, k′) if
L(i, j , T )T dsi ≥ L(i′, j ′, T )T dsi′ for T > 1, where

L(i, j , T ) =
{
(log T )j−1 if νi satisfies equation (17) strictly,
(log T )j if νi satisfies equality in equation (17),

(18)

and si = log |νi |/log ν1. The order does not depend on the indices k.
By passing to a power, we can assume that Dγ ∈ GL+(d, R) = exp(gl(d , R)). Let

a ∈ gl(d, R) be the matrix which satisfies exp(a) = Dγ and let gt = exp(at). Letting B1

denote the unit ball, define the averaging family {BT }T≥1 by

BT = gσ log T B1, (19)

where σ = d/ log det A. As such, we have that Vol(BT ) = Vol(B1)T
d . Let ρ =

dim E+(�
).

THEOREM 3.9. For r ∈ N and α > 1, there exist a constant Cγ and ρ R
d -invariant

distributions {Di,j ,k}(i,j ,k)∈I+ such that, for any f ∈ Sr
α(�), if there is an index (i, j , k)

such that Di′,j ′,k′(f ) = 0 for all (i′, j ′, k′) < (i, j , k) but Di,j ,k(f ) �= 0, then for T > 3
and any x ∈ �γ , ∣∣∣∣

∫
BT

f ◦ ϕs(x) ds

∣∣∣∣ ≤ Cγ ,f L(i, j , T )T d(log |νi |/log λ).

Moreover, if Di,j ,k(f ) = 0 for all (i, j , k) ∈ I+
 , then∣∣∣∣
∫

BT

f ◦ ϕs(
) ds

∣∣∣∣ ≤ Cf T d(1−log |λ0|/log λ) (20)

for all T > 1.
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On transversal Hölder regularity for flat Wieler solenoids 17

4. Ruelle spectrum and quantitative mixing
An application of transverse Hölder cohomology is the construction of anisotropic Banach
spaces for solenoids. This section is dedicated to proving the quantitative mixing results
for �. To do this, it is necessary to introduce so-called anisotropic spaces of functions. I
am particularly inspired by [BKL22, FGL19] and the PhD dissertation of D. Galli, and so
I will follow some of the ideas there.

4.1. Anisotropic Banach spaces for flat Wieler solenoids. Let ϕ : �→ ∧kT ∗Rd be an
m-form. Analogous to equation (7), let

|ϕ|⊥α,m = sup
x∈�γ

sup
x �=y∈C⊥0 (x)

‖ϕ(x)− ϕ(y)‖
d(x, y)α

. (21)

At first, it may seem like ϕ(x)− ϕ(y) is not defined, as each summand lives on a different
fiber of the bundle. However, since the leaves of the foliation are flat and dense in �,
parallel transport makes this operation unambiguous. Define the space H⊥α,m of α-Hölder
m-forms to be those for which

‖ϕ‖⊥α,m := ‖ϕ‖C0 + |ϕ|⊥α,m <∞. (22)

This is a Banach space, and if α > β, we have that H⊥α,m ⊂ H⊥β,m compactly. Denote by
B⊥ε,m(α) ⊂ H⊥α,m the ε-ball with respect to equation (22). Note that B⊥1,m(α) ⊂ B⊥1,m(α − δ)

for all δ small enough.
For the sake of convenience, it will be assumed that Dγ has no Jordan blocks. As such,

let v1, . . . , vd be a normalized basis of Rd which are also eigenvectors for Dγ : Dγ vi =
λivi with λi > 1 and λ = λ1 · · · λd . Given this choice, for any i ∈ {1, . . . , d}, ∂i will
denote the differential operator ∂vi

and for a multiindex i = (i1, . . . , id), we will denote
by ∂i = ∂

i1
1 · · · ∂id

d and |i| = i1 + · · · + id . With this notation, let

|||η|||r ,α,m :=
∑

0≤p≤r

sup
|i|=p

sup
ϕ∈B⊥1,m(α+p)

∣∣∣∣
∫

�

〈ϕ, ∂iη〉 dμ

∣∣∣∣,

and let Br ,α
m be the completion of �m

r ,α with respect to |||·|||r ,α,m and set 
 = log λ/log λ0.
To the uninitiated reader, it is worth pointing out that functions in the anisotropic Banach

spaces Br ,α
m play two simultaneous roles, which become evident from the way the norm was

defined: first, they serve as functions in the Euclidean variable; whereas in the transversal
variable, they serve the roles of currents.

Recall the Hodge-� operator which sends m-forms to (d −m) forms � : �m
r ,α → �d−m

r ,α .
The invariant probability measure μ gives a canonical choice of the Lebesgue volume
element on the R

d -leaves of �, and thus there is a canonical volume element dt = �1.
With this choice, the Hodge-� operator gives a canonical bijection between functions and
tangential d-forms: for h ∈ Sr

α , �h = h(�1) = h dt ∈ �d
r ,α .

PROPOSITION 4.1. Br ′,α′
m ⊂ Br ,α

m if r ′ ≥ r and α′ ≤ α, and the inclusion is compact if
r ′ > r and α > α′ +
 > 
 > 0.
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18 R. Treviño

The inclusions follow from the definitions of the norms so what is left to prove is the
compactness of the inclusion. The following compactness criterion [FGL19, §2.2] will be
used: let B ⊂ C be two Banach spaces and assume that for any ε > 0, there exist finitely
many continuous linear forms L1, . . . , Lm on B such that for any x ∈ B,

‖x‖C ≤ ε‖x‖B +
∑
i≤m

|Li(x)|.

Then the inclusion of B in C is compact.
To apply the criterion, several estimates will need to be obtained. For an m-form

ϕ : �→ ∧mT ∗Rd and k ∈ N0, set ν̂k,x := νk,x(C
⊥
k (x)), recall equation (11):

�kϕ(x) := ν̂−1
k,x

∫
C⊥k (x)

ϕ dνk,x and �k := ϕ −�kϕ, (23)

both of which are m-forms. Recall that �kϕ is transversally locally constant. That is,
�kϕ(z) depends only on the first k coordinates zi of z.

LEMMA 4.2. For r ∈ N0, let ϕ : �→ ∧mT ∗Rd with ‖ϕ‖⊥α+r ,m ≤ 1. If α > 
+ α′ > 0,
then for any ε > 0, there exists a k > 0 such that

‖�kϕ‖⊥α′+r ,m <
ε

2
and ‖�kϕ‖⊥α+r ,m ≤ 4λ


0 Cμ

(
8Cμ

ε

)
/r+α−
−α′

.

Proof. Using Lemma 2.1,

‖�kϕ(x)‖ ≤ ν̂−1
k,x

∫
C⊥k (x)

‖ϕ(x)− ϕ(z)‖ dνk,x(z) ≤ Cϕλ
−k(α+r)
0

and so ‖�kϕ‖C0 ≤ 2Cϕλ
−(α+r)k
0 .

Now ‖�kϕ‖⊥α′,m will be bound. If a, b ∈ C⊥� (x) with � ≥ k, then C⊥k (a) = C⊥k (b) and
so

‖�kϕ(a)−�kϕ(b)‖ = ν̂−1
k,a‖ϕ(a)− ϕ(b)‖

≤ Cμλkλ
−�(α+r)
0 = Cμλ

k
−�(α+r)
0 .

If � < k and a, b ∈ C⊥� (x),

‖�kϕ(a)−�k(b)‖ ≤ ν̂−1
k,a

∫
C⊥k (a)

‖ϕ(a)− ϕ(z)‖ dνk,a(z)+ ν̂−1
k,b

∫
C⊥k (b)

‖ϕ(b)

− ϕ(z)‖ dνk,b(z) ≤ 2Cϕλ
−k(r+α)
0 .

Thus, if a, b ∈ C⊥� (x),

‖�kϕ(a)−�k(b)‖
λ
−(α′+r)�
0

≤
⎧⎨
⎩

Cμλ
(α′+r)�
0 λ

(k
−�(α+r))
0 ≤ Cμλ

−k(α−
−α′)
0 if � ≥ k,

2Cμλ
(α′+r)�
0 λ

−(α+r)k
0 ≤ 2Cμλ

−k(α−
−α′)
0 if � < k.

(24)
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On transversal Hölder regularity for flat Wieler solenoids 19

Putting everything together:

‖�kϕ‖⊥α′+r ,m = ‖�kϕ‖C0 + |�kϕ|⊥α′,m ≤ 2Cμλ
(
−α)k
0 + 2Cμλ

(
+α′−α)k
0

≤ 4Cμλ
−(α−
−α′)k
0 .

Thus, if

k =
⌈

log(8Cμ/ε)

(α −
− α′) log λ0

⌉
, (25)

then ‖�kϕ‖⊥α′+r ,m ≤ ε/2, which proves the first estimate.
To obtain the second estimate, first note that for a, b ∈ C⊥� (x), ‖�kϕ(a)−�kϕ(b)‖ =

0 if � ≥ k and if � < k,

‖�kϕ(a)−�kϕ(b)‖
≤ ‖ϕ(a)− ϕ(b)‖ + ‖�kϕ(a)−�kϕ(b)‖ ≤ λ

−�(r+α)
0 + 2Cμλ

(
−α−r)k
0 ,

where the first estimate follows from the fact that ‖ϕ‖⊥r+α,m ≤ 1 and the second from the
estimate leading to equation (24). Thus,

|�kϕ|⊥α+r ,m ≤ 1+ 2Cμλ
k(α+r)
0 λ

(
−α−r)k
0 = 1+ 2Cμλ
k

0

and so it follows that

‖�kϕ‖⊥α+r ,m=‖�kϕ‖C0 + |�kϕ|⊥α+r ,m ≤ ‖ϕ‖C0 + 1+ 2Cμλ
k
0 ≤ 2+ 2Cμλ
k

0 ≤ 4Cμλ
k
0 .
(26)

Using in equation (26) the choice for k in equation (25), the second estimate follows.

Proof of Proposition 4.1. To apply the compactness criterion, let ε > 0. Since H⊥α+r ,m
is compactly embedded in H⊥

α′+r ,m, let {ϕj }j≤Kε ⊂ H⊥α+r ,m be a finite family of forms

such that for any ϕ ∈ H⊥α+r ,m with ‖ϕj‖⊥α+r ,m ≤ 4λ

0 Cμ(8Cμ/ε)
/r+α−
−α′ , there is a

ϕj∗ in the family such that ‖ϕ − ϕj∗‖⊥α′+r ,m ≤ ε/2. Define the finite family of linear forms

Lj ,i : Br ′,α′
m → R by

Lj ,i (η) =
∫

�

〈ϕj , ∂iη〉 dμ,

where i is a multiindex of length at most r ′ and j ≤ Kε.
For ϕ with ‖ϕ‖⊥α+r ,m ≤ 1, let k ∈ N be the one given by Lemma 4.2, so that

‖�kϕ‖⊥α′+r ,m ≤ ε/2. Let j∗ ≤ Kε be such that ‖�kϕ − ϕj∗‖⊥α′+r ,m ≤ ε/2. Thus, for

η ∈ Br ′,α′
m and a multiindex i with |i| = r , it follows that∣∣∣∣

∫
�

〈ϕ, ∂iη〉 dμ

∣∣∣∣ ≤
∣∣∣∣
∫

�

〈�kϕ, ∂iη〉 dμ

∣∣∣∣+
∣∣∣∣
∫

�

〈�kϕ − ϕj∗ , ∂iη〉 dμ

∣∣∣∣+
∣∣∣∣
∫

�

〈ϕj∗ , ∂iη〉 dμ

∣∣∣∣,
and so it follows that

|||η|||r ,α ≤
ε

2
|||η|||r ′,α′ +

ε

2
|||η|||r ′,α′ + |Lj∗,i (η)|

and so compactness follows from the criterion.
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20 R. Treviño

It will be useful below to have a version of cohomology with coefficients in the
anisotropic spaces Br ,α∗ . To that end, let H ∗Br ,α (�) be the cohomology of tangentially
smooth forms with Br ,α

0 coefficients.

PROPOSITION 4.3. Let r ∈ N and α > 1. Then H ∗Br ,α (�) ∼= H∗r ,α(�) ∼= Ȟ (�; R).

Proof. Let η ∈ Br ,α
m be a closed m-form. It will be shown that there is a form η′ ∈ �m

r ,α
such that η − η′ = dω.

Let {ηk} ⊂ �m
r ,α be a sequence of closed forms such that ηk → η in Br ,α

m . As in the proof
of Proposition 3.7, for each k, there is an η′k ∈ π∗βm

Cr(�) such that ηk − η′k = dωk . Thus,
∫

�

〈ϕ, η − ηk〉 dμ =
∫

�

〈ϕ, η − η′k − dωk〉 dμ→ 0

for any ϕ ∈ H⊥α (�). Thus, [η − η′k] = [η]− [η′k]→ 0. However, η′k ∈ π∗βm
Cr for all k,

and so [η′k] ∈ π∗βm
Ȟm(�; R) ⊂ Ȟm(�; R) for all k, meaning that [η] defines a class in

Ȟm(�; R).

Proposition 2.3 and the definition of the spaces Br ,α
m implies the following.

LEMMA 4.4. The differential operator d on m forms is a bounded operator from Br ,α
m to

Br−1,α+1
m+1 .

4.2. The transfer operator. Define the transfer operator to be

Lf := f ◦�−1,

where f is an m-form and note that for any y ∈ C⊥0 (x),

‖�∗f (x)−�∗f (y)‖ ≤ |f |⊥α,md(�(x), �(y))α ≤ |f |⊥α,mλ−α
0 d(x, y)α

and so

|�∗f |⊥α,m ≤ λ−α
0 |f |⊥α,m. (27)

The following estimates, similar to those of Lemma 4.2, will be needed in the proof for the
Lasota–Yorke inequalities below.

LEMMA 4.5. If ‖ϕ‖⊥β,m ≤ 1, then for α > β,

‖(�kϕ) ◦�n‖⊥β,m ≤ 2Cμ(λ
−βk

0 + λ

k−βn

0 ) and

‖�kϕ ◦�n‖⊥α,m ≤ 1+ 3Cμλ
(α−β)k−nα

0 .
(28)

Proof. The estimate for ‖�kϕ‖⊥β,m follows essentially from the computations up to and
including equation (24), and combined with equation (27), the estimate for ‖(�kϕ) ◦
�n‖⊥β,m follows. Now, if a, b ∈ C⊥� (x) and � ≥ k, then ‖�kϕ(a)−�kϕ(b)‖ = 0. If � < k,

‖�kϕ(a)−�kϕ(b)‖ ≤ ‖ϕ(a)− ϕ(b)‖ + ‖�kϕ(a)−�kϕ(b)‖ ≤ λ
−�β

0 + 2Cμλ
−βk

0 ,
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where the last term is obtained in the same way as the estimates leading to equation (24),
and so |�kϕ|⊥α,m ≤ 3Cμλ

(α−β)k

0 , which combined with equation (27) proves the estimate
for ‖�kϕ ◦�n‖⊥α,m.

PROPOSITION 4.6. (Lasota–Yorke inequalities) For each r , n ∈ N, α, α′ with α > α′ > 0,
ν ∈ (λ−r

0 , 1), and m ∈ {0, . . . , d}, there are D, E > 0 such that

|||Lη|||r ,α,m ≤ |||η|||r ,α,m and
∣∣∣∣∣∣Lnη

∣∣∣∣∣∣
r+1,α′,m ≤ Dνn|||η|||r+1,α′,m + E|||η|||r ,α,m.

Proof. First observe that∫
�

〈ϕ, ∂i1 · · · ∂ipLη〉 dμ =
p∏

j=1

λ−1
ij

∫
�

〈ϕ ◦�, ∂i1 · · · ∂ipη〉 dμ. (29)

This combined with equation (27) yields the first inequality. To address the second, first
note that∣∣∣∣∣∣Lnη

∣∣∣∣∣∣
r+1,α′,m = sup

i1,...,ir+1

sup
ϕ∈B⊥1,m(α′+r+1)

∣∣∣∣
∫

�

〈ϕ, ∂iLnη〉 dμ

∣∣∣∣+ ∣∣∣∣∣∣Lnη
∣∣∣∣∣∣

r ,α′,m,

and so equation (29) implies that∣∣∣∣∣∣Lnη
∣∣∣∣∣∣

r+1,α′,m ≤ λ
−(r+1)n
0 |||η|||r+1,α′,m +

∣∣∣∣∣∣Lnη
∣∣∣∣∣∣

r ,α′,m. (30)

Now, if ‖ϕ‖⊥
α′+p,m ≤ 1 and |i| = p ≤ r , again by equation (29),∣∣∣∣

∫
�

〈ϕ, ∂iLnη〉 dμ

∣∣∣∣ ≤ λ
−np

0

∣∣∣∣
∫

�

〈ϕ ◦�n, ∂iη〉 dμ

∣∣∣∣
≤ λ
−pn

0

(∣∣∣∣
∫

�

〈�kϕ ◦�n, ∂iη〉 dμ

∣∣∣∣+
∣∣∣∣
∫

�

〈�kϕ ◦�n, ∂iη〉 dμ

∣∣∣∣
)

and so using Lemma 4.5,∣∣∣∣∣∣Lnη
∣∣∣∣∣∣

r ,α′,m ≤ 4Cμλ−rn
0 (λ

−(α′+r)k
0 + λ


k−(α′+r)n
0 )|||η|||r ,α′,m

+ 4Cμλ−rn
0 (1+ 2Cμλ

(α−α′)k−n(α+r)
0 )|||η|||r ,α,m.

Combining these estimates with equation (30),∣∣∣∣∣∣Lnη
∣∣∣∣∣∣

r+1,α′,m ≤ 4Cμλ−rn
0 (λ0 + λ

−(α′+r)k
0 + λ


k−(α′+r)n
0 )|||η|||r+1,α′,m

+ 4Cμλ−rn
0 (1+ 2Cμλ

(α−α′)k−n(α+r)
0 )|||η|||r ,α,m

from which the result follows.

4.3. The spectrum of L. Propositions 4.1 and 4.6, combined with Hennion’s theorem
[DKL21, Theorem B.14], yields the following corollary.

COROLLARY 4.7. For α > 
 and r ∈ N, the spectrum of L : Br ,α
m → Br ,α

m is contained
in the closed unit ball in C and the essential spectrum is contained in the closed ball of
radius λ−r

0 in C.

The following Proposition is a consequence of a theorem of Baladi and Tsuji, and shows
that to a certain extent, the spectrum is independent of Banach spaces used.
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PROPOSITION 4.8. The discrete spectrum is independent of the Banach space Br ,α
0 : for

α > 
 and r ′ > r > 0, then the discrete part of the spectrum of L of norm greater than λ−r
0

coincides for L|Br ,α
0

and L|Br′ ,α
0

. In addition, the corresponding generalized eigenspaces

are contained in Br ,α
0 ∩ Br ′,α

0 .

Proof. The results will follow from [BT08, Lemma A.1] as long as the inclusion Sr ′
α ⊂ Sr

α

is shown to be dense with respect to |||·|||r ,α,m.
Write f =∑

k≥0 f (k) ∈ Sr
α in the canonical way, where f (k) = π∗k gk for some

gk ∈ Cr(�k) as described in §2.1. Since smooth functions are dense in Cr(�k), for every
n ∈ N and k ∈ N0, pick a gn,k ∈ Cr ′(�k) such that ‖gk − gn,k‖Cr(�k) ≤ λ

−(n+αk)
0 . Let

fn :=∑
k≥0 π∗k gn,k . It now needs to be shown that fn→ f in Br ,α

0 .
If ϕ ∈ L1 and ‖ϕ‖∞ ≤ 1,∣∣∣∣
∫

�

ϕ∂i(f − fn) dμ

∣∣∣∣ ≤
∑
k≥0

‖∂i(π∗k (gk − gn,k))‖∞ ≤
∑
k≥0

λ−ik
0 ‖π∗k ∂i(gk − g′n,k)‖∞

≤ λ−n
0

∑
k≥0

λ−ik
0 λ−αk

0 , (31)

and thus |||f − fn|||r ,α,0 → 0 and the statement follows from [BT08, Lemma A.1].

Denote by �+m the spectrum of �∗ : Ȟm(�; R)→ Ȟm(�; R) consisting of expanding
eigenvalues, �−m the spectrum of �−1∗ : Ȟm(�; R)→ Ȟm(�; R) consisting of contract-
ing eigenvalues, and set

σr ,α,m := spec(L|Br ,α
m

) ∩ {z ∈ C : |z| > λ−r
0 }

to be the discrete spectrum of L on Br ,α
m , assuming r ∈ N and α > 
 by Corollary 4.7.

Note that the map x �→ x−1 gives a bijection between �+m and �−m .

LEMMA 4.9. For α > 
, r ∈ N, and σr ,α,m as above:
(i) 1 ∈ σr ,α,0; it is the unique eigenvalue of modulus 1 and it has multiplicity one;
(ii) ν ∈ σr ,α,0 if and only if λ−1ν ∈ σr ,α,d ;
(iii) for r ∈ N and α > 
+ 1, �−d \ σr+1,α−1,d−1 ⊂ σr ,α,d ;
(iv) �−d \ {λ−1} ⊂ σr ,α,d−1;
(v) σr ,α,m ⊂ (σr+1,α−1,m−1 ∪�−m ∪ σr−1,α+1,m+1).

Proof. The map � is topologically mixing [AP98, Proposition 3.1]. Property (i) follows
from a standard argument depending on this mixing hypothesis; see [Dem18, §4.1] or
[Bal18, §7.1.1]. Item (ii) follows from the duality between 0 and d forms given by the
Hodge-� operator.

For property (iii), it needs to be shown that if ν ∈ �−d and ν �∈ σr+1,α−1,d−1, then
there exists a η ∈ �d

r ,α such that (L− ν · Id)kη = 0 for some k ≥ 0. Now, if ν ∈ �−d \
σr+1,α−1,d−1, then by Theorem 3.3, there exists η ∈ �d

r ,α such that (L− ν · Id)k[η] = 0
for all k large enough and so there is an ωη ∈ �d−1

r+1,α−1 such that (L− ν · Id)kη = dωη. If
θ = (L− ν · Id)−kωη ∈ �d−1

r+1,α−1, then η′ = η − dθ satisfies (L− ν · Id)kη′ = 0.
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For item (iv), note that the smallest element (in norm) of �−d is λ−1. Suppose that for
some ν ∈ �−d with λ−1 < ν, ν �∈ σr ,α,d−1. Then by property (iii), ν ∈ σr−1,α+1,d , which by
property (ii) means that λν ∈ σr−1,α+1,0. However, |λν| > 1, contradicting that the spectral
radius is 1. So ν ∈ σr ,α,d−1.

Item (v) is due to Daniele Galli, but the proof is included here for completeness. Let
ν ∈ σr ,α,m. Then there exists an η ∈ �m

r ,α and J such that (L− ν)J η = 0. If η is not closed,
then (L− ν)J dη = d(L− ν)J η = 0, meaning that ν ∈ σr−1,α+1,m+1. Now suppose that
η is closed and not exact. Then (L− ν)J η = 0 implies that ν ∈ �−m . Now suppose that
η = dθ �= 0 for some θ ∈ �m−1

r+1,α−1. Then (L− ν)J η = (L− ν)J dθ = d(L− ν)J θ = 0,
that is, either ν ∈ σr+1,α−1,m−1 or (L− ν)J θ is closed. Suppose (L− ν)J θ is closed,
set ω := (L− ν)J θ ∈ �m−1

r+1,α−1. If (L− ν)J is invertible on closed forms, then
θ = (L− ν)−J ω is closed, and dθ = η = 0, which is a contradiction. So (L− ν)J is
not invertible on closed forms, meaning that ν ∈ σr+1,α−1,m−1.

Let σ− be the eigenvalues associated to generalized eigenvectors of �−1∗ : E++ →
E++. Note that when d = 1, this implies that �−1 = σ−. The following proposition gives
Theorem 1.3.

PROPOSITION 4.10. For r ∈ N and α > 
, the following hold.
(i) If d = 1, then the set of eigenvalues for L acting on Br ,α

0 contains σ− \ {λ−1}. In
addition, if ν is an eigenvalue in Br ,α

0 and k < α −
, then λ−1ν is an eigenvalue
in Br+k,α−k

0 . It follows that if F :=⋂
α>0,r>0 Sr

α , then the Ruelle spectrum for
functions in F contains the set of numbers of the form λ−kν with ν ∈ σ− \ {λ−1}
and k ∈ N;

(ii) If d = 2, then the set of eigenvalues for L acting on Br ,α
0 contains σ− \ {λ−1}.

If S∞α :=⋂
r>0 Sr

α , then the Ruelle spectrum for functions in S∞α contains the set
σ− \ {λ−1}.

Proof. Both of these are consequences of Lemma 4.9. For d = 1, that �−1 \ {λ−1}
follows directly from part (iii) of Lemma 4.9. Now suppose that ν ∈ σr ,α,0 for some
|ν| < 1. Then by part (i), λ−1ν ∈ σr ,α,1. So (L− λ−1ν)J1η = 0 for some η ∈ Br ,α

1 . Since
λ−1|ν| < λ−1, η has to be exact as �−1 is bounded from below by λ−1. So η = dθ1 (where
θ1 ∈ Br+1,α−1

0 is uniquely defined up to a closed 0-form, that is, a constant) and (L−
λ−1ν)J1η = (L− λ−1ν)J1dθ1 = d(L− λ−1ν)J1θ1 = 0. Thus, either (L− λ−1ν)J1θ1 is
closed or (L− λ−1ν)J1θ1 = 0. If (L− λ−1ν)J1θ1 is closed, then it is constant, and denote
by c1 := (L− λ−1ν)J1θ1. Letting θ ′1 = θ1 − c1, it follows that (L− λ−1ν)J1θ ′1 = 0 and
thus it follows that λ−1ν ∈ σr+1,α−1,0. So we are back where we started and the same
argument gives that λ−2ν ∈ σr+2,α−2,0 and so on.

If d = 2, by parts (ii), (iv), and (v) of Lemma 4.9, it follows that

�−2 \ {λ−1} ⊂ σr ,α,1 ⊂ (σr+1,α−1,0 ∪�−1 ∪ λ−1 · σr−1,α+1,0).

Let ν ∈ σ− \ {λ−1} ⊂ �−2 \ {λ−1}. First, ν �∈ �−1 , since by definition, ν contracts
faster than the smallest contracting eigenvalue in �−1 . Now, λ|ν| > 1, so by part (ii),
ν �∈ σr−1,α+1,2 = λ−1σr−1,α+1,0. So it follows that ν ∈ σr−1,α+1,0.
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5. Applications to primitive substitution subshifts
Let A be a finite set (the alphabet) and A∗ be the set of finite words on A. Let
� : A→ A∗ be a primitive substitution rule. This means there is an N such that for any
a, b ∈ A, the symbol a appears in �N(b). Without loss of generality (that is, by passing
to a power), we will assume that there is a symbol a ∈ A such that �(a) begins with a.
Let ā = limN→∞ �N(a) ∈ AN be a fixed point of the substitution and define X� to be
the orbit closure of ā under the shift map σ : AN→ AN. The system σ : X� → X� is a
minimal subshift.

Define the metric on X� as

d(b̄, c̄) = λ−k(b̄,c̄) (32)

for b̄, c̄ ∈ X�, where k(b̄, c̄) ∈ N is the smallest index i so that ci �= bi , and λ > 0 is the
Perron–Frobenius eigenvalue of the substitution matrix for �.

There is an associated solenoid to � constructed as follows. Let r : X� → R
+ be the

function defined as r(l̄) = vl1 , where v ∈ R
|A| is a positive Perron–Frobenius eigenvector

for the substitution matrix, and let �� be the suspension of X� with roof function r. Then
there exists a compact one-dimensional CW complex � and a cellular affine (outside the
zero-cells of �) map γ : �→ � such that

��
∼= lim← (�, γ ).

This is the Anderson–Putnam construction [AP98] and the CW complex � is referred
to as the AP-complex. Denote �k = πk(��) the ‘kth’ AP complex. The identification
above is not only through a homeomorphism, but in fact an isometry. That is, there is
a natural inclusion i : X� → �� which, under the identification above, can be identified
with C⊥0 (ā). This inclusion is an isometry with respect to the metrics in equations (3) and
(32). Denote by Hα(X�) the space of α-Hölder functions on X� with respect to this metric.

Let 0 < ε < minl∈A |vl |/4. With this choice of ε, the ε-neighborhood of
i(X�) = C⊥0 (ā) has the local coordinates (t , c) ∈ (−ε, ε)×X�. If uε : (−ε, ε)→ R

is a smooth even bump function with compact support and of integral 1, then for
any function h : X� → R, let hε : �� → R be defined as hε(t , c) = uε(t)h(c) for
(t , c) ∈ (−ε, ε)×X� and zero otherwise.

5.1. The cohomological equation for primitive substitution subshifts. This section is
dedicated to the proof of Theorem 1.5 on the solutions of the cohomological equation for
primitive substitution subshifts σ : X� → X�. That is, the goal here is to find a solution u
to the equation f = u ◦ σ − u for a given f.

LEMMA 5.1. If h : X� → R is α-Hölder, then hε ∈ S1
α−1 for α > 1. If r ∈ N and α > 2,

then the cohomology class [�hε] ∈ H 1
r ,α(��) is independent of uε.

Proof. The goal is to write

hε =
∑
k≥0

π∗k gk
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in the canonical way described in §2.1 with the appropriate bounds on ‖gk‖C1(�k)
. Using

the notation of equation (23), define hk
ε := �khε which, in the natural coordinates of the

ε-neighborhood of C⊥0 (ā), is defined as

hk
ε(t , c) = ν̂−1

k,(t ,c)

∫
C⊥k (t ,c)

hε(t , w) dνk,(t ,c) = uε(t)ν̂
−1
k,(t ,c)

∫
C⊥k (c)

h(w) dνk,c.

By the same calculation as in §4.1, ‖hk
ε − hε‖C0 ≤ Cμ‖u‖∞λ−αk . Now, letting

h−1
ε = 0, for any k ≥ 0, define δkhε = hk

ε − hk−1
ε . As such,

k∑
j=0

δjhε = hk
ε

and, since δkhε only depends on at most the first k coordinates, δkhε = π∗k gk for some
gk : �k → R. If α > 1, then

∑k
j=0 π∗k gk → hε pointwise. It remains to prove the C1

bounds for gk .
Let Pk = γ−k(π0(ā)) ⊂ �k be the preimages of π0(ā) under γ k . These points can be of

one of two types: flat points or branch points. Flat points have an Euclidean neighborhood
whereas branch points do not.

Since hk
ε is transversally locally constant, hk

ε = π∗k Hk for some Hk : �k → R. Note that
the task is to obtain C1 bounds for gk = Hk − γ ∗Hk−1.

The function Hk is supported in the λ−kε-neighborhood of Pk as follows. If z ∈ Pk is
a flat point, then in the λ−kε-neighborhood of z ∈ Pk , after identifying z with 0 in these
coordinates, Hk(t) = uε(λ

kt)hk
ε(cz), where cz ∈ C⊥0 (ā) is a point in the clopen subset of

X� corresponding to z. From this, it follows that in these local coordinates,

gk(t) = uε(λ
kt)(hk

ε(cz)− hk−1
ε (cz))

= uε(λ
kt)

[
ν̂−1
k,cz

∫
C⊥k (cz)

h(w)− h(cz) dνk,cz−ν̂−1
k−1,cz

∫
C⊥

k−1(cz)

h(w)− h(cz) dνk,cz

]

(33)

in a λ−kε-neighborhood of z ∈ Pk . Note that since h is α-Hölder, by rewriting it as in
equation (33),

|hk
ε(cz)− hk−1

ε (cz)| ≤ 2Chλ
−α(k−1)

and so ‖gk‖C0 ≤ 2λCh‖uε‖∞λ−kα . Moreover, in the neighborhood of z ∈ Pk ,

g′k = λku′ε(λkt)(hk
ε(cz)− hk−1

ε (cz))

and so

‖g′k‖∞ = λk‖u′ε‖∞|hk
ε(cz)− hk−1

ε (cz)| ≤ Chλ
k‖u′ε‖∞λ−α(k−1),

and so it follows that ‖gk‖C1 ≤ Cλ−k(α−1) for all k, and thus hε ∈ S1
α−1. The case of

z ∈ Pk being a branched point is essentially treated in the same way: equation (33)
needs to be written carefully to take into consideration the different branches coming out
of z. Indeed, equation (33) treats two branches coming out of z in the flat case, and so
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equation (33) can be used to treat the branched case with minor modifications. The details
are left to the reader.

That the cohomology class is independent of uε follows from the fact that the compactly
supported de Rham cohomology of the line is one-dimensional in top degree.

Remark 5.2. Note that the same proof can be modified to show that hε ∈ Sr
α−r for any

r < α. However, the focus is on r = 1 since the transverse Hölder regularity is what needs
to be optimized.

Definition 5.3. f : X� → R is a coboundary if there exists an f : X� → R such that
f = g ◦ σ − g. For α > 0, it is an α-coboundary if f is α-Hölder and g is (α − 2)-Hölder.
The α-Hölder cohomology H 0

α (X�) of X� is the quotient of Hα(X�) by the equivalence
relation f1 ∼ f2 if and only if f1 − f2 is an α-coboundary.

In what follows, X is the differential operator in the leaf direction.

LEMMA 5.4. For α > 2 and an α-Hölder function h on X�, h = g ◦ σ − g for some
g ∈ Hα−2(X�) if and only if hε = X� for some � ∈ S2

α−2.

Proof. Suppose hε = X�. By Lemma 5.1, hε ∈ S1
α−1, and so � ∈ S2

α−2 by Proposition 2.3.
Since uε has integral one,

h(c) =
∫ ε

−ε

hε(t , c) dt =
∫ ε

−ε

X�(t , c) dt = �(ε, c)−�(−ε, c).

Now, since hε is compactly supported in the ε-neighborhood of i(X�) and 0 =
hε(±ε, c) = X�(±ε, c), � is leafwise constant on the complement of the ε-neighborhood
of i(X�), which implies that �(ε, c) = �(−ε, σ(c)). Defining g(c) = �(−ε, c), it
follows that h = g ◦ σ − g.

Write � =∑
k≥0 π∗k �k in the canonical way described in §2.1, and, in the local

coordinates around i(X�), let (−ε, c1) ∈ C⊥k ((−ε, c2)) \ C⊥k+1((−ε, c2)). For β > 0,

|g(c1)− g(c2)|
λ−βk

= λβk|�(−ε, c1)−�(−ε, c2)|≤ λβk
∑
n≥k

|π∗n�n(−ε, c1)−π∗n�n(−ε, c2)|

≤ λβn
∑
n≥k

‖�n‖C2 ≤ λβkC�

λ−k(α−2)

1− λ−(α−2)
.

Picking β = α − 2, it follows that g has finite α − 2 Hölder norm, and so g ∈ Hα−2(X�).
Now suppose h = g ◦ σ − g and consider hε as constructed above. In the

ε-neighborhood of i(X�), define �(t , c) = g(c)+ ∫ t

−ε
uε(s)h(c) ds and so close to

i(X�), it holds that X� = hε. By construction, and by the fact that h = g ◦ σ − g, this
function satisfies hε = X� globally. The details are left to the reader.

Lemmas 5.1 and 5.4 imply that the induced map j : H 0
α (X�)→ H 1

1,α−1(��) ∼=
Ȟ 1(��; R) defined by j ([f ]) = [�fε] is injective whenever α > 2. This implies that
H 0

α (X�) is finite dimensional and concludes the proof of Theorem 1.5.
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