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We consider the process of convective dissolution in a homogeneous and isotropic porous
medium. The flow is unstable due to the presence of a solute that induces a density
difference responsible for driving the flow. The mixing dynamics is thus driven by a
Rayleigh–Taylor instability at the pore scale. We investigate the flow at the scale of
the pores using Hele-Shaw type experiment with bead packs, two-dimensional direct
numerical simulations and physical models. Experiments and simulations have been
specifically designed to mimic the same flow conditions, namely matching porosities,
high Schmidt numbers and linear dependency of fluid density with solute concentration.
In addition, the solid obstacles of the medium are impermeable to fluid and solute.
We characterise the evolution of the flow via the mixing length, which quantifies
the extension of the mixing region and grows linearly in time. The flow structure,
analysed via the centreline mean wavelength, is observed to grow in agreement with
theoretical predictions. Finally, we analyse the dissolution dynamics of the system,
quantified through the mean scalar dissipation, and three mixing regimes are observed.
Initially, the evolution is controlled by diffusion, which produces solute mixing across
the initial horizontal interface. Then, when the interfacial diffusive layer is sufficiently
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thick, it becomes unstable, forming finger-like structures and driving the system into a
convection-dominated phase. Finally, when the fingers have grown sufficiently to touch the
horizontal boundaries of the domain, the mixing reduces dramatically due to the absence
of fresh unmixed fluid. With the aid of simple physical models, we explain the physics
of the results obtained numerically and experimentally. The solute evolution presents a
self-similar behaviour, and it is controlled by different length scales in each stage of the
mixing process, namely the length scale of diffusion, the pore size and the domain height.

Key words: convection in porous media, porous media, dispersion

1. Introduction

Natural convective flows take place when density differences within a fluid domain drive
the fluid motion. Natural convection is the dominant heat and mass transport mechanism
for many flows of practical interest, both in nature (Cardin & Olson 1994; Marshall &
Schott 1999; Hartmann, Moy & Fu 2001) and in industrial applications (Krepper, Hicken
& Jaegers 2002; Bejan 2013). One of the particularly relevant ones in geophysics is the
case of convection in porous media (De Paoli 2023), in which the fluid occupies the
interstitial space of a solid porous matrix. This configuration is typical of subsurface
transport phenomena, and is relevant for petroleum migration (Simmons, Fenstemaker
& Sharp 2001), water contamination (LeBlanc 1984; Van Der Molen & Van Ommen
1988), underground hydrogen storage (Zivar, Kumar & Foroozesh 2021; Krevor et al.
2023), superficial formations in dry salty lakes (Lasser, Ernst & Goehring 2021; Lasser
et al. 2023) and sea ice growth (Wettlaufer, Worster & Huppert 1997; Feltham et al. 2006;
Middleton et al. 2016), to name a few.

Recently, this problem has been the subject of extended investigations due to the
implications it can bear for geological carbon sequestration (Huppert & Neufeld 2014;
Emami-Meybodi et al. 2015). In this process, carbon dioxide (CO2) is injected into
underground formations located 1–3 km beneath the Earth’s surface, with the aim of
permanent storage. After injection, carbon dioxide remains in a supercritical state due
to the high pressure at the injections depths, but its density is lower compared with that
of the resident fluid (brine), and the injected volume of carbon dioxide migrates on top of
the brine layer (MacMinn et al. 2012). This situation is undesired, because it may cause a
further migration of carbon dioxide to the upper layers, eventually leading to a return of
CO2 into the atmosphere. However, carbon dioxide is partially soluble in brine, and when
these fluids mix a heavier solution (CO2 + brine) forms. When a sufficiently thick layer
of this denser mixture builds up, it may become unstable and form convective instabilities
(De Paoli 2021). These flow structures have a favourable effect on the efficiency of the CO2
dissolution mechanism, since they contribute to fluid mixing (i.e. CO2 permanently stored
in brine) in a much more effective manner compared with pure diffusion (Ennis-King,
Preston & Paterson 2005; Xu, Chen & Zhang 2006). On the other hand, the process is made
complex by the presence of these nonlinear instabilities, and making reliable predictions
of the dissolution dynamics is a non-trivial task.

The dissolution of CO2 in brine is a problem characterised by an integral length
scale corresponding to the height of the reservoir, which may be of the order of tens or
hundreds of meters in geological formations of practical interest (Huppert & Neufeld
2014). Therefore, resolving all the flow scales, from the pores to the reservoir scale, is
not an option with the present computational and experimental capabilities. A possible
approach commonly employed to revolve the large scales of the flow consists of analysing
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the flow at the Darcy scale, i.e. the flow is not resolved within the pores, but the quantities
of interest (pressure, velocity, concentration and temperature) are obtained as the average
over a representative volume containing many pores (Nield & Bejan 2017). The majority
of the works on convective flows in porous media currently available in the literature refer
to this case.

The mixing process of CO2 and brine is idealised considering an homogeneous
porous slab with a constant concentration difference applied at the horizontal boundaries
(Rayleigh–Bénard), or as a semi-infinite (one-sided) domain where the concentration
is fixed at top and no flux is applied at bottom boundary (Hewitt 2020). In the
Rayleigh–Bénard–Darcy case, the system attains a statistically steady state, which has
been predicted theoretically (Horton & Rogers 1945; Lapwood 1948) and recently
accurately described numerically in two (Hewitt, Neufeld & Lister 2012; De Paoli,
Zonta & Soldati 2016; Wen et al. 2018; Ulloa & Letelier 2022) and three dimensions
(Hewitt, Neufeld & Lister 2014; De Paoli et al. 2022a; Dhar et al. 2022), also at
high Rayleigh–Darcy numbers, Ra∗ (the Rayleigh–Darcy number indicates the relative
importance of convective and diffusive contributions in a flow through a porous medium).
The one-sided-Darcy configuration is characterised by a transient behaviour (Riaz et al.
2006; Fu, Cueto-Felgueroso & Juanes 2013) consisting of three main phases: (i) an initial
diffusive regime in which the mixing layer grows and becomes eventually unstable (De
Paoli, Zonta & Soldati 2017), (ii) a convective phase characterised by a constant dissolution
rate (Hidalgo et al. 2012) and (iii) a finite-size regime when the strength of convection
reduces gradually (Slim et al. 2013).

The Rayleigh–Bénard–Darcy and the one-sided-Darcy systems have been well
characterised numerically and theoretically in case of thermal convection at the Darcy
scale, i.e. when the flow structures are large compared with the scale of the pores
(Hewitt 2020). Numerical results suggest that a linear relationship exists between the
dimensionless mass transfer coefficient (Sherwood number, Sh) and the Rayleigh–Darcy
number (Ra∗), in both the Rayleigh–Bénard–Darcy case (Hewitt et al. 2012; Pirozzoli
et al. 2021) and during the convective regime of the one-sided-Darcy system (Slim 2014;
De Paoli et al. 2017). Experimental measurements in these configurations (Neufeld et al.
2010; Backhaus, Turitsyn & Ecke 2011; De Paoli, Alipour & Soldati 2020; Brouzet,
Méheust & Meunier 2022), however, suggest a different qualitative and also quantitative
behaviour compared with the corresponding Darcy simulations, with a nonlinear scaling of
Sh with Ra∗. This discrepancy is likely due to non-Darcy effects (Liang et al. 2018), i.e. to
the pore-induced flow dynamics not captured by Darcy simulations. Therefore, resolving
the flow and the solute transport at the pore scale is crucial to make reliable models to
incorporate in large-scale simulations and to predict the underground fluids migration and
mixing, and it represents the main motivation for this work.

When a fluid flows through a matrix of solid obstacles, the fluid follows a
random-walk-type path (Woods 2015). If the fluid is carrying a solute, in addition to
molecular diffusion, solute spreading may occur due to pore-scale change of flow direction
(mechanical dispersion), heterogeneities in the aquifer (large-scale dispersion) or other
mechanisms, such as dead-end pores (anomalous dispersion). In this work, we only
refer to mechanical dispersion, i.e. we assume that the medium is homogeneous and
without dead-end spaces. On the one hand, mechanical dispersion produces additional
spreading of solute and can be several orders of magnitude more effective than molecular
diffusion (Delgado 2007). It has been also observed (Eckel et al. 2022) that the presence
of the finger pattern and the counter-current flow structure enhance the longitudinal
spreading of the solute compared with unidirectional dispersion of a single-solute plume.
This additional spreading is responsible for the reduction of the local density gradients,
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diminishing the strength of convective motions and coupling convection and diffusion
as mechanisms controlling the mixing process. To quantify the relative importance of
pore structure, material properties and driving force on the overall heat or mass transport
process, pore-resolved convective flows have been recently employed in the framework of
thermal Rayleigh–Bénard convection, in both experiments and simulations. Chakkingal
et al. (2019) observe that the flow structure and the heat transfer coefficient are determined
by the relative size of thermal length scale (boundary layer thickness) and porous length
scale (average pore space). These properties determine the penetration of the plumes in
the boundary layer region, which is responsible for the heat or mass transfer rate. In a
complementary work, Ataei-Dadavi et al. (2019) observed that while at low Rayleigh
numbers the transport mechanism is less efficient than in free-fluid Rayleigh–Bénard
convection, at larger Rayleigh numbers the classical Nu vs Ra scaling (Grossmann &
Lohse 2000, 2001) is recovered. The nature of this transition has been investigated by Liu
et al. (2020). They used two-dimensional direct numerical simulations to examine in detail
the microscale flow field through a bead pack. They observed that the transition between
these two regimes is controlled by two physical mechanisms induced by the porous matrix:
(i) the presence of obstacles makes the flow more coherent, with the correlation between
temperature fluctuation and vertical velocity enhanced and the counter-gradient convective
heat transfer suppressed, leading to heat transfer enhancement; and (ii) the convection
strength is reduced due the impedance of the obstacle array, corresponding to heat transfer
reduction. They observed that the scaling crossover occurs when the thickness of the
thermal boundary layer is comparable to the averaged pore length scale. In addition to the
porous structure and the Rayleigh number, in case of thermal convection, the boundary
layer thickness and the heat transfer coefficient are determined also by the value of
thermal conductivity of the solid and liquid phases (Korba & Li 2022; Zhong, Liu &
Sun 2023).

The discussed findings refer to systems in which the medium is permeable to the scalar
(heat or solute) transported. In the frame of solute dispersion, two major differences
arise compared to thermal convection, namely the solid is usually impenetrable (over the
flow time scales) to the solute, and the ratio between momentum and solute diffusivity
(Schmidt number, Sc) is typically about two orders of magnitude larger than the ratio
between momentum and heat diffusivity (Prandtl number, Pr). Gasow et al. (2020,
2021) focused on solute convection investigating solute transport at the pore scale in
Rayleigh–Bénard configuration, with the aim of deriving corrections to be included in
Darcy models to account for the obstacle-induced solute dispersion. They observed that the
pore-induced dispersion, which may be as strong as buoyancy, also affects the momentum
transport and it is determined by two length scales (the pore length scale and the domain
height). Moreover, the dissolution coefficient (Sh) is observed to depend also on the
Schmidt number (Gasow, Kuznetsov & Jin 2022), in addition to the Rayleigh number
and the pore structure (Liu et al. 2020). These numerical studies, which represent a
fundamental step to make large-scale predictions of dissolution in porous media, are
still computationally limited to two dimensions, moderate Rayleigh numbers and large
porosity values. In comparison, experiments can achieve larger Rayleigh numbers and
values of porosity that are more representative of geological formations. In contrast, in the
instance of solutal convection, the Rayleigh–Bénard and the semi-infinite configurations
are hard to tackle experimentally because of the limitations associated with keeping the
solute concentration constant at the boundaries. The porous Rayleigh–Taylor instability,
relatively less studied compared with the corresponding Rayleigh–Bénard and one-sided
configurations, is an excellent candidate to overcome this obstacle, and it is the object of
this work.
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A porous Rayleigh–Taylor system consists of two miscible fluids of different density
initially arranged in an unstable configuration and immersed in a porous matrix. After an
initial diffusive phase (Wang et al. 2016, 2018), the flow is driven by convection, and due
to the transient nature of this system, the mixing rate of the two fluids varies in time. In
geophysical applications, it is crucial to determine the mixing rate of the involved fluids,
to be able to make reliable predictions on the evolution of the volume of subsurface flow.
The porous Rayleigh–Taylor system has been studied at the Darcy scale with the aid of
Hele-Shaw cells and Darcy simulations (De Wit 2020). The flow behaviour is quantified
by the mixing length, i.e. the vertical extension of the mixing region. The growth rate of
the mixing length is controlled by the combined action of buoyancy (density difference)
and drag (viscous dissipation through the medium) (Boffetta & Musacchio 2022; De Paoli
et al. 2022b). In the case of miscible fluids, the role of diffusion across the fluid–fluid
interface is also crucial (Gopalakrishnan et al. 2017), as it weakens convection by reducing
local density gradients.

As a result of this time-dependent finger growth process, the mixing dynamics is also
transient, and it may be quantified via the mean scalar dissipation rate (Hidalgo et al.
2012). The mean scalar dissipation is particularly convenient because it can be exactly
related to other flow quantities, e.g. the averaged concentration fluctuations, and it has been
already described numerically at the Darcy scale (De Paoli et al. 2019a; De Paoli 2023).
However, in the Rayleigh–Taylor case, the behaviour of dispersion cannot be captured by
Darcy simulations despite its crucial role, as it can influence dramatically the onset of the
gravitational instabilities (Menand & Woods 2005) and the mixing dynamics. In this flow
configuration, the full flow dynamics has been studied with the aid of three-dimensional
simulations by Sardina et al. (2018), where the authors consider a thermal convection at
relatively large values of porosity (0.6–1). They proposed a model to incorporate the effect
of the medium within a friction coefficient to be included in the Navier–Stokes equations.
The case of solutal convection in geological formations may be markedly different, since
the porosity is low (0.2–0.4) and the Schmidt numbers about two orders of magnitude
larger than in the thermal case, and we aim precisely at this gap.

We investigate a Rayleigh–Taylor instability in a saturated, homogeneous and isotropic
porous medium. We present the results from Hele-Shaw type experiments with bead
packs and two-dimensional numerical simulations, where we resolve the flow at the
pore scale at high Rayleigh–Darcy numbers, high Schmidt numbers and low values
of porosity. Experiments and simulations are specifically designed to reproduce the
same fluid and medium properties, namely linear density–concentration dependency,
matching porosities and porous medium impermeable to the transported scalar (solutal
convection). In the experiments, porous media and fluid properties are varied, and different
flow regimes are observed, namely a Darcy-type flow (with the flow structures larger
than the pore length scale) and a diffusion–dispersion regime, with the strength of
mechanical dispersion being equivalent or dominant with respect to molecular diffusion.
Simulations are first validated against the experimental measurements in terms of
evolution of the mixing length, and then used to quantify the evolution of the mixing
rate, measured by the mean scalar dissipation. Several dissolution regimes have been
identified. Initially, the flow is controlled by diffusion. This regime is followed by a
convection-dominated phase. The average concentration profiles follow a self-similar
behaviour, which we describe theoretically throughout the flow dynamics. In the final
regime finite-size effects reduce the solute transport. Our experimental and numerical
results are used to explain the evolution of the flow with the aid of physically grounded
models.

987 A1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.328


M. De Paoli, C.J. Howland, R. Verzicco and D. Lohse

Our findings are relevant to the convection of miscible fluids in porous media. However,
we note that some differences occur when CO2 sequestration is considered, including
the non-monotonic relationship between the fluid density and the solute concentration
(Hidalgo et al. 2015), and the partial miscibility of the phases involved (Huppert & Neufeld
2014). These effects, as well as additional limitations (dimensionality of the systems and
idealised structure of the media) later discussed in detail, prevent a direct application of
the present findings to CO2 dissolution in geological formations. Nonetheless, these results
represent a fundamental ingredient required to build a modelling framework for large-scale
simulations, as they are obtained in a well-defined and controlled physical system.

The paper is organised as follows. In § 2 the problem is formulated. We describe
the experimental and the numerical set-ups in § 3. We present our results in terms of
qualitative flow dynamics (§ 4), mixing length and concentration profiles (§ 5), flow
structure and wavenumber (§ 6). In § 7 we quantify the dissolution rate, which we describe
by physical models in each of the regimes identified. Finally, in § 8 we summarise our
findings and provide a brief perspective on future research directions.

2. Problem formulation

The process of convective dissolution is studied here in the frame of the Rayleigh–Taylor
instability. It can be modelled as two layers of miscible fluids having different density,
initially separated by a flat interface and located in an accelerated reference frame (Boffetta
& Mazzino 2017). The process is simulated in the context of porous media flows, mimicked
with the aid of a porous layer (height H, width L) made of spheres (diameter d). The
fluids fully saturate the medium, have the same viscosity (μ) but different density and are
arranged in an unstable configuration, with the heavy fluid (density ρ0) lying on top of the
lighter fluid (density ρw). Therefore, the maximum density difference within the system
is �ρ = ρ0 − ρw. The system, consisting of a porous slab saturated with two fluids in an
accelerated field (gravity acceleration, g), is sketched in figure 1(a). The density difference
is induced by the presence of a solute, which is quantified by the solute concentration C,
taking its maximum at the upper layer (C = C0) and minimum at the lower layer (C = 0).
The reference frame (x, z) is defined as in figure 1(a) such that it is centred at the mid height
of the domain and z is aligned with g but in opposite direction. We aim at mimicking a
system with horizontal boundaries (z = ±H/2) that are impermeable to both fluid and
solute, and we consider

u · n = 0,
∂C
∂n

= 0, (2.1a,b)

with n the unit vector perpendicular to the boundary.
In the present flow configuration, the dimensionless parameters controlling the system

can be grouped into three main categories: medium parameters (Darcy number, porosity),
fluid parameters (Schmidt number) and flow parameters (Rayleigh, Rayleigh–Darcy,
Péclet and Reynolds numbers).

We consider a simplified configuration in which the medium is homogeneous and
isotropic. Assuming the structure obtained from the sphere packing as an isotropic and
homogeneous medium, it can be fully described by two global quantities, namely porosity
and permeability. The porosity, φ, represents the ratio between the volume of fluid and the
total volume (fluid and solid) of the domain considered, and therefore it varies between
φ = 0 (pure solid) and φ = 1 (pure fluid). The permeability, k, quantifies the ability of the
porous matrix to allow a fluid to flow through it. For a given geometry of the medium, the
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∂C/∂n = 0, u . n = 0

∂C/∂n = 0, u . n = 0

Heavy fluid

ρ0, C = C0

Light fluid

ρw, C = 0

x

g

z

H

L

dd

z = H/2

z = −H/2

5 mm

(a) (b) (c)

Figure 1. Sketch illustrating the system considered. (a) Domain with explicit indication of the boundary
conditions (no flux of mass or solute through the horizontal walls) and domain dimensions in horizontal (L)
and vertical (H) directions. The reference frame (x, z) as well as the initial position of the interface (red dashed
line) are indicated, with the heavy fluid (density ρ0, concentration C = C0) initially lying on top of the lighter
fluid (ρw, C = 0). (b) In the experiments, a transparent medium consisting of monodisperse beads and fluids
of different colours are used. (c) In the simulations, the geometry consists of an array of spheres (diameter d)
fully saturated with fluid. The fluid carrying the solute moves thought the spheres.

Darcy number

Da = k
H2 , (2.2)

quantifies the relative dimension of the microscopic pore scale (
√

k) and the macroscopic
length scale (H) (Hewitt 2020).

The dimensionless parameter that quantifies the fluid properties is the Schmidt number,
which is the ratio of momentum diffusivity (kinematic viscosity, μ/ρo) to mass diffusivity
D,

Sc = μ

ρ0D
. (2.3)

The dimensionless flow parameters and the relevant flow scales are obtained by
combining domain, medium and fluid properties. A possible velocity scale of the flow
is the buoyancy velocity

U = g�ρk
μ

, (2.4)

which is obtained at the equilibrium between driving forces (gk�ρ) and viscous
dissipation through the medium (μ).

Multiple length scales are effective in this problem. One can consider as a reference
length scale the distance � over which advection and diffusion balance (Slim 2014)

� = φD
U

. (2.5)

Possible alternatives include the characteristic bead size (sphere diameter, d) or the
domain height (H). We show that each of these scales is relevant in different phases
of the dissolution process. Solutal convection in pure fluids is characterised by the
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competing effect of convection (solute-induced density differences) and dissipation or
diffusion, respectively. The relative importance of these contributions is measured by the
concentration Rayleigh number based on the domain size (Ra) or on the diameter of the
spheres (Rad),

Ra = g�ρH3

μD
, Rad = g�ρd3

μD
= Ra

(
d
H

)3

, (2.6a,b)

respectively. These parameters include convection and dissipation, but do not consider the
presence of the medium, which has a stabilising effect on convection due to the additional
friction on the surface of the pores. The ratio of the strength of these contributions is
estimated by the Rayleigh–Darcy number

Ra∗ = g�ρkH
μφD

= UH
φD

= H
�

= Ra Da
φ

. (2.7)

We remark that the concentration Rayleigh number (2.6a,b) and the Rayleigh–Darcy
number (2.7) are linked to the porous medium properties via the Darcy number (2.2) and
the porosity. Finally, two more flow parameters are used to determine whether the flow can
be modelled as a Darcy flow or not. Following Hewitt (2020), the flow can be considered
as a Darcy-type flow, if the length scale of the flow structures is much larger than the
representative volume over which the quantities are averaged. It is obtained for (i) viscous
forces dominating over inertia at the pore scale and (ii) length scale of the convective flow
large compared with the pore size. These conditions are fulfilled if

Re = Ra∗ Da1/2

Sc
� 1, Pe = Ra∗ Da1/2 � 1, (2.8a,b)

with Re and Pe the pore-scale Reynolds number and the Péclet number, respectively. In this
study, only a few experiments (and no simulations) fall in the Darcy case, and the relative
flow dynamics is discussed later in § 4. Note that in this definition of Pe it is assumed that
the pore-scale length used as a length scale for Pe is

√
k. An alternative choice consists of

using d, which would produce larger values of Pe (by a factor of approximately 7.5 in this
configuration).

The flow scales of the experiments are listed in table 1, whereas the dimensionless
parameters corresponding to present experiments and simulations are reported in table 2.

3. Methodology

We investigate convective mixing in confined porous media. The flow driving force
consists of the density differences induced by the presence of a solute. We consider
two miscible fluids characterised by a linear dependency of density with concentration.
The fluids are immersed in a fully saturated, homogeneous and isotropic porous
medium. Laboratory experiments and numerical simulations are used to investigate the
problem. In § 3.1 we present the experimental set-up, consisting of a bead pack and an
optical measurement system. Pore-resolved two-dimensional simulations, where circular
impermeable obstacles are employed to mimic the solid matrix of the porous medium, are
discussed in § 3.2.

3.1. Laboratory experiments
The laboratory experiments are performed with the aid of a thick Hele-Shaw cell filled
with monodisperse beads and saturated with two fluids of different densities in an
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Fluid Medium Flow

ϑ ωM �ρ d φ k � U
Name [◦C] [–] [kg m−3] [mm] [–] [m2] [m] [m s−1]

E1 19.8 0.00112 0.877 1.00 0.37 7.09 × 10−10 9.205 × 10−5 6.632 × 10−6

E2 19.6 0.00225 1.760 1.00 0.37 7.09 × 10−10 4.588 × 10−5 1.331 × 10−5

E3 20.0 0.00450 3.528 1.00 0.37 7.09 × 10−10 2.289 × 10−5 2.667 × 10−5

E4 20.0 0.00895 7.035 1.00 0.37 7.09 × 10−10 1.148 × 10−5 5.319 × 10−5

E5 20.0 0.00116 0.903 1.75 0.37 2.17 × 10−9 2.921 × 10−5 2.090 × 10−5

E6 19.6 0.00225 1.760 1.75 0.37 2.17 × 10−9 1.498 × 10−5 4.075 × 10−5

E7 19.7 0.00450 3.521 1.75 0.37 2.17 × 10−9 7.489 × 10−6 8.152 × 10−5

E8 19.5 0.00894 7.014 1.75 0.37 2.17 × 10−9 3.759 × 10−6 1.624 × 10−4

E9 20.1 0.00111 0.868 3.00 0.35 5.07 × 10−9 1.229 × 10−5 4.699 × 10−5

E10 19.6 0.00235 1.837 3.00 0.35 5.07 × 10−9 5.812 × 10−6 9.936 × 10−5

E11 20.0 0.00453 3.547 3.00 0.35 5.07 × 10−9 3.009 × 10−6 1.919 × 10−4

E12 19.2 0.00905 7.098 3.00 0.35 5.07 × 10−9 1.504 × 10−6 3.840 × 10−4

E13 19.7 0.00112 0.872 4.00 0.37 1.13 × 10−8 5.791 × 10−6 1.054 × 10−4

E14 19.7 0.00225 1.760 4.00 0.37 1.13 × 10−8 2.867 × 10−6 2.129 × 10−4

E15 19.9 0.00451 3.529 4.00 0.37 1.13 × 10−8 1.430 × 10−6 4.269 × 10−4

E16 19.9 0.00892 7.007 4.00 0.37 1.13 × 10−8 7.203 × 10−7 8.475 × 10−4

Table 1. Dimensional parameters of the performed experiments. The domain size is constant (L = H =
200 mm, B = 28.5 mm). Fluid temperature (ϑ), solute mass fraction (ωM) and density contrast (�ρ) are
reported. Fluid viscosity and diffusivity are μ = 9.2 × 10−4 Pa s−1 and D = 1.65 × 10−9 m2 s−1, respectively.
Water density is assumed to be ρ0 = 103 kg m−3. Bead diameter (d), medium porosity (φ) and permeability
(k) are indicated. Flow length scale � and velocity scale U, defined as in (2.5) and (2.4), respectively, are also
reported.

unstable configuration. The parameters that can be varied are the density difference �ρ

between the fluids, and the diameter d of the beads. Combining these parameters one can
determine the flow reference scales, namely � and U. The experiments performed are listed
in table 1.

In the following, we discuss the experimental set-up, the measurement procedure, the
fluid properties and the porous medium properties. The employed Hele-Shaw cell used is
sketched in figure 2(a). It consists of a hexagonal container with uniform thickness. The
shape is designed to simplify the fluid extraction/injection phases. The hexagonal walls
(made of PMMA layers, thickness 8 mm) are transparent to allow optical access to the
flow, and are kept in place by a thick frame (25 mm) and bolts. A gasket (2 mm thick) is
placed between the frame and the walls to prevent fluid leakage. The cell is initially filled
with monodisperse glass spheres, then it is vibrated to consolidate the medium, and finally
the two fluids of different density are injected via the upper and lower valves. Note that a
gate (thickness 1 mm, material polyethylene terephthalate, PET), as indicated in the side
view in figure 2b), initially divides the upper and the lower sides of the cells to prevent
fluids from mixing. A 1-mm-high housing, equipped with a rubber seal all along its length,
is obtained on the front wall, and the gate fits in. The gate can slide through an opening
located on the back side of the cell, which has additional seals held in place by a plastic
frame.

When the medium is consolidated and the fluids are injected, the cell is placed in a stable
configuration (with light fluid on top of the heavy one). The gate is later removed and the
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Figure 2. (a) Schematic representation of the Hele-Shaw cell. The cell is filled with beads and different fluids
from the upper and lower valves. The gate keeps the fluids initially separated. The reference frame of the lab
(x, y, z) is shown. The area of the gate (highlighted in green) and the measurement region (highlighted in red)
are discussed in detail in the panels (b) and (c). (b) Side view of the gate mechanism. The gate is removed and
the fluids can mix. A system of seals is used to prevent mixing of the fluids before the gate is open. After the
gate is extracted, the cell is rotated about the x-axis (i.e. upside down) as indicated by the red arrow. (c) Front
view of the measurement region. After the cell is rotated, the fluids are in an unstable configuration (heavy
solution on top of the lighter fluid) and the recording starts.

cell rotates about the x-axis (red arrow in figure 2b) to turn in the initial unstable condition
(heavy fluid on top of the light one) chosen to initialise the experiment. The measurements
are performed only in the central portion of the domain, indicated in red in figure 2(a)
and discussed in figure 2(c), which has size H × L × B = 200 × 200 × 28.5 mm3. The
cell is illuminated on one side by a LED light (Phlox LEDW-BL 300 × 300 mm2) and on
the opposite side a high-resolution camera (Nikon D850 with lenses AF Nikkor, 50 mm,
1 : 1.8D) records the evolution of the flow at an acquisition rate that varies between 0.05
and 2 frames per second.

To allow here a reliable comparison of experimental results against the direct numerical
simulations, the fluids employed in the experiments have been specifically selected
because of the linear dependency of the density of the solution with respect to the solute
concentration (Slim et al. 2013; De Paoli et al. 2022b). This condition is indeed met not
only in the simulations presented here, but also in most of the numerical works available
in the literature.

The employed fluids are water and an aqueous solution of KMnO4 (Potassium
Permanganate, Thermo Scientific, ACS reagent). We consider that the dynamic viscosity,
μ = 9.2 × 10−4 Pa s, is constant and independent of the solute concentration (Slim et al.
2013). Similarly, we assume that the diffusion coefficient is not sensibly affected by
solute concentration, and corresponds to D = 1.65 × 10−9 m2 s−1. While water density
(ρw) is nearly constant among the experiments (it is only dependent on temperature, ϑ),
the density of the aqueous solution of KMnO4 can be varied by changing the solute
concentration in the aqueous solution, C, which is used to control the density difference
between the heavy and the light fluid. The mass fraction of the solution is defined as

ω(C) = C
ρ(C)

. (3.1)

The respective dependency of density, mass fraction and concentration can easily be
determined. The density of the mixture, ρ(C), can be well approximated by a linear
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function of the solute concentration, i.e. it meets the desired condition:

ρ = ρ0

[
1 + �ρ

ρ0C0
(C − C0)

]
. (3.2)

The concentration–density profiles as well as additional details are reported in
Appendix A.1.

With the aim of mimicking a homogeneous and isotropic porous medium, we fill the
cell with monodisperse spheres having diameter d, with 1 mm ≤ d ≤ 4 mm. Provided that
the spheres are monodisperse, the diameter of the beads and the porosity of the medium
are the two parameters that determine the medium property, i.e. the permeability. In the
following, we discuss bead size, medium porosity and permeability. Again, a summary of
all the experimental parameters considered is reported in table 1.

The porosity of the medium indicates the ratio between the volume of fluid used to
fill the cell and the total cell volume (fluid and beads). We measure the porosity by
comparing the volume of water required to fill the cell with and without the beads. The
preparation of the medium is crucial in determining the cell porosity and permeability. In
this work, the cell is vibrated before injecting the fluid so that the medium consolidates.
Following this procedure, the beads form a close random packing and the expected
value of porosity in case of monodisperse spheres is φ = 0.359–0.375 (Haughey &
Beveridge 1969; Dullien 1991). The values of porosity measured experimentally are
φ = 0.37 for all nominal diameters considered, except d = 3.00 mm, in which the value of
porosity measured is slightly lower (φ = 0.35). This difference can be possibly attributed
to the lower quality of the beads with d = 3.00 mm, which have a wide distribution of
diameters (see Appendix A.2). Indeed, the more dispersed the diameters, the lower the
value of porosity that can be achieved.

The permeability is inferred from the Kozeny–Carman correlation, i.e.

k = d2

36kC

φ3

(1 − φ)2 , (3.3)

where kC is the Carman constant. This phenomenological correlation is obtained
for creeping flow, and it is found to be independent of the particle shape (Dullien
1991) (for non-spherical particles, d is the equivalent diameter). The Carman constant
originally proposed within the Kozeny–Carman formulation (monodisperse spheres) is
kC = 4.8 ± 0.3, usually approximated to 5, which gives 36kC = 180. At a later time,
Ergun proposed the Blake–Kozeny formulation, in which the coefficient is 36kC = 150.
Both formulations are based on fitting of experimental data for flow through granular
beds. Other formulations have been proposed to improve the predictions at low or high
values of porosity, as well as to include the effect of the Reynolds number. A detailed
review on the possible values of kC is provided by Xu & Yu (2008), where a more general
phenomenological formulation is also proposed. For the specific case of monodisperse
spheres packed randomly, Zaman & Jalali (2010) have shown that the Kozeny–Carman
formulation (3.3) with kC = 5 provides good results, and this is the correlation we employ.

The flow is recorded by the camera. The raw images of the measurement region are
analysed to quantify the flow evolution. An example is shown in figure 3, where an
instantaneous intensity field obtained from experiment E12 is discussed. The measurement
region (see figure 2c) consists of the central squared portion of the cell, having size
H × H = (200 mm)2. The denser solution, initially on top, is much darker than the lighter
one (transparent). The thickness of the cell is large, and the light intensity detected at the
upper layer is weakly evolving during the experiment. Therefore, for better accuracy and
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Figure 3. Processing of images. (a) Normalised intensity profile I1, defined in (3.4), shown over the entire
measurement region for the experiment E12. The initial position of the interface (z/H = 0, red solid line) is
reported. The instantaneous position of the interface, defined as an isocontour of I1, is also shown (blue line).
(b) Corrected intensity profile I2, defined as in (3.5). The corrected intensity I2 is lower than 1 within the
mixing region. (c) Horizontally averaged intensity profiles. The lower edge of the mixing region, determined
by the position where Ī2 is lower than a given threshold value, is reported (dashed red line). This is related to
the mixing length h, discussed in detail in § 5. See also supplementary movie 1 available at https://doi.org/10.
1017/jfm.2024.328.

due to symmetry of the system, we consider only the lower portion of the cell for the
experimental measurements (z/H ≤ 0).

The preprocessed fields are analysed to produce intensity profiles and infer the
time-dependent evolution of the interface. The preprocessing consists of several steps,
illustrated in figure 3. The initial light intensity distribution I(x, z, t = 0), obtained from
the raw images, is used to compute and store the initial mean light intensity values of
the high (IH , z/H > 0) and low (IL, z/H < 0) fluid density layers. The normalised light
intensity field

I1(x, z, t) = I(x, z, t) − IH

IL − IH
, (3.4)

is suitable to visualise the instantaneous flow configuration. It is used, for instance, to
identify the instantaneous position of the interface of the mixing region (figure 3a).
However, we observe in figure 3(c) that the horizontally averaged intensity profile Ī1 varies
smoothly within the mixing region, and therefore it is not a good indicator to determine
the edge of the interface. We introduce the corrected intensity (figure 3b), I2, defined as

I2(x, z, t) = 2[ 1
2 + I1(x, z, t) − Î1(x, z, 0)], (3.5)

with Î1(x, z, 0) the initial intensity field I1(x, z, t = 0) computed with a moving average
(squared window of size 10 pixels). We observe that I2 is lower than 1 only within the
mixing region and this property, which is also clear from the horizontally averaged profiles
in figure 3(c), makes I2 a more reliable observable to quantify the extension of the mixing
region (red dashed line).

3.2. Numerical simulations
In the numerical part of this study, we solve the Navier–Stokes equations for momentum,
subject to the Oberbeck–Boussinesq approximation. This means that variations in the
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density are only significant in the buoyancy term. We assume the flow to be incompressible
and impose ∇ · u = 0 on the velocity field u. We consider variations in density to be
linearly related to the concentration field C, which itself satisfies an advection–diffusion
equation. We therefore consider the following governing equations

∂tu + (u · ∇)u = −ρ−1
0 ∇p + ν∇2u − gβCẑ, (3.6)

∂tC + (u · ∇)C = D∇2C, (3.7)

where ρ0 is a reference density, ν = μ/ρ0 is the kinematic viscosity, D the solutal
diffusivity, g gravitational acceleration and β the solutal contraction coefficient describing
the linear relationship between density and concentration. The pressure p satisfies a
Poisson equation such that a divergence-free velocity field is ensured.

We solve (3.6) and (3.7) in a two-dimensional domain of height H and of width√
3H. Periodic boundary conditions are imposed in the horizontal (x) direction for all

flow variables. At the top and bottom walls (z = ±H/2), we impose the boundary
conditions (2.1a,b), i.e. zero mass flux of solute (∂zC = 0) and no penetration (w = 0,
where w is the vertical velocity). In addition, since the pore-scale flow is resolved, the
no-slip condition applies along these walls (u = 0). In the following subsections, we
describe the properties of the solid porous matrix that occupies a portion of the simulation
domain, as well as details of the numerical implementation for the flow solver and the
conditions at the liquid–solid boundaries.

The numerical simulations are designed to match the porosity of the experiments,
namely φ = 0.37. To consider a two-dimensional set-up most similar to the monodisperse
spherical bead pack of the experiments, we construct the solid phase in the simulations
from circles of a given diameter d. Most past studies of a similar configuration (e.g. Sardina
et al. 2018; Liu et al. 2020) that explicitly resolve the pore-scale dynamics with a
liquid–solid boundary are performed at a higher porosity, allowing for a wide range of
configurations for the solid phase. Since we aim to match a low experimental porosity
of φ = 0.37, we prescribe a hexagonal arrangement of the circular beads, as shown in
figure 4(a), which allows for free percolation of the fluid in two dimensions at these low
porosities. Such perfectly regular arrangements are not representative of the porous matrix
in the experiments, so we also repeat our simulations in domains in which random shifts
from this hexagonal arrangement are made to the positions of the solid circles. An example
of these random shifts is shown in figure 4(b). To prevent regions of trapped fluid, we limit
the random perturbations to the grey areas in that schematic, such that the (black) solid
regions do not overlap.

As discussed in § 3.1, the permeability k is key to understanding the effect of the porous
medium properties on the flow. For example, the velocity scale U of (2.4) relies on the
balance between buoyancy, permeability and viscosity. While the determination of the
permeability for three-dimensional arrays of spheres is well studied, for two-dimensional
flows (array of cylinders with infinite length) the situation has been investigated less. By
definition, the value of permeability would be determined by measuring the pressure drop
across the medium for different flow rates. Happel & Brenner (2012) suggest that kC = 5
holds also for two-dimensional media. They considered a flow perpendicular to an array
of cylinders (indicated as perpendicular flow in Xu & Yu 2008) and observed that for
0.25 < φ < 0.55, the Carman constant can very well approximated as kC = 5. Therefore,
also in the two-dimensional case, we assume that (3.3) with kC = 5 applies.

We use the highly parallelised AFiD (advanced finite-difference) code to perform
our simulations. The governing equations (3.6) and (3.7) are solved using second-order
central finite differences to compute spatial derivatives, with time-stepping performed

987 A1-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.328


M. De Paoli, C.J. Howland, R. Verzicco and D. Lohse

Lx = �3H

(a)

(b)

(c)

C = 0

u = 0 ∂zC = 0 at z = ±H/2

C = C0

Figure 4. Schematic of the porous medium layout in the simulations. (a) Regular hexagonal distribution of
solid circles used in the simulations. (b) An example of random perturbations to the regular pattern. Grey areas
mark the possible area in which each solid circle can move without overlapping another. (c) Schematic of the
total domain for H/d = 70, with solid particles in grey, and the fluid domain coloured according to the initial
concentration.

using an implicit Crank–Nicolson method for the vertical diffusive terms (∂zz) and a
third-order explicit Runge–Kutta scheme for all other terms. A fractional-step method
is used to impose the divergence-free condition at each time step, where a Poisson
equation is solved for the pressure. Further details of the numerical scheme can be
found in Verzicco & Orlandi (1996) and van der Poel et al. (2015). A multiple-resolution
method is applied to the concentration field for accurate simulation at low diffusivities,
following Ostilla-Monico et al. (2015). Cubic Hermite interpolation is used to interpolate
the concentration field to the velocity grid for the buoyancy forcing, and to interpolate the
velocity field to the refined grid for advection of the concentration field.

The solid phase is handled using the immersed boundary method (Verzicco 2023).
We follow the direct forcing approach of Fadlun et al. (2000) such that zero velocity is
imposed in the solid during the implicit step of the numerical solution. In this approach,
linear interpolation is used at the first grid nodes in the fluid from the solid boundary,
so that the interface is captured more accurately than the grid resolution. Similarly for the
concentration field, we ensure zero normal gradient at the immersed boundary by specially
treating these boundary nodes.

The collection of performed simulations are listed in table 2. For each set of parameters,
we perform three simulations: one with the regular hexagonal packing defining the
centre positions of the solid circles, and two with (distinct) random perturbations to this
arrangement. Each simulation is initialised with zero velocity, and an initial concentration
field of

C(z)|t=0 = C0[H(z) + A(z)W], A(z) = 0.1sech2(100z/H), (3.8a,b)

where H is the Heaviside function, and W is a white noise random variable taking values
between −1 and 1, producing a region of random perturbations of width H/100 across the
interface. Uniform grid spacing is used in all directions, with a resolution of at least 32 grid
points per solid diameter for the velocity grid and a resolution 4 times that for the refined
concentration grid. The largest computational grids are used for simulations S10–S12,
where H/d = 70, with the base grid at a resolution of 4096 × 2365 and the refined grid at
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Name H/d φ Sc Ra Rad Ra∗ Pe Re

E1 200 0.37 558 4.535 × 1010 5.669 × 103 2.173 × 103 0.289 0.0005
E2 200 0.37 558 9.099 × 1010 1.137 × 104 4.359 × 103 0.580 0.0010
E3 200 0.37 558 1.824 × 1011 2.280 × 104 8.737 × 103 1.163 0.0021
E4 200 0.37 558 3.637 × 1011 4.546 × 104 1.742 × 104 2.320 0.0042

E5 114 0.37 558 4.667 × 1010 3.126 × 104 6.846 × 103 1.595 0.0029
E6 114 0.37 558 9.099 × 1010 6.096 × 104 1.335 × 104 3.110 0.0056
E7 114 0.37 558 1.820 × 1011 1.219 × 105 2.671 × 104 6.222 0.0112
E8 114 0.37 558 3.626 × 1011 2.429 × 105 5.320 × 104 12.395 0.0222

E9 67 0.35 558 4.490 × 1010 1.515 × 105 1.627 × 104 5.795 0.0104
E10 67 0.35 558 9.495 × 1010 3.204 × 105 3.441 × 104 12.256 0.0220
E11 67 0.35 558 1.834 × 1011 6.189 × 105 6.646 × 104 23.672 0.0425
E12 67 0.35 558 3.670 × 1011 1.239 × 106 1.330 × 105 47.370 0.0850

E13 50 0.37 558 4.506 × 1010 3.605 × 105 3.454 × 104 18.393 0.0330
E14 50 0.37 558 9.101 × 1010 7.281 × 105 6.976 × 104 37.150 0.0666
E15 50 0.37 558 1.824 × 1011 1.460 × 106 1.398 × 105 74.474 0.1336
E16 50 0.37 558 3.622 × 1011 2.898 × 106 2.777 × 105 147.861 0.2652

S1 17 0.37 100 5.268 × 108 1.000 × 105 3.334 × 103 5.102 0.0510
S2 17 0.37 100 1.666 × 109 3.162 × 105 1.054 × 104 16.135 0.1614
S3 17 0.37 100 5.268 × 109 1.000 × 106 3.334 × 104 51.024 0.5102

S4 35 0.37 100 4.214 × 109 1.000 × 105 6.669 × 103 5.102 0.0510
S5 35 0.37 100 1.333 × 1010 3.162 × 105 2.109 × 104 16.135 0.1614
S6 35 0.37 100 4.214 × 1010 1.000 × 106 6.669 × 104 51.024 0.5102

S7 52 0.37 100 1.422 × 1010 1.000 × 105 1.000 × 104 5.102 0.0510
S8 52 0.37 100 4.498 × 1010 3.162 × 105 3.163 × 104 16.135 0.1614
S9 52 0.37 100 1.422 × 1011 1.000 × 106 1.000 × 105 51.024 0.5102

S10 70 0.37 100 3.372 × 1010 1.000 × 105 1.334 × 104 5.102 0.0510
S11 70 0.37 100 1.066 × 1011 3.162 × 105 4.218 × 104 16.135 0.1614
S12 70 0.37 100 3.372 × 1011 1.000 × 106 1.334 × 105 51.024 0.5102

Table 2. Dimensionless parameters of the performed experiments (E#) and the simulations (S#). The domain
aspect ratio of the experiments and the simulations is 1 and

√
3, respectively.

a resolution of 16384 × 9459. This resolution is noticeably higher than in previous studies
(e.g. Sardina et al. 2018), and allows us to accurately simulate the small-scale structures
arising from buoyancy-driven flows at high Sc.

4. Flow dynamics

We now present the results of the experiments and simulations. The experiments are
performed by changing the bead diameter (d) and the density difference (�ρ). Simulations
are performed for different values of diameter-based Rayleigh number (Rad) and domain
to bead size (H/d).

Under certain flow conditions, a fluid flow through a porous medium may be considered
as a Darcy flow. In a Darcy flow, the length scale of the flow structures is much
greater than the representative volume over which the quantities are averaged (Hewitt
2020). This representative volume typically includes a number of solid particles and the
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E8, d = 1.75 mm, t = 206 s

E12, d = 3 mm, t = 121 s E16, d = 4 mm, t = 59 s

E4, d = 1 mm, t = 640 s
(a) (b)

(c) (d)

Figure 5. Flow evolution (raw images of laboratory experiments) for different bead size, d, and same density
difference, �ρ ≈ 7 kg m−3. The permeability is increased while the driving force remains unchanged. The
flow structure changes remarkably from (a–d), due to the change in the size of the fingers relative to the beads.
For visualisation purposes, only the central lower portion of the domain is shown, approximately corresponding
to 1/8 ≤ x/H ≤ 7/8 and z/H ≤ 0 (length of scale bar is 2 cm).

interstitial fluid. Darcy conditions are met when (i) the flow is controlled by viscous
forces at the pore scale (Re � 1), and (ii) the length scale of the convective flow is large
compared with the pore size (Pe � 1). One can observe from table 2 that only a few
experiments (E1–E3 and E5) fall in the Darcy case. A qualitative observation of this result
is provided by looking at the raw images in figures 5 and 6.

In figure 5, we consider the variation of the flow topology for the same driving force
(�ρ ≈ 7 kg m−3) and different values of permeability (i.e. different d). Both Re and Pe
are sensitive to variations of the diameter of the beads. However, Re remains reasonably
lower than unity for E4, E8, E12 and E16, whereas the Péclet number changes remarkably
up to O(102). This reflects the fact that the length scale of the convective flow is of the
same order or smaller than the pore size. The transition is apparent when going from E4
in figure 5(a), where the fingers width is at least a few diameters, to E12 in figure 5(c),
where one single plume penetrates and branches into the interstitial space. In E16, shown
in figure 5(d), the permeability is considerably larger than in previous cases. As a result,
the driving force is extremely vigorous compared to the viscous drag, with the velocity U
approximately twice larger than in E12 (see table 1). With Pe ≈ 150, the solute spreads
quickly also in the direction perpendicular to the view, which makes the light intensity
field blurry.

In figure 6, we consider the opposite scenario, i.e. for the same permeability (d =
1.75 mm) we vary the driving force (different �ρ). In this case, there is an increase in
Re, which however remains considerably lower than 1. The Péclet number increases of
about one order of magnitude between E5 and E8, and we can appreciate this smooth
transition from the intensity fields. The Pe of E5 is just above unity and the width of the
flow structures, shown in figure 6(a), is about 5d–10d. Increasing the density difference
makes the structures progressively smaller (E6, E7), and eventually the fingers propagate
as the thin filamentary plumes (E8) shown in figure 6(d). Although the characteristic size
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E6, �ρ = 1.8 kg m–3, t = 748 s

E7, �ρ = 3.5 kg m–3, t = 368 s

E5, �ρ = 0.9 kg m–3, t = 2156 s

E8, �ρ = 7.0 kg m–3, t = 206 s

(a) (b)

(c) (d)

Figure 6. Flow evolution (raw images of laboratory experiments) for the same bead size, d = 1.75 mm, and
different density differences, �ρ. The driving force is increased while the permeability remains unchanged.
The flow structure changes remarkably from (a) to (d), due to the change in the size of the fingers relative to
the beads. For visualisation purposes, only the central lower portion of the domain is shown, approximately
corresponding to 1/8 ≤ x/H ≤ 7/8 and z/H ≤ 0 (length of scale bar is 2 cm).

of these plumes is comparable to the pore diameter, splitting in multiple branches is still
observed.

We have shown that the experimental results may present in some cases features that
can be captured by a Darcy model when Pe is low. By contrast, the Péclet number for
each numerical simulation satisfies Pe ≥ 5, producing a flow that does not fulfil the Darcy
assumptions outlined in (2.8a,b). Indeed, thin fingers penetrating the pore space are always
observed in the simulations, as shown in figure 7 through a series of snapshots of the
concentration field for various pore-scale Rayleigh numbers Rad. In each case, the early
time snapshots highlight an initial instability on the scale of the beads, with thin plumes
growing from the interface at z = 0. As time goes on, larger structures begin to develop in
the mixing layer, with coherent fingers spanning the centre of the domain. Even as these
large-scale fingers grow, the dynamics at the tips of the fingers continues to consist of thin
percolating structures, similar to what is observed in the experiments in figure 6(b–d).

Comparing the first two columns in figure 7 with each other, the main effect of changing
Rad is in the lateral diffusion of the concentration field. The late-time concentration
observed in figure 7( j) appears somewhat smeared out, with smoother gradients compared
with the equivalent panel at higher Rad (figure 7k). The same Rayleigh number but a
different geometry of the medium are considered in the central and right columns. The
minimum structure size is set by the pore space, and the width of the fingers (relative to
H) increases from H/d = 70 (central column) to the H/d = 35 (right column). In all the
simulations, the concentration field is strongly influenced by the hexagonal lattice structure
of the medium, with fingers percolating aligned at an angle. Although figure 7 only features
simulations with regular bead patterns, we show in the following sections that quantitative
measures of the mixing are not significantly affected by the random obstacle perturbations
shown in figure 4. Furthermore, when time is scaled with H/U as in figure 7, the size of
the mixing layer appears consistent across all three simulations, regardless of the control
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Figure 7. Snapshots of the concentration field from simulations S10, S12 and S6. In the first two simulations,
H/d = 70 is fixed, and only the Rayleigh number Rad is varied from 105 to 106 (left to centre). In the third
simulation (S6, right column), Rad = 106 matches the centre column but H/d is decreased to 35, so the
obstacles are larger compared with the domain height. Each snapshot is presented at a given fraction of the
time scale H/U, with time increasing top to bottom (as specified in the left column). Videos showing the
evolution of the concentration field in selected simulations (S4, S6 and S12) are available as supplementary
movies (movie 2, movie 3 and movie 4, respectively).

parameters Rad and H/d. We proceed to analyse this more quantitatively in the following
section.

5. Mixing length and concentration profiles

The mixing length is defined as the vertical extent of the region where solute concentration
is non-uniform. Multiple ways to quantify the mixing length have been proposed (Cook,
Cabot & Miller 2004), depending on whether a bulk-focused measure is taken or it tracks
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the spread of the fastest growing fingers (e.g. 0.01 ≤ C̄/C0 ≤ 0.99; see Gopalakrishnan
et al. 2017). The latter method is used here to determine the mixing length obtained
from the experiments, where a threshold value corresponding to 0.96 is applied to the
horizontally averaged corrected light intensity as defined in (3.5), Ī2. The mixing length is
then computed assuming that the flow is symmetric with respect to the domain centreline,
and a time correction is also applied (see § A.3).

The threshold-based definition discussed previously would track the vertical extremes
of the finger growth over time. Alternatively, we can define a mixing length based on the
mean concentration profile, and this is the approach we use for the simulations. For this,
we can assume that the mean (i.e. horizontally averaged) profile takes a piecewise linear
profile

C̄(z, t)
C0

=

⎧⎪⎨
⎪⎩

0 z ≤ −h/2,

1/2 + z/h |z| < h/2,

1 z ≥ h/2.

(5.1)

Here, the overbar denotes a horizontal average, h is the mixing length and the initial
interface position is taken as z = 0. This assumed profile satisfies the integral relation

h = 6
C2

0

∫ ∞

−∞
C̄(1 − C̄) dz, (5.2)

which we can use as a systematic definition of the mixing length h in the simulations.
This integral definition provides a more useful statistical measure of the mixing layer than
the threshold-based definition, but is impossible to compute with good accuracy from the
experiments due to the considerable thickness of the cell and the opacity of the dye.

The dimensionless mixing length scaled with respect to � is shown for experiments
(colourbar) and simulations (legend) in figure 8. Simulations are presented for both the
regular bead pattern (solid lines) and the perturbed bead pattern (dotted lines) as shown
in figure 4. Asymptotically, both experiments and simulations follow the scaling h = 2Ut
(dashed line). The buoyancy velocity U represents the terminal velocity of a rising (falling)
parcel of light (heavy) fluid surrounded by heavy (light) fluid, and it is achieved at the
equilibrium between the driving force, represented by buoyancy, and the drag due to
viscous forces within the medium. This model is a simplified representation of the flow,
and any diffusion effect or interaction with the flow structures is neglected. However, it
provides a good first-order estimate for the growth of the mixing region. The observed
behaviour gives a precise indication of the flow dynamics: after a starting phase in which
the flow is influenced by the initial condition, the late-stage dynamics is controlled by
convection, with the mixing layer growing at the characteristic buoyancy velocity U.

In three-dimensional porous systems, Sardina et al. (2018) showed that the mixing
layer grows linearly for low values of porosity (φ = 0.6), whereas it follows the classical
turbulent quadratic scaling when the porosity approaches 1. This suggests that a linear
growth of the mixing region is expected also for the values of porosity considered in this
study. However, the additional degree of freedom provided by the third spatial dimension
may have an effect on the velocity at which the plumes spread: compared with the
two-dimensional case, more pathways will be available to the individual fingers, which
can spread more horizontally. As a result, we expect that during the convective regime the
mixing length will still grow at a rate that is constant in time and lower compared with
the two-dimensional case. A uniform growth of the mixing layer is also observed in two-
and three-dimensional Darcy flow at large Rayleigh–Darcy numbers (Boffetta, Borgnino
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Figure 8. Dimensionless mixing length scaled with respect to � for experiments (colourbar) and simulations
(legend). Simulations are shown for the regular pattern (solid lines) and the randomly perturbed pattern (dotted
lines) as detailed in figure 4. In the experiments, mixing length is computed assuming that the flow is symmetric
with respect to the domain centreline, and a time correction is also applied (see § A.3). Data are only plotted
up to the time when the fingers reach the edge of the domain, so when h = H. Asymptotically, experiments and
simulations follow the scaling h = 2Ut (dashed line).

& Musacchio 2020; Borgnino, Boffetta & Musacchio 2021). Also in this case, when
comparing the evolution of two- and three-dimensional flows some differences emerge.
The growth rate of the mixing length is larger in two dimensions than in three dimensions
(Borgnino et al. 2021), and the transition between these regime occurs sharply (Boffetta &
Musacchio 2022), as soon as the domain thickness is larger than the wavelength of the most
unstable mode. The nature of this transition in pore-resolved flows has not been explored
yet. At the Darcy scale and at moderate Rayleigh–Darcy numbers, a superlinear scaling
has been observed (De Paoli, Zonta & Soldati 2019b), which has been interpreted has a
finite size effect (Boffetta & Musacchio 2022; De Paoli et al. 2022b), i.e. the time/space
available for the fingers before touching the horizontal boundaries is insufficient to reach
this asymptotic regime.

In the experiments, variations of solute concentration within the mixing layer cannot be
inferred with good accuracy. By contrast in the simulations, we have all the information
to quantify how the solute is distributed across the mixing region. Specifically, in figure 9
we show the time evolution of the horizontally averaged concentration profile C̄(z, t) for a
given simulation, in this case S12. This averaging is only performed over the fluid fraction
of the domain. In figure 9(a), we present the mean concentration over the full height of
the domain. The profile is constant in the regions above and below the mixing layer, and
transitions between 0 and C0 in between, with this mixing layer expanding over time. At
very early times, before the emergence of the Rayleigh–Taylor instability, we expect the
mean profile to develop diffusively. This is confirmed by figure 9(b), where the early time
profiles of mean concentration are plotted against a rescaled spatial variable z/

√
Dt. The

profiles collapse, suggesting a self-similar development at this stage, and agree well with
the analytic solution for a diffusing interface shown by the dashed black line. The profiles
do not perfectly tend to 0 and C0 in this panel since the thin diffusive interface is contained
within the region seeded with initial noise. Once the Rayleigh–Taylor instability develops
and saturates, the dynamics are controlled by a balance between the buoyancy driving
and the drag provided by the porous medium. We therefore expect the buoyancy velocity
scale U as defined in (2.4) to play an important role in the spread of the solute. Indeed,
by plotting the mean concentration against the rescaled dimensionless coordinate z/Ut,
we observe further a self-similar behaviour, with C̄ remaining close to a linear profile
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Figure 9. Vertical profiles of the horizontally averaged concentration field C̄(z, t) for simulation S12:
(a) plotted over the domain height; (b) plotted against the diffusive similarity variable; (c) plotted against
height rescaled using the buoyancy velocity.

within the mixing layer. Since the result of figure 9(c) is consistent with the assumption of
(5.1), we are confident that the resulting mixing length expression (5.2) is reliable for our
simulations.

6. Flow structure and wavenumber

The flow structure is first discussed qualitatively with the aid of experimental
measurements, and then quantitatively using the numerical results.

In figure 10 we consider the interface evolution for two different experiments, namely
E2 and E12. In figure 10(a), the evolution of the fluid–fluid interface is reported from
early (blue) to late (brown) times. The interface is computed from the normalised intensity
fields I1, as discussed in § 3.1. The flow around the beads is recorded at a high resolution,
and the position of the interface is reconstructed. An example of the behaviour of the
interface at the scale of the pores is reported in the inset of figure 10(a), where a squared
region with side H/20 is magnified. From this qualitative view of the evolution of the
interface, we observe that the structures of the convective flow are much larger than the
beads diameter. To more quantitatively evaluate the interface shape at different heights,
we consider the space–time maps in figures 10(b) and (c), taken at z/H = −0.05 and
z/H = −0.10, respectively, as indicated with the black arrows in figure 10(a). These maps
are obtained from the local values of raw light intensity (I) at that height z normalised
by the maximum value within the picture (Imax). We observe that, at both heights, the
characteristic wavelength of the interface is larger than the beads size, which is a feature
typically observed in Darcy-type flows. In addition, we also observe that the lower the
measurement location, the later the interface appears, and the larger the amplitude of the
interfacial oscillations. Similarly, the time-dependent interface evolution for experiment
E12 is reported in figure 10(d). In this case, the flow corresponds to a high-Pe flow, and the
wavelength of the interfacial structures are comparable in size with the interstitial space,
i.e. with the diameter of the beads. Space–time maps of normalised intensity taken at
different heights (figure 10e, f ) reveal more clearly that in this case the flow has a behaviour
that is very different from the previous one, with thin fingers penetrating into the unmixed
region. This analysis, although qualitative, provides information about the flow structure
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Figure 10. Interface and flow structure evolution for two different experiments. The instantaneous fluid–fluid
interface is reported from early (purple) to late (brown) times (see also supplementary movie 1). For
visualisation purposes, only a portion of the entire domain width is shown. Experiment E2 is shown in (a),
where the inset corresponds to a squared region of side H/20. Panels (c) and (d) report the space–time intensity
maps taken at z/H = −0.05 and z/H = −0.10, respectively, as indicated with the black arrows in panel (a),
obtained from the local values of raw light intensity (I) at that height z normalised by the maximum value
within the picture (Imax). The time-dependent interface evolution for experiment E12 is reported in panel (d),
where the inset corresponds to squared region of side H/10. Here the width of the flow structures is comparable
with the interstitial space, i.e. with the diameter of the beads. Space–time maps of normalised intensity taken
at different heights (e, f ) reveal more clearly that in this case the flow has a behaviour that is very different from
E2, with thin fingers penetrating individually into the unmixed region.

in different conditions, from a dissipation-controlled flow (E2) to a buoyancy-controlled
flow (E12).

We now turn to the simulations to provide some quantitative results on the wavelength
of the finger structures. Since we can only capture the lower edge of the interface in the
experiments, it is not possible to investigate the evolving dynamics of the fingers at the
centre of the mixing layer. By contrast, in the simulations we have the full details of the
flow field, and can make more quantitative statements about the time evolution of the finger
structures. We track the evolution of the finger width by considering the concentration
profile in horizontal cuts near the initial interface position z = 0. In the cases where we
position the solid beads in a regular hexagonal packing, we can take a horizontal cut
through the domain that only contains the liquid phase. This is important for analysis
of the finger width, for which we will take advantage of the horizontal periodicity and use
Fourier transforms. Specifically, we take the Fourier transform of the concentration field
in the x-direction at a fixed height zm to obtain Ĉ(k, t), and then define the mean horizontal
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Figure 11. (a) Space–time plot of the concentration profile C(x, t) just above the initial interface height z = 0
from simulation S12. (b) Time series of the mid-height finger wavelength as calculated using (6.1) for each
simulation with a regular bead pattern.

wavelength of the plumes as

λ(t) =

∫ ∞

0
k−1|Ĉ(k, t)|2 dk∫ ∞

0
|Ĉ(k, t)|2 dk

. (6.1)

As shown in figure 11, the finger structures at the centre of the domain exhibit a coarsening
behaviour, with the mean wavelength increasing over time. This coarsening is consistent
across all the simulations at varying Rad and H/d. After initial transient phase related to
the onset of the Rayleigh–Taylor instability, the wavelength exhibits a power-law scaling
of t1/2. Such a scaling is often associated with a diffusive process, although in figure 11
the collapse is observed in terms of the advective scale U rather than the diffusivity D.
This result of a scaling close to t1/2 is in fair agreement with the Darcy simulations of
De Paoli et al. (2019a), where the mean wavenumber κ ∼ 1/λ exhibits a t−0.6 scaling
during the growth of the mixing layer. Boffetta et al. (2020) also observe t1/2 scaling for
the horizontal wavenumber in three-dimensional Darcy simulations of Rayleigh–Taylor
instability, finding a collapse with λ ∼ √

Dt. This diffusive behaviour is attributed to
nonlinear processes, including plume merging and coarsening, and it is not a simple direct
consequence of molecular diffusion. This contrasts to our pore-scale simulations, where
the rate of coarsening is independent of the molecular diffusivity. As the mixing layer
grows in our simulations, and the fingers coarsen to scales larger than a few multiples
of the pore scale, the Darcy assumption seems to become more relevant, as would be
expected.

7. Mean scalar dissipation

Numerical simulations allow accurate local measurements of concentration gradients.
They are used here to infer the local mixing state of the system via the mean scalar
dissipation,

χ = D〈|∇C|2〉, (7.1)

where 〈·〉 stands for volume average over the fluid volume. The evolution observed for
χ is similar across all the considered simulations, and it is illustrated in figure 12 for
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Figure 12. Evolution of the mean scalar dissipation (χ) over time (t) for simulation S6. The time is made
dimensionless with (d/U). Three different simulations are shown, corresponding to the parameters as reported
in table 2 and different arrangements of the obstacles (regular and perturbed patterns, corresponding to solid
and dotted lines, respectively). A few concentration fields in different phases of the process are also shown
(regular pattern).

simulation S6. We observe that four main regimes can be identified here: (i) an initial
diffusive regime, followed by (ii) a linear instability, (iii) a convection-driven regime, and
(iv) a final shutdown phase. In this section, we discuss these phases of the mixing process
in detail.

The mean scalar dissipation can be related to other global quantities of the flow (Hidalgo
et al. 2012; De Paoli 2023), such as the dissolution rate (in case of systems permeable to
solute at the boundaries) or the volume-averaged squared concentration, 〈C2〉. Given our
no flux boundary conditions for concentration, the relation

∂t〈C2〉 = −2χ, (7.2)

holds and will be used in the following to describe the evolution of the dissipation rate.
We now consider the volume-averaged scalar dissipation rate over time for all

simulations, reported in figure 13. A natural length scale to be used to analyse the results
during the diffusive regime is �, defined in (2.5), and therefore time is scaled with φ�/U.
In this frame, all simulations nicely collapse onto the same curve in the initial diffusive
phase, and we provide in the following an analytical description of the mixing process.

The fluid is initially motionless, with a step-like concentration field. As a result, one
can neglect any velocity contribution and assume that the concentration field is uniform
in horizontal direction. It follows that the initial development, t/(φ�/U) < 3 × 103, is
described by a purely diffusive one-dimensional solution, where

C = C0

2

[
1 + erf

(
z

2
√

Dt

)]
. (7.3)

From this expression, we can derive the scalar dissipation rate by

χ = D〈|∇C|2〉 = D
H

∫ H/2

−H/2
|∂zC|2 dz ≈ D

H

∫ ∞

−∞
|∂zC|2 dz =

√
D

8πt
C2

0
H

. (7.4)
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Figure 13. Dimensionless mean scalar dissipation rate over dimensionless time obtained from the numerical
simulations (with regular and perturbed bead patterns, corresponding to solid and dotted lines respectively).
Black dashed line indicates the diffusive evolution derived in (7.5).

This expression made dimensionless with UC2
0/(φH) can be expressed as a function of

t/(φ�/U) as

φχ

UC2
0/H

= 1√
8π

(
t

φ�/U

)−1/2

. (7.5)

The corresponding behaviour is shown in figure 13 (black dashed line). It is in agreement
with the numerical findings since all simulations, regardless of their Rad and H/d, nicely
collapse onto the analytical prediction. The same solution obtained in (7.4) can be derived
using (7.2) with the diffusive solution (7.3), which gives

χ =
√

D
8πt

C2
0

H
g(ξ), with g(ξ) = erf(ξ) − erf

(
ξ√
2

)√
2 e−ξ2

, (7.6)

and ξ = H/(2
√

Dt). Note that during the diffusive regime ξ � 1 and g(ξ) ≈ 1, consistent
with (7.4).

The system leaves this diffusive behaviour as soon as convective instabilities develop,
i.e. when finger-like structures form. These structures stretch the interface, providing a
larger area for diffusion to act over and thus promoting mixing (with a corresponding
increase in χ ). The time at which the instabilities become significant depends both on
the magnitude of the initial perturbation applied to the concentration field, and on the
extension of the region at which this perturbation is applied.

At later times, buoyancy-driven fingers formed at the initial fluid–fluid interface grow
towards the horizontal walls. This process is on one hand controlled by convection, which
drives the fingers elongation and the corresponding increase of their interfacial extension,
and on the other hand by diffusion, which reduces the concentration gradient across the
fingers interface in time (Gopalakrishnan et al. 2017). In addition, the presence of solid
obstacles makes the fingers more prone to split, possibly increasing further the fluid
mixing.

We provide a first estimate for the maximum dissipation rate in the convective regime
by considering that dissipation mainly takes place within the mixing layer, where local
non-zero concentration gradients exist. Outside the mixing layer the fluid is nearly
homogeneous in concentration. The volume-averaged dissipation rate can therefore be
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Figure 14. Dimensionless mean scalar dissipation rate over dimensionless time obtained from the numerical
simulations (with regular and perturbed bead patterns, corresponding to solid and dotted lines respectively,
colours as in figure 13). The black dotted line, corresponding to a dimensionless value of 1/2π from (7.9),
refers to the maximum mean dissipation rate in the convective regime. The alternative estimate of 1/6 derived
in (7.11) is also shown as a red dotted line. The thicker black dashed line denotes the time-dependent decreasing
mean dissipation, as predicted by (7.15), in the same regime. The fitting parameter β = 0.75 is chosen such that
the estimate tends to 0.1 as t → ∞.

approximated as

χ = D〈|∇C|2〉 ≈ D
h
H

〈|∇C|2〉ML, (7.7)

where 〈·〉ML denotes an average value across the mixing layer. By assuming that the
convective fingers stretch the interface around the mixing layer, we can approximate the
mean scalar gradient in the mixing layer as the gradient of (7.3) at the interface, thus as

|∇C| ≈ C0

2
√

πDt
. (7.8)

Combining these approximations with the result of § 5 for the growth of the mixing region
(h ≈ 2Ut), we arrive at the estimate

χ ≈ D
2Ut
H

C2
0

4πDt
= 1

2π

UC2
0

H
. (7.9)

This expression (black dotted line) proves to be an overestimate in figure 14. The
overestimation is expected since, in the frame of the interface, the approximation given
by (7.8) is the maximum gradient rather than the average over a certain scale.

Similarly to what is observed during the diffusive regime, the dissipation rate can
also be estimated here from the bulk squared concentration. In the following argument,
we take the exact relation (7.2) and assume that dt〈C2〉 ≈ dt〈C̄2〉. This implies that the
leading-order effect of dissipation is on mixing the mean concentration C̄, but does not
mean that dominant contribution to the dissipation is from the mean profile. We recall from
figure 9(c) that, during the convective regime, the mean concentration field is linear within
the mixing region. Then we can approximate the horizontally averaged concentration as

C̄(z, t)
C0

=

⎧⎪⎨
⎪⎩

0 for − H/2 ≤ z ≤ −h/2,

1/2 + z/(2Ut) for |z| < h/2,

1 for h/2 ≤ z ≤ H/2,

(7.10)
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χ = 0

χ =/ 0
h(t)H

L

λ

δ

δ(t)
δ(t)

s = Li
s = 0  

n

s

(b)(a)

Figure 15. Model for the evolution of the interface in the convective phase. (a) The entire domain (dimensions
L × H) is sketched for a time t within the convective regime, when fingers have already developed. The average
width of the fingers is λ. At this time, the extension of the mixing region is h(t), and the interface between the
fluids (red line) can be approximated by a segmented line (blue). (b) Detail of the interfacial region. We assume
the interface (black solid line) has a finite and uniform thickness δ(t), and the mixing occurs within this region.
A coordinate system is defined such that s is tangential to the interface and n perpendicular to it.

which is nothing but (5.1) with h = 2Ut. Using (7.2) with approximation (7.10), we
estimate the mean scalar dissipation as

χ ≈ −1
2

d
dt

(∫ −h(t)/2

−H/2
C̄2 dz +

∫ h(t)/2

−h(t)/2
C̄2 dz +

∫ H/2

h(t)/2
C̄2 dz

)
= 1

6
UC2

0
H

. (7.11)

This result, shown as a red dotted line in figure 14, is analogous to the expression derived
in (7.9). The obtained numerical coefficient is also similar. As mentioned previously, this
estimate does not take into account local fluctuations of concentration, likely responsible
of the decrease observed for the scalar dissipation, and to that aim higher-order statistics
should be considered.

When plotted on a linear scale, as in figure 14, it becomes clear that the dissipation
rate decreases with time. The mechanism that controls the dissipation rate in this phase
is possibly due to several interplaying phenomena. While the mixing region grows at a
constant speed (h ≈ 2Ut), the concentration gradients across the fingers’ interface reduce,
owing to diffusion. In addition, the number of fingers varies in time, as well as the
extension of the interfacial region across which the fluids mix. We propose here a model
that takes into account these features of the flow and explains the decreasing behaviour of
χ in the convective phase.

A schematic model for the fluid–fluid interface is proposed figure 15(a). For any instant t
in the convective regime, fingers are considered to have all the same length, which matches
the values of the mixing length h(t). In addition, we also consider the fingers to have all
the same width, λ. We approximate the fingers shape to be straight, and as a result the
length of the interface Li to be equal to the segmented blue line in figure 15(a), which is
given by

Li(t) = L + 2
L
λ(t)

h(t). (7.12)

We introduce in figure 15(b) a coordinate system defined such that s is tangential to
the interface and n perpendicular to it. As a result, assuming an interface with uniform
thickness δ(t), the mean scalar dissipation can be computed by integrating the |∂nC|2
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across the thickness δ and along the interface length Li to obtain

χ = D〈|∇C|2〉 = DLi

HL

∫ +δ/2

−δ/2
|∂nC|2 dn ≈ DLi

HL
C2

0δ

4πDt
. (7.13)

Here, we assumed that the concentration gradient across the interface evolves diffusively
using (7.8), and took δ/(2

√
Dt) � 1. Motivated by the observations of coarsening fingers

in figure 11(b), we assume a diffusive growth for δ with an effective diffusivity of dU,
namely

δ = β
√

dUt, (7.14)

with β being a fitting parameter. Note that the effective diffusivity dU determined
here coincides with the effective longitudinal dispersion usually considered for bead
packs (Liang et al. 2018; Tsinober, Shavit & Rosenzweig 2023). We now substitute the
expressions obtained in (7.12) and (7.14) into the definition (7.13), together with the
evolution of the mixing length h = 2Ut and the wavelength measured from the simulations
λ/d = α

√
t/(d/U), as in figure 11. Finally, we obtain an expression for χ(t) in the

convective regime:

χ = C2
0U
H

β

απ

[
1 + α

4

(
t

d/U

)−1/2
]

, (7.15)

in which α = 2.39 is obtained from the numerical results of figure 11 and β = 0.75 is
obtained as a fitting parameter for the data of χ(t).

Comparison of the analytical prediction (7.15) (thick black dashed line) against the
numerical results of mean scalar dissipation is shown in figure 14. This solution captures
more accurately the evolution of the mixing process, and it is also quantitatively in
agreement with the maximum dissipation (7.9) (thin black dashed line) at early times. This
result suggests also that mixing process during the convective regime, unlike the diffusive
regime, is controlled by the characteristic pore scale of the domain, d. The solution is
indeed independent of the domain size, H/d, and the driving force, Rad.

We observe that the behaviour of χ shown in figure 14 is remarkably dissimilar
compared with the corresponding Darcy simulations (De Paoli et al. 2019a), where it
is observed to increase with time up to impingement of the fingers on the horizontal
boundaries. Hidalgo et al. (2015) observed that in presence of fluids characterised by
non-monotonic density–concentration profiles, which leads to a considerably different
flow topology, the scalar dissipation remains constant during the convective regime. We
speculate that the pore-induced dispersion effects (Dentz, Icardi & Hidalgo 2018) are likely
responsible for these differences.

During the convective regime, the fingers grow under the action of buoyancy and
eventually touch the horizontal boundaries of the domain. This event occurs approximately
at t = H/(2U), given the growth rate of the mixing region, and marks a first observable
reduction of the scalar dissipation. It is apparent that in this regime, referred here to as a
shutdown regime, the relevant flow length scale is H. Therefore, we report in figure 16(a)
the evolution of χ as a function of t/(H/U), and we observe that all curves nicely collapse
in the late stage of the flow evolution, i.e. for 0.25 ≤ t/(H/U) ≤ 1.

After the fingers impinge on the horizontal walls, the concentration field in the near-wall
regions begins to be progressively more homogeneous. This reflects the reduction of the
local concentration gradients, and therefore of the mean scalar dissipation. Mixing is still
ongoing, however, in the central portion of the domain, an area where the information that
the walls are present has not yet reached. This can be seen in figure 16(b), where we plot the
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Figure 16. (a) Dimensionless mean scalar dissipation rate against dimensionless time obtained from numerical
simulations (with regular and perturbed bead patterns, corresponding to solid and dotted lines, respectively,
colours as in figure 13). The horizontal dashed line, corresponding to a dimensionless value of 1/2π, (7.9),
refers to the maximum mean dissipation rate in the convective regime. Vertical dashed lines approximately
correspond to the time required for the fingers to reach the horizontal walls of the domain, t/(H/U) = 1/2,
and for the core of the domain to be influenced by the presence of the walls, t/(H/U) = 1. (b) Vertical profiles
of the root-mean-squared concentration from simulation S12, highlighting the uniform region of concentration
variance within the region |z| < Ut/2. Instantaneous profiles are plotted for t/(U/d) ≥ 5, each with an opacity
of 0.1.

root-mean-squared concentration profiles for a typical simulation. With height rescaled by
Ut, we observe a ‘core’ region of uniform scalar variance persists between −Ut/2 ≤ z ≤
Ut/2. The shape of this profile persists even after the fingers reach the domain boundaries.
Approximately at time t = H/U, the core of the flow is affected as well, and the entire
domain becomes more homogeneous in solute concentration, i.e. the local concentration
gradients are small and the mean scalar dissipation drops further. The overall dynamics is
controlled in this case by the domain height, however geometry and buoyancy still play a
role in determining the reduction rate of the scalar dissipation.

8. Summary, conclusions and outlook

We have studied the process of convective dissolution in porous media. We have
considered a Rayleigh–Taylor instability, consisting of two miscible fluid layers of different
density placed in an unstable configuration, with the heavy fluid on top of the lighter one.
The flow is unstable due to the presence of a solute, which induces the density differences
driving the mixing process. The porous medium consists of a confined, homogeneous
and isotropic bead pack, with the solid obstacles being impermeable to fluid and solute.
We have investigated the flow at the scale of the pores using experimental measurements,
numerical simulations and physical models. Simulations employ finite differences coupled
to the immersed boundary method, whereas experiments are performed with transparent
beads and fully miscible fluids. Experiments and simulations have been specifically
designed to mimic the same flow conditions, namely linear dependency of fluid density
with solute concentration, high Schmidt numbers (Sc = O(102)) and the same values of
porosity.

The evolution of the flow has been quantified by the mixing length h, which represents
the vertical extension of the mixing region. We have demonstrated via experiments and
simulations that the system is characterised by a linear scaling h = 2Ut, and the growth
of the mixing region is controlled by the buoyancy velocity U. This velocity is achieved
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at the equilibrium between driving forces (density contrast between the fluids, �ρ) and
viscous dissipation (drag through the medium). The solute evolution presents a self-similar
behaviour during the initial diffusive phase and during the following convective regime.
We have demonstrated this self-similarity of the flow by inspection of the horizontally
averaged concentration profiles. The flow structures have been analysed using the mean
wavelength at the centreline (λ), and also in this case a scaling holds (λ ∼ √

Ut).
Finally, we have analysed the mixing dynamics of the system, which is quantified via
the mean scalar dissipation rate, χ , and three flow regimes have been observed. The
flow is initially controlled by diffusion (χ ∼ √

D/t), which produces solute mixing
across the initial horizontal interface. When the interfacial diffusive layer is sufficiently
thick and it eventually becomes unstable, finger-like structures form and drive the flow
into a convection-dominated phase. In this case, fluid mixing is controlled by diffusion
(predominantly at the sides of the fingers) and by buoyancy-driven convection (which
makes the finger grow vertically as h = 2Ut). After an initial growth at the end of which
the dissipation rate attains a maximum value (which we predict), a reduction of the mean
dissipation rate is observed as a result of the competing effect of merging of the fingers
(negative contribution) that dominates over the growth of the mixing region (positive
contribution). To describe this behaviour, we have proposed a model of mixing that relies
on the diffusion process across the interface of the fingers. Finally, when the fingers grow
sufficiently to touch the horizontal boundaries of the domain, the scalar dissipation reduces
dramatically (shutdown regime), due to the absence of fresh fluid contributing to mixing.
We have further elucidated the physics of the observed phenomena with the aid of simple
physical models, and we have demonstrated that each regime is controlled by a different
length scale, namely the scale of diffusion, the characteristic length of the pores or the
domain height.

In this study we have focused on modelling the mixing dynamics and the flow
structure of porous media convection. We used simulations performed in two-dimensional
arrays of circular objects and experiments consisting of thin three-dimensional packs
of spherical beads (Hele-Shaw type geometry). In a porous Rayleigh–Taylor system,
at the Darcy scale, the mixing region is observed to grow faster in two-dimensional
domains than in three-dimensional ones (Borgnino et al. 2021). Unlike in the turbulent
case, the transition between these regimes occurs sharply when the thickness of the
domain exceeds the wavelength of the most unstable mode (Boffetta & Musacchio
2022). The nature of this transition in pore-resolved flows has not been explored yet,
and in the future it will be of interest to extend the present study to simulations in
three dimensions, as well as two-dimensional experiments (De et al. 2022), to allow
for a one-to-one comparison of these findings and to investigate the effect of the
dimensionality of the flow on the evolution of a pore-resolved system. At the pore scale,
three-dimensionality provides more pathways for fingers to percolate through, and the
interfacial area of three-dimensional fingers will be greater than for two-dimensional
fingers. Such effects may potentially allow for greater dispersion, and quantifying the
associated impact of the solute on the larger-scale spread will be a key focus of future
simulations.

The present findings are relative to domains having a dimension up to few hundred
pores. In contrast, geophysical applications involve formations that may be orders of
magnitude larger (Huppert & Neufeld 2014), and modelling of the entire dissolution
process may be required (Szulczewski, Hesse & Juanes 2013; Wang, Vuik & Hajibeygi
2022). For instance, in the case of carbon sequestration it is desired to determine the time
required to dissolved a prescribed fraction of the injected fluid volume, or to estimate the
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horizontal spread of the current of CO2 (MacMinn et al. 2012; De Paoli 2021). Performing
pore-scale studies of such flows is beyond the present capabilities and Darcy simulations
including the effect of dispersion are required (Dentz, Hidalgo & Lester 2023). In this
context, one remarkable finding of the present study is the behaviour of the mean scalar
dissipation during the convection-dominated regime, which is observed to decrease in
time in pore-resolved flows (see figure 14) whereas it grows in Darcy flows (De Paoli
et al. 2019a). A different behaviour is observed by Hidalgo et al. (2015) in the presence
of fluids characterised by non-monotonic density–concentration profiles. In their Darcy
simulations, this property of the fluids leads to a remarkably different flow topology with
a nearly flat interface between the two fluid layers, and the scalar dissipation remains
constant during the convective regime. We speculate that the pore-induced dispersion
effects (Dentz et al. 2018), not captured by Darcy simulations, are likely responsible for
these differences and should be accounted by suitable dispersion models developed from
pore-resolved data.

The results presented are relevant to homogeneous and isotropic porous media at the
porosity φ = 0.37. Geological formations are generally characterised by a more complex
structure, typically heterogeneous at multiple scales (Hidalgo, Neuweiler & Dentz 2022),
anisotropic (Ennis-King et al. 2005) and with porosity values that can be as low as 0.05
(Bickle et al. 2017). Exploring the effect of such irregularities of the medium on the flow
structure would represent an important extension of this study to be considered for future
works.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.328.
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Appendix A. Additional experimental details

A.1. Fluid density
Following the empirical correlations of Novotný & Söhnel (1988), the density of an
aqueous solution of KMnO4 can be determined as a function of the solute concentration
C (expressed in mol dm−3) and the temperature of the solution ϑ (expressed in ◦C) as

ρ(C, ϑ) = ρw(ϑ) + A1(ϑ)C + A2(ϑ)C3/2, (A1)
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Figure 17. Given the definition (3.1) and the empirical correlations (A1)–(A4), the relative dependence of
density of the solution, ρ, mass fraction, ω, and solute concentration, C, is obtained (blue solid lines). We
report C(ω) (a), ρ(ω) − ρw (b) and ρ(C) − ρw (c), where ρw is the water density defined as in (A2). The
profiles shown here correspond to ϑ = 25 ◦C. The fluid properties are well approximated by linear functions
(grey dashed lines).

where the water density ρw(ϑ) and the temperature-dependent coefficients A1(ϑ) and
A2(ϑ), are given by

ρw(ϑ) = +9.997 × 102 kg
m3 + 2.044 × 10−1 kg

◦C m3 · ϑ

− 6.174 × 10−2 kg
(◦C)3/2 m3 · ϑ3/2, (A2)

A1(ϑ) = +1.223 × 10−1 kg
mol

− 1.029 × 10−4 kg
◦C mol

· ϑ

+ 8.093 × 10−6 kg
(◦C)2 mol

· ϑ2, (A3)

A2(ϑ) = −1.485 × 101 kg
m3

(
dm3

mol

)3/2

+ 9.079 × 10−1 kg
◦C m3

(
dm3

mol

)3/2

· ϑ

− 7.566 × 10−3 kg

(◦C 2)m3

(
dm3

mol

)3/2

· ϑ2. (A4)

The relative dependence of density of the solution, ρ, mass fraction, ω, and solute
concentration, C, is shown in figure 17 (blue solid lines). We report here C(ω) (figure 17a),
ρ(ω) − ρw (figure 17b) and ρ(C) − ρw (figure 17c), being ρw the water density defined as
in (A2). The density of the mixture (figure 17c), ρ(C), is well approximated by a linear
function of the solute concentration (3.2) (dashed grey line).

A.2. Characterisation of the porous medium
The employed glass beads consist of clear, polished glass spheres manufactured by
various producers (Hecht Karl, Witeg). The size distribution of the beads has been
determined optically. The beads are placed in a transparent container on top of a
homogeneous light source (Phlox LEDW-BL 300 × 300 mm2). The images are recorded
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Figure 18. Beads characterisation for all diameters considered. Left column (i): distribution of the diameter
of the beads normalised with respect to the nominal diameter (dn). Central column (ii): the eccentricity of the
beads (ε) when approximated to ellipses. Right column: example of beads employed. A reference length (red
bar) corresponding to 5 mm is also indicated.

with a high-resolution camera (Nikon D 850 with lenses Sigma DG Macro 105 mm).
Details are reported in figure 18. For all bead size considered, the beads are measured by
finding the best-fitting ellipse, and the mean diameter is obtained as d = √

ab, being a, b
the major and minor axis of the ellipse, respectively. Finally, the shape is also evaluated
with the eccentricity, defined as ε = a/b. A summary of the beads size and shape is
reported in figure 18. We observe from the statistics (figure 18c-i,c-ii) and from the pictures
(figure 18c-iii), that the beads having nominal diameter dn = 3 mm present a wider
distribution of diameters and shapes compared with the other diameters (figure 18a,b,d) .

A.3. Correction for the experimental measurement of the mixing length
The first instant considered (t = 0) corresponds to first image analysed after the
experiments has started, i.e. after (i) the gate has been removed, (ii) the cell is turned
upside down and (iii) the cell is placed in front of the camera. This operation produces a
delay in the acquisition of the images, and the original time at which the flow starts cannot
be accurately determined. In addition, the influence of the initial perturbation is apparent.
The initial interface may not be flat, and plumes may form due to the gate opening or
due to operational procedure, producing a perturbation of the concentration field. Since
we observe that after an initial transition the evolution of the mixing length is linear,
we correct the time used to report the mixing length as follows. We first fit the mixing
length using a linear function, and then we determine the time t0 at which the value of this
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0t0
0

1

2

3

h/l

1 2

t/(φl/U )

3

(×104)

(×104) t0  = –2.62e + 03 φl/U

Raw data

Fit to linear growth

Figure 19. Graphical representation of the correction procedure applied to the experimental measurements.
Experiments (solid line) are fitted by a linear function (dashed line). The new time considered for the
experiments is obtained by adding the quantity t0 to the original dimensionless time t/(φ�/U).

function is zero. The new time considered for the experiments is then obtained by adding
the quantity t0 to the original dimensionless time t/(φ�/U). A graphical representation of
this correction process is shown in figure 19.
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