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Abstract

Among the vast swathes of Gondwanan sedimentary rocks in India, exposures of the Lower
Permian Talchir Formation at Manendragarh in India are exceptional for their cold marine
faunal assemblage and muddy conglomerates of possible glacial origin. They may represent a
record of the late Palaeozoic glaciation that affected Gondwana in the Permo-Carboniferous.
Although the fossil record is relatively well documented, the sedimentology of this area is not
well understood. This paper intends to fill the gap in knowledge regarding palaeogeography and
the palaeoenvironmental changes within the basin through space and time. We distinguish
conglomerates that are formed by glacial andmass flow processes. The lateral variation in facies
associations along a NNE-SSW transect in the study area identifies the depositional basin as an
interior sea that formed when the sea spilled over a steep basement ridge during a transgression.
The benthic organisms remained confined to the seaward basin margin where they only
flourished in the initial stage of basin filling. Locally derived, bioclastic storm beds are limited to
the seaward flank of the basin. Alternating phases of glaciation and interglaciation resulted in an
interbedded succession of grey shales and interglacial density flow deposits. The channels that
fed these density flows are preserved closest to the landward margin of the basin. Co-existence
of glacial diamictites and interglacial density flow deposits highlights the climatic changes in
this part of Gondwana during the Late Palaeozoic.

1. Introduction

Amidst the vast areal coverage of the Gondwanan rocks preserved in India, the Early Permian
Talchir Formation at Manendragarh is exposed over a short 2.5 km stretch and is the only site in
India where marine fossils are found. The fauna, which includes cold water varieties in
association with muddy conglomerates, is claimed to be linked to the Gondwana glaciation in
the Southern Hemisphere (Shah & Shastry, 1975; Dickins & Shah, 1979). Presently, the Indian
government is developing the area as a geological museum to preserve this fossil suite, which is
exceptional in an Indian context (Sinor, 1923; Reed, 1928; Ghosh, 1954; Bhatia & Saxena, 1957;
Dutta, 1957; Tiwari, 1958; Bhatia & Singh, 1959; Bharti & Chakraborty, 2014). Although the
fossil assemblage includes equivalents of those found in glacial Gondwana deposits on other
continents, conclusive glacial features have not been reported from this locality. Muddy
conglomerates are present, but they could simply be nonglacial mass flow deposits (Dietrich
et al. 2019). Paradoxically, deposits of mudflows or debris flows often coexist with deposits
enriched in glacial dropstones (Chiarle et al. 2007; Tiranti & Deangeli, 2015; Vesely et al. 2018;
Le Heron et al. 2022). A convincing explanation for the presence of marine black shale directly
overlying the granitic basement is still absent. This field-based work aims to account for the
sudden and dramatic change in hydraulic conditions implied by this unusual stratigraphic
relationship (marine black shale onlapping the granite basement) and to reconstruct the
variation in palaeogeography of the basin in tandem with the palaeoenvironment and
depositional dynamics. We distinguish between sedimentary features that are of direct glacial
origin and those that are more likely formed due to density flows.

2. Late Palaeozoic glaciation in Gondwana

Late Palaeozoic glaciation was conceived traditionally as a single and massive ice sheet covering
all of southern Gondwana for duration of 100 million years (cf. Veevers & Powell, 1987;
Frakes & Francis, 1988; Frakes et al. 1992; Ziegler et al. 1997; Hyde et al. 1999; Blakey, 2008;
Buggisch et al. 2011). Glaciation started in western South America during the Visean (Caputo
et al. 2008; Pérez Loinaze et al., 2010) and ended in eastern Australia during the Middle to
earliest Late Permian (Fielding et al. 2008a, 2008b, 2008c; Fielding et al. 2022). However, recent
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geochemical, isotopic age and biostratigraphic analyses have
confirmed that the Late Palaeozoic glaciation was not continuous;
rather, multiple smaller ice centres were activated at different times
and places across Gondwana (Isbell et al. 2003, 2012; Fielding et al.
2008a, 2008d). A recent study also confirmed that, instead of a
continuous 100 million-year span of glaciation, it was charac-
terized by repeated short-lived glacial epochs (P1-P4, each
spanning ~1–8million years) separated by several ice-free intervals
of similar duration (Montañez & Poulson, 2013 and references
therein; Frank et al. 2015 and references therein; Griffis et al. 2021).
Among these short-lived glacial phases, P1 (from Asselian to early
Sakmarian) and P2 (from latest Sakmarian to early Artinskian)
were the most intense, reaching their maxima and widespread
distribution of ice sheets in Antarctica, eastern South America,
Patagonia, Africa, the Arabian Peninsula, India, Australia, and
some southern Asian crustal blocks (Isbell et al. 2003, 2011;
Fielding et al. 2008a; Wopfner & Jin, 2009; Taboada, 2010; Frank
et al. 2015 and references therein). However, the P3-P4 glacial
phases were less intense, with small ice centres restricted only to
Australia (Fielding et al. 2008a, 2008c, 2008d; Frank et al. 2015 and
references therein). A recent study by Griffis et al. (2021) proposed
that the glacial maximum of the Late Palaeozoic Icehouse was
reached during the Carboniferous, not in the Permian. The warmer
ice-free periods between glacial phases vary by location within
Gondwana, being estuarine at times but also fluvial, open-marine,
fossiliferous shallow marine facies, or a variety of other
environments (Rogala et al. 2007; Fielding et al. 2008b; James
et al. 2009; Fielding et al. 2010). The extensive glaciomarine
deposits of the latest Pennsylvanian to Early Permian age (Fielding
et al. 2008d) indicate that both glaciers and ice sheets in southern
Gondwana reached sea level, requiring widespread cooling (Isbell
et al. 2012).

2.a. Records of Late Palaeozoic glaciation in India

In India, Talchir sedimentary rocks (Late Carboniferous to Early
Permian) deposited within fault-controlled half-graben-type
basins along palaeosuture lineaments such as the Damodar
Valley, Son-Mahanadi Basin and Satpura Basin (Banerjee et al.
2020) bear diagnostic glaciogenic signatures (e.g. dropstones,
glacial till deposits, glacial pavement, repeated glacial advance-
retreat cycles with shifts in the palaeoshorelines during the Talchir
sedimentation) related to Late Palaeozoic glaciation (Smith, 1963a,
1963b; Casshyap & Qidwai, 1974; Das & Sen, 1980; Casshyap &
Tewari, 1982; Eyles & McCabe, 1989; Bose et al. 1992;
Mukhopadhyay & Bhattacharya, 1994; Veevers & Tewari, 1995;
Bhattacharya et al. 2004, 2005;Maejima et al. 2004; Bhattacharya &
Bhattacharya, 2006, 2010, 2012; Chakraborty & Ghosh, 2008
Varshney & Bhattacharya, 2023). A marine embayment within
central India during the Early Permian was inferred based on the
occurrence of marine invertebrates such as bivalves, brachiopods,
gastropods, polyplacophora, crinoids, bryozoans, foraminifers,
ostracods, among other invertebrates at Umaria andManendragarh,
and Dudhi Nala (Bhatia & Singh, 1959; Ghosh, 2003; Bharti &
Chakraborty, 2014). Till deposits relating to at least three phases of
glacial advance and retreat during Talchir sedimentation are
recorded in different sub-basins of the Damodar Valley (Smith,
1963a, 1963b; Sen, 1977, 1991). Trace fossil studies, cyclicity
assessments and sequence stratigraphic architecture across differ-
ent sub-basins of the Damodar Valley and the Satpura Basin
revealed that storm-tide-influenced shallow marine deposition
took place over these basal Talchir glaciogenic sediments due to

alternating glacial advance-retreat phases (Bhattacharya, 2013;
Bhattacharya & Bhattacharya, 2015) and are correlated with the
climatic changes at the end of P1–P2 phases of Late Palaeozoic
glaciation (Bhattacharya, 2013; Bhattacharya & Bhattacharya,
2015; Varshney & Bhattacharya, 2023). Based on the palae-
ontological evidence, the Manendragarh glacier was correlated to
the late stage of the P1 phase of Late Palaeozoic glaciation by Shah
and Shastry (1975) and Dickins and Shah (1979). Our detailed
sedimentary facies analysis in Manendragarh once again reflects
such short-term climatic transitions at the end of the P1 phase of
Late Palaeozoic glaciation.

2.b. Geological background of the study area

The dominantly siliciclastic Talchir Formation is exposed on the
banks of the River Hasdeo in Manendragarh, Surguja district,
Chhattisgarh, central India, and was deposited in the Rewa sub-
basin of the NW-SE-oriented Son-Mahanadi Basin (Fig. 1a;
Mukherjee et al. 2012; Ram-Awatar et al. 2013; Acharya, 2018).
Similar to all other Gondwanan basins of Peninsular India, the
Rewa Sub-basin is a fault-controlled half-graben-type basin along a
NW-SE-oriented palaeosuture of the Son-Mahanadi Basin (Fig. 1a;
Acharya, 2018; Banerjee et al. 2020; Dasgupta, 2021). In the north,
the Malwa Ridge separates the Rewa Sub-basin from the Son Basin
(left side of the Malwa Ridge shown in Fig. 1a) and from the
Mahanadi Graben in the south, bounded by two ridges, named the
Manendragarh-Pratapur Ridge and the Naughata Ridge (Fig. 1a;
Mukherjee et al. 2012; Dasgupta, 2021). There is substantial
evidence in favour of glacially influenced sedimentation (e.g.
dropstones, glacial till deposits, glacial pavement) throughout the
Talchir Formation. (Pascoe, 1968; Mukhopadhyay et al. 2010;
Varshney & Bhattacharya, 2023). Marine fossil assemblages have
been recorded from several basins in Peninsular India where the
Talchir Formation crops out, as well as along the Tethyan margin
(Venkatachala & Tiwari, 1987; Ghosh, 2003; Mukhopadhyay et al.
2010; Bharti & Chakraborty, 2014; Mondal et al. 2021). However,
supposedly glacial sediments and Early Permian marine fossils
together occur nowhere in India except in the study area near
Manendragarh (Bose et al. 1992; 1997; Chakraborty, 1993;
Mukhopadhyay & Bhattacharya, 1994; Bhattacharya et al. 2004;
Bhattacharya& Bhattacharya, 2015; Varshney&Bhattacharya, 2023).
The faunal assemblage of Manendragarh includes Eurydesma,
Deltopecten and Aviculopecten, in addition to bryozoans, crinoids
and foraminifers (Frakes et al. 1975; Dickins & Shah, 1979;
Venkatachala & Tiwari, 1987; Chandra, 1996). The fossil assemblages
found in the studied locations have strong similarities with fossils
found in other Gondwana basins in western Australia, Brazil, the
Falkland Islands, Oman and South Africa (Table 1; Ghosh 2003;
Fielding et al. 2006; Stephenson et al. 2007; Taboada et al. 2016;Horan
et al. 2019; Simoes et al. 2020). Sahni andDutt (1959) characterized its
brachiopod assemblage by Trigonotreta hesdodoensis. A shallow
marine origin of the Manendragarh fossils has been argued by many
(e.g. Ghosh, 2003; Ram-Awatar et al. 2013; Table 1). The above-
mentioned fauna found in the studied region are of cold water origin
(Shen et al. 2013). Thus, the Manendragarh marine fossil-bearing
beds of the Talchir deposits were correlated with the Late
Carboniferous (Uralian) glaciation that continued up to the Early
Permian (Artinskian) (Bhatia & Singh, 1959; Varshney &
Bhattacharya, 2023). However, based on the marine fossils found
in this studied area Shah and Shastry (1975) and Ram-Awatar et al.
(2013) designated the marine fossil beds of the Talchir deposits as
Early Permian age (280–240 Ma).
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The patch of fossiliferous conglomerate beds is observed to be
persistent along a ~2.5 km stretch of the NW bank of the Hasdeo
River (Fig. 1b). The nonconformable contact of the Talchir
deposits with the underlying Precambrian granite is characterized
by basal Talchir strata deposited in graben structures developed
in the granite (Acharya, 2018; Dasgupta, 2021). The Talchir
Formation is overlain by the fluvial Barakar Formation (Casshyap
& Tewari, 1984; Mukhopadhyay et al. 2010; Ram-Awatar
et al. 2013).

3. Palaeogeographic and palaeoenvironmental
reconstruction

Palaeogeographic and palaeoenvironmental reconstruction is
achieved through a comprehensive facies analysis. The Talchir
Formation at Manendragarh is dominated by shale, the colour of
which varies from black to grey. Conglomerates alternate with
shale but are not ubiquitous. Sandstones are minor components,
associated with grey shale and their geometry varies spatially.
Fossils are localized, although their hosting black shale is preserved
extensively throughout the study area. Granite fragments
embedded within the black shale range in size from boulders to
small pebbles and their roundness varies from sharply angular to
well-rounded.

Four different facies associations have been recognized in four
different sections placed in a NE-SW, 2.5 km long transect
bounded by outcrops of basement granite at both ends (Figs. 1b, 2).

Each section displays a single facies association. All these four
facies associations correspond to the lateral transition of each
other, and do not represent vertical stacking (Fig. 2). We focus on
facies associations (described below) instead of individual facies to
interpret the depositional environment and ultimately the palae-
ogeographic framework. The same lithology may be shared
between the associations, the latter differing significantly in a
combination of lithic and biotic components, and bed geometry,
structure and texture. Also, more importantly, all four studied
sections directly/nonconformably overlie the granitic basement
(Fig. 2; Acharya, 2018; Dasgupta, 2021). It highlights that all four
facies associations are likely to be the result of lateral facies
variation due to change in sea level and decreasing effects of
glaciogenic processes. The facies associations are described below
separately before presenting a general interpretation.

3.a. Facies Association I

This facies association is at the southern end of the transect and
directly overlies the granitic basement (Fig. 2). Lithologically, it
consists of two sub-facies viz. the shale (facies IA) and the
calcarenite (facies IB). Facies IA is black, finely laminated (Fig. 3a,
b) and is confined to the basal 2 m of the measured succession and
contains granite fragments (Fig. 3b), which are similar in
composition to that of the basement. Around the granite blocks,
however, the laminae of the facies IA are obliterated (Fig. 3a). Some
of the granite fragments are very large (>80 cm), irregular in shape
and sharply angular (Fig. 3a). Facies IA also incorporates intact
fossils (Fig. 3c), which include brachiopods and pelecypods, many
of which are benthic, intact and occur dominantly in live positions
(Fig. 3c). Towards the upper part of the section, facies IA gradually
becomes fossil-free. In contrast to facies 1A, facies IB is lighter than
facies IA, appears approximately 1 m above the base of the section,
and then alternates upwards with facies IA (Fig. 3d). Facies IB is
cross-stratified, approximately 20 cm thick, tabular in geometry
and rich in broken shell fragments. Facies IB has sharp erosional
and dented bases that are studded with blackmud clasts (Fig. 3d, e).
Locally, straight-crested ripples mantle the upper surface of the
calcarenite beds (Fig. 3f). The ripples have a wavelength and
amplitude of approximately 7.5 and 2 cm respectively. The
thickness of the shale encased by successive calcarenite beds varies
from 50–60 cm.

3.a.1 Interpretation
The black shale (facies IA) and its marine invertebrate fossil
content (Fig. 3c) bear a clear signature of its marine origin. Being
deposited directly on top of the granite basement, facies IA bears a
clear indication of rapid marine invasion, and a rapid rise in sea
level. Fine lamination within facies IA further points to a slow rate
of deposition (Fig. 3a, b) and suggests that deposition took place in
a stagnant basin where circulation was restricted (Posamentier &
Walker, 2006). The invertebrate fossil content is restricted to the
base of the formation and the southern end of the studied transect.
Even the calcarenite beds (facies IB), rich in fossil debris, are also
confined to Facies Association I in the southernmost part of the
studied transect. It implies that the organisms could not thrive
along the entire studied transect of Fig. 2. This could indicate that
sediment accumulated under restricted circulation behind a
basement ridge within a horst-graben structure (Fig. 2; Acharya,
2018; Dasgupta, 2021). The deposition is thus assumed to have
taken place in an interior sea that formed when the sea spilled over
the ridge during transgression. The presence of isolated large,

Figure 1. (Colour online) (a) Location of Manendragarh and the study area within the
Rewa Sub-basin in the framework of related tectonic elements (map of India within inset).
(b) Geographic location of the studied sections (1, 2, 3, 4) around Manendragarh.
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angular granite boulders in Facies Association I (Fig. 3a, b)
suggests that the basement ridge had been steep and was
generated at the basin margin only. Hence, the seaward
boundary on the southern side can be assumed to be steep.
Contrary to this concentration of marine fossils and unabraded
granite boulders within Facies Association I at the southern
boundary, the abraded granite pebbles increase in concen-
tration rapidly from Facies Associations II to III, suggesting the
existence of land northwards. This indicates that although there
was input from both sides, the southern side provided large
angular boulders from the steep basin margin whilst the
northern side provided the conglomerates of cohesive/hyper-
concentrated flow origin (discussed later).

The calcarenite facies (facies IB) is made of fragmented shells
and is bound by facies IA below and above and appears to be a
tempestite. Having a strongly erosional base and a wave-rippled
top, these beds are interpreted as storm deposits, although the
cross-strata within the beds could not be reconstructed clearly. The
wave ripples on top of this likely tempestite record the waning
phase of intermittent storms that eventually interrupted the usual
calm depositional environment registered by the black shales above
and below (Posamentier & Walker, 2006). The tempestite beds
could have been emplaced by storm washovers spilling over the
basement ridge. As the sheet-like geometry was determined only at
the outcrop scale and these beds were not found in other sections,
they may be lenticular on a larger scale. This also implies that sea

Table 1. Marine fossils of Manendragarh, India and their equivalents in other continents described by previous workers

Fossil assemblage in Manendragarh
Equivalent fossil assemblage found in other
continents

Palaeogeography
interpreted based
on the fossils

Climate/sea water temperature
based on fossils

E. Playfordi (Dickins, 1957) Daltonganj and Rajhara, India (Ghosh, 2003) Marine —

Eurydesma mytiloides (Reed,
1932)

Umaria, India (Ghosh, 2003) Marine —

Eurydesma Sp. Satpura, India (Ghosh, 2003) Marine —

Sauce Grande Basin of eastern Argentina;
and southern Sydney Basin, eastern
Australia (Ivany & Runnegar, 2010; Cisterna
et al. 2019; Garbelli et al. 2019)

Marine Glaciation-deglaciation (Cisterna
et al. 2019)/glacial-interglaciations
(Garbelli et al. 2019)/1°c to 12°c
(Ivany & Runnegar, 2010)

Southern Sydney Basin, Australia (Fielding
et al. 2006)

Shallow marine

Paraná Basin, Brazil (Taboada et al. 2016;
Simões et al. 2020)

Marine Glaciation-deglaciation

Myonia? Sp. SW Australia (Beard et al. 2015) Marine 5°c to 12°c

Eurydesma?cordatum;
Eurydesma? Globosum;
Aviculopecten sp.;
Pleurotomaria nuda (Bhatia &
Singh, 1959)

Salt Range; Kashmir, India; Australia; South
Africa (Bhatia & Singh, 1959)

Marine —

Brachiopod Trigonotreta hesdoensis (Sahni
& Dutt, 1959)

— — —

Figure 2. (Colour online) Schematic distribu-
tion of facies across the depositional basin.

Glacial sedimentation in Northern Gondwana 1231

https://doi.org/10.1017/S0016756823000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756823000353


spilled over from the southern side of the ridge. The biotic colonies
associated with the preserved shell fragments thus seem to have
grown only on the seaward/southern flank of the depositional
basin. It is apparent that the organisms had only limited success in
colonizing the niche created immediately after the transgression;
they were probably merely opportunistic. The cold temperature
enhanced oxygen dissolution in the water column and, had there
been ice sheets, glacial debris may have provided additional
nutrients (Christ & Wernil Sr., 2014). The presence of the
calcarenite facies (facies IB) at the site of Facies Association I alone
suggests that only the distal fringe of the storm sheets is preserved.

3.b. Facies Association II

This facies association was found ~200 m away from outcrops of
Facies Association I along the chosen transect (Fig. 2). It has three
sub-facies viz. black shale (facies IIA), grey shale (facies IIB) and
thin, sparse sandstone beds (facies IIC). Facies IIA occurs in the
basal ~1 m and shares the same basal fossil assemblage (Fig. 4a)
that is present within facies IA but the difference is that fossils are
preserved as disarticulated valves in facies IIA (Fig. 4a). Unlike
Facies Association I, the thickness of the fossiliferous zone of the
facies IIA is reduced to 30 cm. Besides this, facies IIA also
differs from the previously described facies IA in terms of the
coexistence of scattered, well-rounded, small (approximately
16 cm in diameter) granite pebbles of the same composition
(Fig. 4b). The thickness of this pebbly zone exceeds that of the
fossiliferous zone, extending up to ~50 cm from the base of the
section. Facies IIA however continues up to 1 m from the base of
the section. The calcarenite beds noted in Facies Association I are
notably absent in Facies Association II. The upper part of the
section, approximately 2.5 m thick, is composed of grey shale

(facies IIB; Fig. 4c). The transition from facies IIA to facies IIB is
gradational. Similar to facies IIA, facies IIB is also finely laminated
and includes a few, sparse thin beds of khaki-coloured sandstone
(facies IIC; Fig. 4c). These thin sandstone beds (facies IIC) are up to
7 cm thick, internally massive, have sharp bases and tabular in
geometry. Their tops are planar, without any evidence of later
reworking. Facies IIB is overlain by the coarse-grained siliciclastic
Barakar Formation.

3.b.1. Interpretation
The basal fossiliferous ~50 cm of Facies Association II was
presumably deposited in a palaeoenvironment similar to that of
its counterpart at the base of Facies Association I. However, the
absence of the isolated large unabraded granite boulders
suggests a palaeogeographical position of Facies Association
II relatively distant from the basement ridge which provided
large, angular granite boulders. The occurrence of scattered and
chaotic pebbles along with disarticulated fossil valves within
facies IIA suggests that its origin was related to hyper-
concentrated flows (Mulder & Alexander, 2001). Fossils were
probably disarticulated during their transportation. The
upwards transition of the black shale (facies IIA) into the grey
shale (facies IIB) in Facies Association II indicates some overall
improvement in basin-floor oxygenation. However, the well-
laminated nature of facies IIB attests to the continuation of the
same slow rate of sedimentation in a low-energy depositional
setting as before. The thin sheets of fine-grained sandstone
(facies IIC) suggest periodic higher energy inputs into the basin.
Internal massiveness, without any evidence of tractive currents
or waves in the sandstone sheets, prompts their recognition as
quasi-steady turbidites (Mulder & Alexander, 2001).

Figure 3. (Colour online) Facies Association
I - (a) Granite ridge flanking black shale facies
(IA) with scattered granite blocks of very widely
variable diameter, sharp angularity and devoid
of any arrangement in distribution. (b) Fine
laminations (yellow arrows) preserved within
black shale facies (IA). (c) Fossils present in live
positions (arrowed) within black shale (IA) and
calcarenite (IB) beds. (d) Alternations between
the black shale (IA) and calcarenite beds (IB;
arrowed). (e) Sharp and erosional base of the
calcarenite bed (IB); note the black shale clasts
present within the facies IB. (f) Wave ripple
laminations on top of a calcarenite bed (IB).
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3.c. Facies Association III

This facies association, having four sub-facies viz. black shale
(facies IIIA), conglomerate (facies IIIB), grey shale (facies IIIC) and
tabular sandstone (facies IIID), is well exposed at a location
approximately 1.2 km to the NE from outcrops of Facies
Associations I and II described above (Fig. 2). Similar to Facies
Association II, black shale and rounded pebbles are also present,
although fossils are conspicuously absent. In addition, black shale
and pebbles are present in different arrangements as they now
occur as alternating beds. Facies IIIA (Fig. 5a) and facies IIIB
(Fig. 5b) beds have mean thicknesses of approximately 28 and
45 cm, respectively. Facies IIIB contains pebbles of similar
composition to the previous facies association, although they are
less than 4.5 cm long and have a black mud matrix. Pebbles show
reverse grading. The pebble beds are tabular and sharp, and the
vertical distance between successive beds is approximately 50 cm.
None of these beds bears any current structure. The shale-
conglomerate alternation extends upwards approximately 3 m
from the base of the section. Above, facies IIIA grades upwards
into facies IIIC. The latter is similar to facies IIB and is also
overlain by the Barakar Formation. It is sparingly interspersed with

khaki-coloured sandstone bodies (facies IIID; Fig. 5c). The beds are
tabular and massive, but thicker (~50 cm) than facies IIC. A few
pebbles, approximately 5 cm long, may be dispersed within them.

3.c.1. Interpretation
In Facies Association III, the textural contrast in sediment is most
remarkable. The black shale (facies IIIA) was deposited, as in other
associations, in a calm and quiet basinal setting. The pebbles in the
associated muddy conglomerates (facies IIIB) were likely delivered
by melting icebergs and/or cohesive/hyperconcentrated flow or by
both (comparison between these processes are discussed in
Section 4). Neither a glacial nor density flow origin for the
conglomerates necessitates any change in basin palaeogeography
for the deposition of alternating shale and matrix-rich conglom-
erate beds. The grey shale (facies IIIC) at the top of Facies
Association III may indicate relative improvement in water
circulation during the deglaciation period within an otherwise
restricted interior sea bottom. When the monotony of the grey
shale (facies IIIC) lithology is interrupted by the appearance of the
tabular sandstone facies (facies IIID), a sudden enhancement of
depositional energy becomes imperative. There is no evidence for

Figure 4. (Colour online) Facies Association II - (a) Marine fossil-bearing conglomerate bed (IIA); note that well-abraded granite pebbles are scattered along with the marine
fossils. (b) Well-laminated fossil-free black shale (IIB). (c) Transition of facies IIB into grey shale facies (IIC) upwards, which is interspersed with thin sandstone sheets (white arrow);
note that the top of the IIB facies is truncated by a sandstone body (demarcated by yellow dotted line).
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the action of tractive currents or waves in sand deposition. In
contrast, the massiveness of the sandstone suggests instantaneous
deposition, most likely from a sandy density flow.

3.d. Facies Association IV

Moving further NNE, approximately 1 km from outcrops of Facies
Association III described above, are outcrops exhibiting Facies
Association IV, comprising two sub-facies viz. grey shale (facies
IVA; Fig. 6a) and lenticular sandstone bodies (facies IVB; Fig. 6b)
which rests directly on the granitic basement (Fig. 2). The
sandstone lenses (facies IVB; Fig. 6b) are present as channel forms
with concave-up bases and flat tops (Fig. 6b) within the grey shale
(facies IVA). Their infillings are coarser-grained and distinctly
more poorly sorted than the sandstone beds of the other
associations. The channel fills are thoroughly cross-stratified,
and their maximum width and depth are 70 and 55 cm,
respectively.

3.d.1. Interpretation
The gradational vertical contact with the marine black shale in
Facies Associations II and III also testifies to the marine origin of

the grey shale. Facies IVA rests directly on the granitic basement at
the northern/landward flank of the interior sea (Fig. 2), implying
that sea also onlapped the landward flank. If the vertical colour
change from black to grey in the shale of Facies Associations II and
III reflects the enhancement of water circulation, it most likely
relates to the deglaciation event that affected the depositional site.
This contention is strongly supported by the fact that the grey
shale, irrespective of facies association, hardly ever contains any
pebbles that can be identified as a dropstone. Facies IVB, because
of its lenticular body geometry, sandy lithology, very poor grain
sorting and internal current structures, can readily be attributed to
a river entering the interior sea (Walker & Mossa, 1982; Mėžinė
et al. 2019). Their channel-like geometry corroborates this
contention.

4. Discussion

4.a. Glacial vs. density flow origin of the deposits

The map of the global distribution of ice sheets during the Late
Palaeozoic glaciation by Montañez (2022) includes the present
study area. The most convincing glacial feature is striated/boulder
pavement, which could not be identified within the outcrop limits

Figure 5. (Colour online) Facies Association
III - (a) Repeated alternations between black
shale (IIIA) and conglomerate (IIIB). Note that
the lower contact between IIIA and IIIB is sharp
compared to the upper contact. (b) Matrix-
supported conglomerate of facies IIIB. (c)
Massive pebble-bearing sandstone (III C) show-
ing imbrication at the lower part of the bed.
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at Manendragarh, but has been documented from the Giridih and
Satpura basins close to the present study area (Fig. 7). Varshney
and Bhattacharya (2023) reported several signatures of deposition
by melting glaciers near the ice grounding line at Manendragarh.
In this section, pebbles belonging to conglomerates of different
facies associations are considered to ascertain the mode/s of
delivery of the pebbles to the depositional sites whether by glacier
or by density flow. This account scrutinizes the general fabric in
pebbly beds, the nature of their distribution and orientation of
pebbles and the nature of bed contacts. The following are the
features.

4.a.1. Pebbles in hydrodynamic disequilibrium
In the pebble-bearing black shale (facies IIA) at the base of the
Facies Association II and in some of the conglomerate beds (facies
IIIB) in Facies Association III, pebbles are found to be significantly
larger in vertical dimension than the thickness of laminae within
the shales that host them (Fig. 8a–c). The pebbles are up to 8.5 cm
long, and some isolated pebbles are in an upright position, while
the lamina-thickness around them is on themm scale (Fig. 8a). The
pebbles are also faceted (Fig. 8d). They can be deposited from a
hyperconcentrated flow with muddy matrix generated from a
melting glacier near the ice grounding line (Varshney &
Bhattacharya, 2023). Such pebbles in finely laminated shale can
alternatively be volcanic bombs dropped from the air. However, no

contemporary volcanic event has thus far been reported from
nearby areas. Dropping from a floating iceberg on the water surface
appears to be the most reasonable option. It appears that these
pebbles must have been subjected to prolonged abrasion and
attrition after being picked up by a glacier.

4.a.2. Bottom wrapping
Under some similarly well-abraded and isolated pebbles in black
shale (facies IIA) in Facies Association II, laminae wrap around
their bottoms (Fig. 8c). Apparently, the laminae were deformed
under the impact created by the pebbles falling from above,
possibly from floating icebergs. Alternatively, as pointed out
earlier, the pebbles could also be volcanic bombs, had there been
evidence of proximal volcanic eruption.

4.a.3. Indistinct base of conglomerate beds
In Facies Association III, it was mentioned that the upwards
transition from diamictite (facies IIIB) to shale (facies IIIA) is
always sharp, despite minor irregularities at the contact. However,
the reverse transition is often indistinct because of the occurrence
of some detached pebbles beneath the base of the conglomerate
beds (Fig. 5a, dashed line). These pebbles are in no way in
hydrodynamic equilibrium with the shale around them. They are
thus interpreted to have sunk into the underlying mud and are
possibly dropstones.

Figure 6. (Colour online) Facies Association IV - (a) Grey shale (IVA) facies locally intervened by lenticular sandstone body (IVB). (b) Sandstone body (IVB) has a concave base and
is internally characterized by cross-stratification.
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4.a.4. Faceted and bullet pebbles
As a glacier moves, pebbles held tightly at its base are rubbed
against the rocky surface and consequently, those surfaces become
flattened, polished and striated (Atkins, 2003, 2004). In the
process, ice thawing may turn the pebble on its other side. As soon
as thawing occurs, the friction, however, disappears, and the ice
immediately reforms, temporarily preventing further rotation of
the pebble. A new face of the pebble starts to flatten. Therefore,
facets, particularly multiple facets on pebbles, are considered
diagnostic of their glacial origin (Fig. 7d) and have been recorded
from the conglomerate beds (facies IIIB) at different levels within
Facies Association III. Apart from faceted pebbles, bullet-shaped
pebbles (Fig. 8e) are another indicator of glacier abrasion (Krüger,
1984). It is, however, possible that faceted pebbles generated on
land due to glacial abrasion could have been redeposited within the
interior sea.

4.a.5. Imbricated pebbles
The rare sandstone beds (facies IIID) in Facies Association III are
sharp-based and generally appear massive. Locally, they contain
some pebbles that tend to concentrate in the lower part of the beds,
affecting coarse-tail grading (Fig. 4c; Nemec et al. 1980;
Schlunegger & Garefalakis, 2018). In certain instances, the pebbles
are elongated and imbricated along their long axes (Fig. 5c). The
coarse-tail grading suggests the concentrated flow of sand and
pebbles together, along with the entrapped fluid. The long-axis
imbrication of the pebbles further suggests that the flows had been
internally sheared (Bose & Sarkar, 1991). Genetically, the massive
fine-grained sandstone beds in Facies Association III are thus
considered to be transitional between products of concentrated
density flow and quasi-steady turbidity current (Mulder &
Alexander, 2001).

4.a.6. Sharp-based reverse-graded conglomerate
The hyperconcentrated/concentrated flow beds are always
sharp-based, whether they are clast-supported or (unlaminated)

matrix-supported. In glacier-imprinted formations, they are
bound to create controversy regarding their origin. Grading,
(whether normal or reverse) favours concentrated density flow
interpretation. The reverse grading illustrated in Fig. 8f in a clast-
supported conglomerate (facies IIIB) suggests deposition from a
concentrated density flow with strong shear at its base. The vertical
component of the dispersive pressure generated as a reaction to the
basal shear presumably tended to push the clasts upwards; the
larger clasts were pushed farther from the base. It can be conceived
that a clast settled only when its settling velocity exceeded the
dispersive pressure. The mechanism would suggest that the flow
slowed from the top downwards.

4.b. Depositional conditions

An overall interpretation of the facies associations within the
Talchir Formation in Manendragarh suggests its deposition within
an interior sea. The spatial variation in the characteristics of the
facies associations, notwithstanding the predominance of shale,
indicates that the basin had its seaward margin on the south and
the landward margin to the north. The basin formed when the sea
transgressed over a basement ridge, and the large fragmented
blocks recorded in the outcrops (Fig. 3a, b) may reflect the
proximity and steepness of this ridge. Glacial dropstones
accumulated in the interior of the basin, with faceted and bullet
pebble deposits (Fig. 8c–e) and density flows (Figs. 5c, 8f), were
induced by glacial meltwaters. Fielding et al. (2008b) viewed the
Permian glaciation as a four-phase event. Shah and Shastry (1975)
and Dickins and Shah (1979), based on palaeontological evidence,
correlated the Manendragarh glacier to the late stage of the
first phase (P1). The initial transgression mentioned above could
be the result of the first phase (P1) of deglaciation. The marine
invertebrate fauna thrived in the lower part of Facies Associations I
and II but failed to colonize the landward part of the interior sea
(within Facies Association III and IV). It is possible that the marine
organisms that invaded at the early stage of basin evolution were

Figure 7. (Colour online) Map showing distribution of
different Gondwanan basins of Peninsular India. Red
coloured asterisks show the reports of glaciogenic
deposits from Talchir Formation in and around the
present study area by Smith (1963a); Sen (1991); Bose
et al. (1992); Dasgupta (2006); Chakraborty and Ghosh
(2008); Bhattacharya and Bhattacharya (2015); Varshney
and Bhattacharya (2023).
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opportunistic and tried to colonize this newly created niche.
Nonetheless, their colony remained confined to the vicinity of the
seaward margin of the basin and only for a relatively short period.
On the other hand, glacial dropstones as well as pebbly
hyperconcentrated/concentrated flows and turbidites became
important in the interior part of the basin. In the final phase of
deglaciation, the shale turned grey and onlapped over the landward
basin margin. Sandy turbidites (facies IIID) driven by glacial
meltwater interrupted the grey shale (facies IIIC) sequence
building periodically. The meltwater channel mouths interrupted
the grey shale close to the land margin. The repeated alternation

between shale and diamictite in Facies Association III, however,
appears to be the product of shorter-scale glacial-interglacial
transitions (Yang et al. 2018). There is a consensus that the
Gondwana glaciation was most intense during the first (P1) and
second (P2) phases and had a low CO2 (1.0 X –1.5 X Present day
Atmospheric Level) (Isbell et al. 2003; Montañez et al. 2007). In
such a setting, only a slight change in solar radiation could have
caused the observed switchovers between glacial and interglacial
regimes (Riechers et al. 2022).

Through time, the black shale graded upwards to the grey shale,
but a lack of preserved current structures points to the fact that the

Figure 8. (Colour online) (a) Oversized pebbles present in upright positionwithin the shale (IA); finer laminations (yellow arrows) are preservedwithin the shale (IA). (b) Pebbles in
hydrodynamically disequilibrium conditions with respect to shale (IA); note that fine laminations (yellow arrows) are preserved within shale. (c) Field photo and a hand sketch
show laminae within the shale are downwarped around the bottoms of the granite block. (d) Ill-faceted basement pebbles within the conglomerate. (e) Bullet-shaped pebbles
pointing towards glacial abrasion. (f) Reverse-graded and clast-supported conglomerate with a sharp base, suggesting deposition from mass flow with strong shear at its base.
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interior sea still remained a calm water basin. The postglacial grey
shale, devoid of any dropstones, is interbedded with sandy
turbidites that were triggered by glacial meltwater fluxes (Horan
et al. 2019).

5. Conclusions

Marine fossil-bearing black shale resting directly on top of the
granite basement indicates a rapid marine transgression in
Manendragarh at the end of the P1 phase of Late Palaeozoic
glaciation. The presence of isolated and sharply angular granite
blocks within the black shale suggests deposition in an interior sea
that was generated behind a steep basement ridge. The ice sheets
did not extend beyond the deepest part of the interior sea, and the
biotic colony could only invade the fringes of the interior sea,
where it flourished for limited periods. Hence, during intermediate
deglaciation phases, the seaward edge of the lagoon experienced
the accumulation of thin calcarenite layers, while in central region
of the interior sea, accumulation of black shale alternated with
pebbly dropstones and hyperconcentrated flows. In the final
deglaciation, grey shale deposition became dominant and was
interrupted by rare sandy gravity flows and hyperconcentrated
flows triggered by glacial meltwater fluxes. At the landwardmargin
of the interior sea, feeder channels of these sandy gravity flows were
locally incised and preserved. Dominance of sandy gravity flows
and hyperconcentrated flows towards the upper part of the studied
succession indicate decreasing influence of glaciogenic processes
due to climatic changes during the Late Palaeozoic of northern
Gondwana.
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