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ON LUCAS-SETS FOR VECTOR-VALUED ABSTRACT 
POLYNOMIALS IN DINNER PRODUCT SPACES 

NEYAMAT ZAHEER 

Introduction. The fact that Rolle's theorem on critical points of a 
real differentiable function does not hold in general for analytic functions 
of a complex variable raises a natural question [7, p. 21] as to whether or 
not it can be generalized to polynomials, the simplest subclass of analytic 
functions. While attempting to answer this and other related problems in 
[4, 5, 6], Lucas proved that all the critical points of a nonconstant poly
nomial/ lie in the convex hull of the set of zeros of/ (see Theorem (6.1) 
in [7]). Walsh [12] has shown that Lucas' theorem is equivalent to the 
following result [7, Theorem (6.2)], namely: Any convex circular region 
which contains all the zeros of a polynomial / also contains all the zeros 
of its derivative / ' . 

It is trivial to see that this result holds also for convex sets in general. 
Let us agree to call any subset A of the complex plane a Lucas-set for 
polynomials if, whenever A contains all the zeros of any polynomial / , 
A also contains all the zeros of/'. Convex circular regions and convex sets, 
in general, may then be viewed as Lucas-sets in our terminology. In the 
present paper we intend to tap the possibilities (if any) for the existence 
of an analogous terminology in an arbitrary i£-inner product space E over 
K (K being an algebraically closed field of characteristic zero), in respect 
to abstract polynomials [2, 10, 14] and a suitably defined notion of their 
derivatives. In order to be able to do just this, we bring in the notion of 
generalized circular regions of E in Section 1 and introduce in Section 2 
the concept of pseudo-derivatives of abstract polynomials from E to K. 
In Section 3 we successfully employ these concepts in formulating our 
main theorems, which generalize Lucas' theorem to abstract polynomials 
(including the vector-valued ones) on E and which essentially state that 
generalized circular regions are indeed the kind of Lucas-sets (for abstract 
polynomials) that we were looking for. Finally, in Section 4, we give 
examples to demonstrate the validity of hypotheses in and the degree of 
generality of our main theorems. 

1. Preliminaries and notations. Throughout this paper C (resp. R) 
will denote the field of complex (resp. real) numbers of K an alge
braically closed field of characteristic zero, with K0 as a maximal ordered 
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subfield of K such that 

K = K0(i) = {a + ib : a,b e K0}, 

where -i2 = 1. (For details, see [1, pp. 38-40], [3, p. 56], [11, pp. 248-
255]). Also, K0+ (resp. R+) will denote the set of all nonnegative elements 
of Ko (resp. R) . It is known [1, p. 39] that every element in K0+ has a 
unique square root in K0+. For every element z = a + ib £ K (with a, b 
in Ko) we may, in analogy with the complex plane, define the conjugate 
of z, the real part of z, the imaginary part of z, and the i£0-absolute value 
of z by z = a — ib, Re (z) = (z + £)/2, Im (z) = (z — z)/2i, and |s| = 
+ (a2 + ô2)1/2, respectively. With such mechanisms available to K 
(wherein K0 plays the role of 'reals', except for completeness), the 
definition of a complex (resp. real) inner product (see [13, p. 120]) in a 
complex (resp. real) vector space can be immediately extended to inner 
products in a vector space E over K (resp. K0), which will be referred to 
as i£-(resp. K0-) inner products. A vector space E over K (resp. Ko), 
together with a i£-(resp. Ko-) inner product (. , .), will be termed as a 
i£-(resp. Ko-) inner product space. Similarly, the definitions of 'metric', 
'convexity', and 'norm' in respect to a complex (or real) vector space 
extend automatically to the corresponding notions in the spaces E under 
discussion, if we only replace in those definitions the field R by the 
field K0. The resulting terminology will be 'i£o-metric', 'i^o-convexity', 
and 'i^o-norm'. Now the terms 'i^o-metric space' and 'i^o-normed vector 
space' have obvious meanings. 

For convenience of future reference, we record certain facts in the 
following 

Remark 1.1.(1) If if is a Hamel basis for a vector space E over K 
(resp. Ko), every element x G E can be written as x = XI ah (uniquely, 
except for the order of its terms), where the summand ranges over all 
elements h G H and the coefficients in K (resp. K0) being zero for all but 
a finite number of the h (see [13, pp. 16-17]). For each x = ^ ah and 
y = 52 PhinE, we may then define 

(1.1) , v _ / X) a& if -E is a vector space over K, 
(1.1)' ^ ' \ J2 aft if E is a vector space over K0. 

It is with this i£-(resp. K0-) inner product (and it is indeed one) that we 
shall refer to E as a natural i£-(resp. K0-) inner product space. Thus: any 
vector space E over K (resp. Ko) can be given a i£-(resp. K0)-inner 
mapping product. 

(II) If (E, ( . , . ) ) is a i£-(resp. Ko-) inner product space, then the 
mapping || . || : E —» i£0+, defined by 

(1.2) ||*|| = (x,x)l'\ 
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makes E a K0-normed vector space in its own right. (The proof is similar 
to the one in [13, p. 121].) 

Throughout the rest of this section (£, ( . , . ) ) will denote a X-inner 
product space with a built-in i£0-norm on it defined by (1.2). Let Kœ 

denote the projective field (see [18, p. 352] or [15, p. 116]) got by adjoin
ing to K an element oo having the properties of ''scalar infinity". Also, 
as in [18, p. 372], adjoin to E an element co and furnish E VJ {co} (more 
precisely, denoted by EJ) with the following structure: (1) the subset E 
of Eu preserves its initial vector space structure; and (2) a + co = co + 
a = co for every a Ç E, Xco = co for every X £ K — {0}, and oo. a = co for 
every a £ E — {0}. Let us denote by \p the permutation of Eœ (it is indeed 
one) defined by 

(x/\\x\\2 if x € E - {0} 
(1.3) iK*) = co if x = 0 

(O if x = co. 

The mapping \p is called the inversion of Eu with origin as pole and has 
the property that ^ (#(#)) = ^ for x Ç Ew and that 

(i.4) v(x*) = | *(*) Vx exœixe EU, 

provided we agree to write cô = co and provided the scalar product \x is 
not of the form 0 . co, oo . 0, or oo . co. Next, we associate, to each fixed 
element K £ , a permutation \j/b of Eu given by 

Ux - b)/\\x - b\\2 iîx G E - {b} 
(1.5) ypb(x) = \l/(x — b) = | co if x = b 

(O if x — co. 

The mapping \l/b is called an inversion of Eu with pole b. Since IAOAM)
 = x> 

we see that 

(1.6) y = iA6(x) if and only if # = ^(y) + b. 

Note also that 

(1.7) ^&(co) = 0 and Mb) = co. 

Definition 1.2. A subset 4̂ of £w is called a generalized circular region of 
Eo, (abbreviated as g.c.r.) if either A is one of the sets 0, £ , £w, or 4̂ 
satisfies the following two conditions: 

(i) \j/h{A) is i£o-convex for every b £ E — A, where \//b is as defined 
by (1.5); 

(ii) co Ç A if A is not i£0-convex. 
We shall denote by D{E0i) the class of all g.c.r.'s of Eu. The empty set 0, 
E, Ew, and single-point sets (and their complements in Eu) are examples 
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of trivial g.c.r.'s of Eu. The fact that there exist abundantly many non-
trivial g.c.r.'s of Eu is established by Proposition 1.5 below. 

Definition 1.3. Let Bg(Eœ) denote the class consisting of the following 
subsets of Eu: 

(1) 0, E , Ea, and {co}; 
(2) All sets which are of the form 

(1.8) {x £ E : o:||x||2 + Re (x, a) + y S 0} , 

or of the form 

(1.9) {x e E: a\\x\\2 + Re (x, a) + y < 0} 

for some a 6 K0+1 y 6 K0, and a Ç £ . 
(3) T h e complements in £ w of the sets in (2) . Each member of Bg(Ew) 

is called a generalized ball of £ w . No te t h a t the expression Re (x, a) 
disappears in (1.8) and (1.9) if a = 0. 

P R O P O S I T I O N 1.4. Every set of the form (1.8) or (1.9) w K0-convex. 

Proof. It is sufficient to prove the statement for sets of the form (1.8), 
the proof for the other form being similar. Let A be any set of the form 
(1.8). We dévide the proof into three cases. 

Case I. Suppose a = 0, so that 

A = {x 6 E : Re (x, a) ^ - 7} 

for some a £ E and 7 G i£o. If x* € 4̂ and ^ G K0+ for i = 1, 2, . . . , n 
with /1 + /2 + • . • + tn = 1, and if we put x = /iXi + . . . + tnxni then 

Re (x, a) = Re X M ^ a ) \ == 23 *< R e (xi> a) 

^ £ *<( —7)> since xt ^ Aytt^ K$+ = - 7 . 

Therefore x f i , and .4 is i£0-convex. 
Case II. Suppose a > 0. If we put c = — (l/2a)a, then (cf. (1.2)) 

A = {x <E £ : (x, x) - 2 Re (x, c) + 7/a ^ 0} 

= {x £ E : (x — c, x — c) ^ ||c||2 — 7/a} 

= {x G £ : ||x - c||2 ^ ||c||2 - y/a 

[& if | |c||2 - y/a < 0 
{*} if Ikll2 - 7 / « = 0 
{x £ E: \\x - c\\ ^ r\ if | |c| |2 - y/a = r2 (say) > 0. 

In ei ther case, we find t h a t A is i£0-convex. 

P R O P O S I T I O N 1.5. Bg(Eu) Q D(Ea). 
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Proof. Let A G Bg(E03). From Proposition 1.4 it is obvious that A 
satisfies condition (ii) in Definition 1.2. Therefore, in order to show that 
A G D(Eœ), we have only to prove that \l/b(A) is i£0-convex for every 
b G E — A and we break up the proof as follows: 

(i) If A is any one of the sets 0, E, £w, or {co}, it is trivial to see that 
\l/b(A ) is i^o-convex for every b G E — A. 

(ii) If 4̂ is any set of the form (1.8) and b G E — A, the relations (1.3) 
and (1.6) imply that 

(1.10) 1>M) = \y € Eu : y = fb(x) for some x G A} 

= {y G E „ : * 0 0 +b£A}. 

Since co G 4̂ in the case under consideration and since x ^ b for any 
x G -4, we see from (1.7) that 0, co G ^b(A) and (hence) that ||y|| ^ 0 for 
every 3/ G ^&(-4). Consequently, 

* 6 (4 ) = {ye E:b + y/\\y\\*£A}. 

That is, &̂ (̂ 4) consists of all elements y G E for which 

« <& + y/h\\2, b + y/\\y\\2) + Re (b + y/\\y\\\ a) + 7 g 0, 

or (equivalently), 

+ Re (6, a) + jr-jp Re <y, a) 

+ 7 ^ 0 . 

a )m' + W + WRe<y'b)\ 
Therefore, 

*6(i4) = {y G £ : ô||y||2 + Re (^ 

where 

8 = a||&||2 + Re(ô,a> + 7 6 Xo and c = 2ab + a £ E. 

Since 6 G A, we see that <5 G i£o+- Hence, ^&(̂ 4) is again a set of the form 
(1.8) with a, 7, a replaced by 5, a, c, respectively, and so \l/b(A) is KQ-
convex due to Proposition 1.4. 

(iii) If A is any set of the form (1.9), we reproduce the same arguments 
as in (ii) (with ^ replaced by < ) and conclude that i/^C4) is again of 
the form (1.9) for every b G E — A and, hence, i£0-convex. 

(iv) If A is the complement in Eœ of a set of the form (1.8) and if 
b G E - A, then 

(1.11) A = {x £ E: a\\x\\2 + Re (x, a) + 7 > 0} U {co} 

for some a G K0+, 7 G K0, and a G E. Since 0 = <A&(co) G ^&04) a n d 
w = lM&) S yfrb(A), from (1.10) we obtain 

lh(4) = {y e E:y ^0;b + y/\\y\\* G -4} U {0}. 
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Now proceeding as in (ii) above, we obtain 

(1.12) MA) = {y e E:y ^ 0; ô||y||2 + Re (y, c) + a > 0} \J {0}, 

where 

5 = a p | | 2 + Re (b,a) + 7 ^ 0 

(since b £ A) and 

c = 2ab + a G E. 

In case a > 0, we see that 

1^04) = {yeE:6\\ y||2 + Re<y,c) + a > 0} 

= {y e E:n\\y\\* + Re<y, -c) - a < 0}, 

where pi = — <5 G i£o+- Therefore, ^&C4) is a set of the form (1.9) and, 
hence, i£o-convex. In case a = 0, we see that 

MA) = {y e E : y * 0; Hbll2 + Re (y, -a) < 0} \J {0}, 

where *> = —5= — Re (b, a) — 7 G i£o+. Putting d = a/2i>, we get 

b m = /{y 6 £ : y ^ 0; ||y - d|| < ||<*||} U {0} if» > 0 
m } \{ye E:y^0;Re(y,a) > 0} U {0} if v = 0. 

To show that ^&(^4) is again i£0-convex, we take any elements yt G ^b(A) 
and /z- G i£o+ for i — 1, 2, . . . , n, with h + t2 + . . . + tn = 1 and show 
that hyi + • . . + tnyn £ ^b(A), irrespective of whether v > 0 or v — 0. 
This is trivial to verify when all the ;y/s happen to be 0 or when all the 
coefficients tt corresponding to the nonzero y / s happen to be zero. How
ever, if tk 7^ 0 and yk 9^ 0 for some k, we observe that 

d\\ Û \/ i y± k \\yk - d\\ < \\d\\ and ||yf 

in case v > 0, and that 

Re (yk, a) > 0 and Re (yit a) ^ 0 \/ i 9^ k 

in case y = 0. In the two cases we respectively have 

( § * " ) - • Z h(y< - d) ^ Hu\\yi-d\\ < 

and 

/ n \ n 

R e \ Z ^ , a > = ] £ / , R e <y<,a> > 0. 

That is, in either case,X^=i Uyi € 4̂> and ^&(-4) is i£0-convex. We have, 
therefore, shown that ^b(A) is i£0-convex for every a Ç i£0+, 7 G i£o, 
and a £ E. 
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(v) If A is the complement in Eu of a set of the form (1.9) and if 
b Ç E — A, then A is the set got by replacing the inequality > by ^ in 
the expression (1.11). Now proceeding exactly as in (iv) above, with 
corresponding changes of course, we see that ^&(̂ 4) is precisely the set 
got by replacing in (1.12) the inequality > by ^ . But, this time, we have 
(for every a Ç K0+) 

MA) = {y € E: 5\\y\\* + Re <y, c) + a è OJ 
= [y e E : M|bll2 + Re <y, - c ) - a g 0}, 

where M = — à > 0. That is, ^b(A) is of the form (1.8) and, hence, 
i£0-convex. 

Since cases (i)-(v) exhaust all members of Bg(Eu), our proof is com
plete. 

In what follows we show that, in the special case when E is taken as a 
natural i£-inner product space, the class D{E03) turns out to be essen
tially the class of subsets introduced earlier by Zervos (see Definition 1 
in [18, p. 372]) in relation to natural i£0-inner product spaces. To this 
effect, we proceed as follows: Given a Hamel basis H for a vector space 
E over K and the corresponding natural i£-inner product (. , .) on E 
(cf. Remark 1.1 (I)), we define a mapping (. , .)0 : E X E —> K0 by 

(1.13) <x,3>>o = Re(x,:y> = Re [ £ a/3] V * = £ ah, y = £ 0fe, 

where a, P £ K and h £ H (cf. (1.1)). For every a £ K0 and # G £ if 
we define ax to be what it is originally in E, then E becomes a vector 
space over K0 with Hi = H\J {iH\ as a Hamel basis for it. Thus every 
element x = £ ah (a £ i£, fe 6 if) in £ can be expressed as x = 
£^i(Xi £ i£0, /ii G ifi) , and vice-versa. The passage from one to the other 
can be effected in the following simple manner: x — £ ah = £ Xifei if 
and only if, for each element h Ç H, the real (resp. imaginary) part of 
the coefficient of h in the representation £ ah is equal to the coefficient 
of h (resp. ih) in the representation £ \Ji\ (note that H\ = VJ {h,ih}} the 
union ranging over all elements h £ H). In view of this, we may transform 
(1.13) in terms of the basis elements h± with coefficients in Ko. In fact, 
if x = £ ah = £ Xifti, y = £ 0/z- = £ /iifei and if we write a = a,\ + i«2, 
0 = 0i + iP2(ai, 0i, a2, 02 being in i£0), then (1.13) implies that 

(*» 3;)o = £(« i0 i + a202) = £ Xi/ii V * = £ M i , y = £ Mifti-

That is, (1.13) is indeed a natural i£0-inner product (cf. (1.1)') on E 
(regarded as a vector space over K0). Consequently, (E, (. , .)0) becomes 
a natural i£0-inner product space and, hence (cf. Remark 1.1(H)), a 
i^o-normed vector space (over KQ) under the i£0-norm || . ||0 : E —> K0+ 

defined by 

(1.14) ||*||o = (x,x)o1/2 Vx £ E. 
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Since (£, ( . , . ) ) is also a i£-inner product space, E becomes a i£0-normed 
vector space (over K) with the i£o-norm || . || : E —* K0+ defined by 
||a;|| = (x,x)l/2 (see (1.2)). But from (1.13) and (1.14), we obviously have 

(1.15) ||3c|| = ||x||0 V * G E, 

and the two norms are equivalent. That is, the vector space E over K 
and the vector space E over K0 are isomorphic (under the identity map) 
as well as isometric in the usual i^0-metrics induced via the respective 
norms. If E is regarded as a natural i^o-inner product space and if we 
replace || . || by || . ||0, the relations (1.3)-(1.5) give exactly the same 
mappings as were used by Zervos [18, p. 372] and, hence, Definition 1.2 
turns out to be precisely the definition of g.c.r.'s of Eu as given by Zervos 
[18, p. 372] (he calls these 'd.e.'). In view of (1.15), since the mappings 
(1.3), (1.5), and Definition 1.2 remains unaffected when || . || is replaced 
by || . ||o, we infer that, in the special case when E is taken as a natural 
i£-inner product space, the family D(E0}) in Definition 1.2 coincides with 
the family of all g.c.r.'s of Eu as introduced by Zervos [18, p. 372], when E 
is regarded as a natural i^o-inner product space in the above manner. 

If E = K is taken as a 1-dimensional natural i£-inner product space 
with H = {1} (so that ||z|| = |z|) and if for each b G K we define (see 
[15, p. 116]) (Pb(z) = \/{z — b) for z G Kœ, then the mapping \f/b in (1.5) 
and the mapping cpb are connected through the equations 

M*) = (* - b)/\z - b\> = ^ ) V z e Ku, 

which amounts to the relation \[/b(z) = <pb(z) for z G Ku. Consequently, 
if A C Kœ and b G K — A, then \pb(A) is i£0-convex if and only if \l/b(A) 
= (pb(A) is i^o-convex. That is, we may replace the map \pb in Definition 
1.2 by the map <pb without affecting the nature of the set A. We, therefore, 
have the following 

Remark 1.6.(1) If E = K is taken as a natural i^-inner product space, 
then a subset A of Ku is a g.c.r. in the sense of Definition 1.2 if and only if 
A is a g.c.r. of the field Kœ in the sense of Zervos (see [15, p. 116] or 
Definition 2 of a d.e. in [18, pp. 352-353] with B taken as the family of all 
i£0-convex subsets of K). 

(II) In view of Remark (I) above and the characterization due to 
Zervos [18, pp. 372-387] of the class D(K„) when K = C, we get the 
following result (see [18, p. 352] or [15, p. 116]): The nontrivial members of 
D(CU) are the open interior (or exterior) of circles or the open half-
planes, adjoined with a connected subset (possibly empty) of their 
boundary. Members of D(CW), with all or no boundary points included, 
will be termed as {classical) circular regions of Cw. 

2. Pseudo-derivatives of abstract polynomials. Throughout this 
section E and V will denote vector spaces over the same field K. The 
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concept of a polynomial or of a homogeneous polynomial from a Banach 
(or normed vector) space X over C to another such space F is too well-
known (see Definition 26.2.2 in [2, p. 760] and Definition 2.2 in [10, p. 
303]). The term 'abstract homogeneous polynomial' has been used by 
Hormander [3] (see also [8, 9, 15, 16, 17]) in the same context, but in a 
much more general situation, when X and Y are taken as vector spaces 
over K. It is, however, based on these facts that we use the terminology 
'abstract polynomials' in the following 

Definition 2.1. A mapping P : E —» V is called a vector-valued abstract 
polynomial of degree n if for every x, y G E, 

(2.1) P(x + py) = è Mx, y)p VP G K, 

where the Ak(x} y) G V and are independent of p and are such that 
An(x, y) je 0. We shall denote by ^ n * the class of all vector-valued 
abstract polynomials of degree n from E to V. The term 'abstract poly
nomial' will be used in the context V = K and, in that case, we shall 
write &1? simply as SPn to distinguish it from the general case. 

Following the same method as given in [2, pp. 761-762] or as in [10, 
Theorem (2.2)] we easily see that A0(xf y) is independent of y, that 
An(x, y) is independent of x, and that Ak(x, y) is a vector-valued abstract 
polynomial of degree n — k in x (for each fixed y) and also a vector-valued 
abstract homogeneous polynomial of degree k in y (for each fixed x). 
(A precise definition of a (vector-valued) abstract homogeneous poly
nomial can be found in [3, pp. 55, 59].) All this implies the existence of 
at least one nonzero element h G E for which An(x, h) = An(0, h) ^ 0 
for every x G E. An element h with this property will be called faithful 
to P. This terminology is motivated by the observation that, given such 
an element h, the expression on the right hand side of the equation 

(2.2) P(x + ph) = è Mx, h)pk Vp^K 

is a polynomial of degree (exactly) n from K to V for each fixed x G E 
(provided only that P G ^ n * ) - The set of all elements faithful to P will 
be denoted by F(P). Consequently, if P G ^ n * and is given by (2.1), then 

(2.3) F(P) = {h G E : h * 0; i4B(0, h) * 0} ^ 0. 

If P G ̂ n * , we shall write 

Z(P) = {x e E: P(x) = 0} 

and call it the null-set of P. 

Definition 2.2. Given P G ^ „ * (via (2.1)) and an element h G P(P) , 
we define for each k = 1, 2, . . . , n, the &th pseudo-derivative Ph

{1c) of P 
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(relative to h) to be the mapping from Eto V given by 

(2.4) PA<*>(*) = k\Ak(x, h) \/ x e E. 

Indeed, Ph
(k) G ^n-**- The first few members in (2.4) will be written 

asPh',Ph", etc. 

PROPOSITION 2.3. If P £ &>,* and h G P(P), then h G P(P/C )) for 
k — 1,2,. . . ,n — 1, and we have 

Ph<*+»(x) = (P»<*>)*'(*) \/x£E,k = l,2,...,n-l. 

Proof. For any choice of ft, 1 ^ ft ^ n — 1, we know from (2.4) that 

PA<*>(*) = k\Ak(x,h) = (?(*), say. 

We claim that fc G P(Q) and that Qh'(x) = P^*+1)(x) for every x G £ . 
To this effect, we proceed as follows: For any x G E and p G K, we have 

(?(* + P*) = (kl)Ak(x + ph,h). 

But (2.1) implies that 

(2.5) P((x + PA) + ixh) = è ^*(* + P^> * ) / VM G X, 

(2.6) P(x + (P + /.)*) = è ^*(*. * ) ( P + M)* VM € JC. 
fc=0 

Since P((x + ph) + /xfe) = P(x + (p + /x)ft) for all /x G X, we see that 
the coefficient of nk in each of the expressions on the right hand side of 
(2.5) and (2.6) are equal. That is, 

n—k 

Ak(x + ph, h) = J2 C(k +j, k)Ak+j(x, h)pj 

= ZC(j,k)Aj(x,h)pj-\ 

Therefore, 

(2.7) Ph
{k\x + ph) = Q(x + ph) 

= ÈJU ~ i) • • • 0* - * + iM,(*. ft)p*-\ 

wherein the coefficient of pn~k, i.e., k\C(n, k)An{x, h), does not vanish. 
Thus Q G <^n-**, * e F(Q) (see (2.3) for the definition of F{Q)), and 
the coefficient of p in the expansion (2.7) of <2(x + ph) is given by 
(ft + l)\Ak+1(x, h). The definition of Qh'(x) (see (2.4) with ft = 1) then 
implies that 

&'(*) = (ft + l)L4*+1(*,fc) = P»(*+1)(x), 
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as was to be proved. Since the above arguments are valid for any value 
of k = 1, 2, . . . , n — 1, the proof is complete. 

Remark 2.4. (I) If P G ̂ V , ft € F(P), and if 

P(x + Ph) = E^(x,/*y'VPEi£, 

then (2.7) says that P ^ 6 ^n-**, ft € F(Ph
w), and that the expression 

for P»(fc) (x + ph) is precisely what we obtain when we formally differenti
ate with respect to p the expression for P(x + ph) (regarded as a poly
nomial in p from K to V (cf. (2.2)). This would serve as a quick means for 
realizing the expression for Ph

{k) (x + ph). 
(II) Proposition 2.3 suggests that, for a fixed ft G F(P), the vector-

valued abstract polynomials Ph
{k)(k = 1, 2, . . . , n) deserve to be called 

successive pseudo-derivatives of P . 
(III) If an nth degree (ordinary) polynomial/ : K —•> K is given by 

n 

(2.8) fix) = X) a,*' Vx e K (aj £ K,an5* 0), 

then (for every x, y G -K) 

h E c( j , *)**-Yp* 

= Ë / Z C"0', *)V~* P* = £ ^(*, y)p* VP 6 #, 
where 

j=fc 

Ak(x, y) = ( / /£ ! ) • £ j ( j - 1) . . . (j - k + l ) a , x ^ . 

We notice that the coefficients Ak(x, y) are independent of p, that 

4w(a, y) = An(0} y) = an3;
w ^ 0 for all y * 0, 

and that 

4*(*,30 = y*/(*>(*)/H 

where 

(2.9) /(W(x) = ±j(j -l)...(j-k + l)ajX
j-k 

j=k 

defines the kth formal derivative (see [15, p. 121] or [17, p. 553]) of/ with 
respect to x. To sum up: If/ is a polynomial of degree n from K to K, then 

(i) / is necessarily an abstract polynomial of degree n from K to K 
(i .e. , / G ^ n with E = X), 

(ii) every nonzero element of i£ is faithful t o / when/ is regarded as a 
member of &>n. That is, F (J) = K- {0}, 
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(iii) for each value of k = 1, 2, . . . , n, the &th pseudo-derivative fh
{lc) 

of the abstract polynomial / G &n (with E = K) and the feth formal 
derivative f(k) of the (ordinary) polynomial f (see (2.9)) satisfy the 
relationship 

(2.10) /*<*>(*) = A*/(Jt)(*) V ^ £ , ^ ^ - ( 0 ) . 

In particular (for h = l),/i ( f t ) = /(A) and the two notions coincide. It may 
be noted that the discussion in Remark III above applies in particular 
also when K = C, but in this case the formal derivative f{k) becomes 
really the feth derivative of/defined via calculus. 

3. The main theorems. Having introduced the concepts of g.c.r.'s 
and pseudo-derivatives of vector-valued abstract polynomials in i£-inner 
product spaces (Sections 2 and 3) and having realized that these are 
analogous extensions of the corresponding notions of (classical) circular 
regions and derivatives of (ordinary) polynomials in the complex plane, 
our attempt now is to see if these concepts really extend their cooperation 
in letting us formulate a Lucas-type theorem for the class of polynomials 
in <^w*. The present section answers this problem in the affirmative and, 
as a first step in this direction, we prove the following theorem concerning 
the polynomials in SPn (the special case when V = K). Throughout the 
discussion in this section E will denote a i^-inner product space and V a 
vector space over K. 

THEOREM 3.1. If P G £PnandS G D(EU) such that co G SandZ(P) QS, 
thenZ(Ph') C Sfor every h G F(P). 

Proof. Take an arbitrary but fixed element h G F(P) (see (2.3)). In 
order to show that Z(Ph

r) C 5, we take any element x G Z(Ph'). In case 
Ph{%) = 0 = P(x), then x G Z{P) C S, and we are done. In case 
Pn (x) = 0 9^ P(x), we still prove that x G S as follows: Suppose on the 
contrary that x d S. Since h G F(P) and K is algebraically closed, we 
can write (cf. (2.1) and (2.2)) 

Pipe + ph) = J2 Ak(x, h)pk VPeK 

n 

= An(x, h) • I I IP - Pi(x> *)] VP£ K, 
3=1 

where Ak(x} h) and pj(x, h) belong to K and are independent of p such 
that An(x, h) = An(0, h) 7e 0. The two expressions for P(x + ph) being 
identically equal for all p G K, the coefficients of various powers of p 
in the two representations must be equal. If A(k, n) denotes the sum of 
all possible products that can be formed out of the scalars pi(x, h), 

https://doi.org/10.4153/CJM-1982-058-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-058-5


844 NEYAMAT ZAHEER 

p2(x, h), . . . , pn(Xy h) taken k at a time, then 

P(x) = 40(tf, h) = (-l)nAn(x, fc) • A (n, »), 

P»'(x) = Aiix, h) = (-l)n-iAn(x, h) • A(n - 1, »). 

Since in the case under consideration P(x) 9e 0 = Ph'(x), we now con
clude that pj(x, h) 9^ 0 for all j and, hence, that 

(3.1) Ph'(x)/P(x) = -A(n - l,n)/A(n,n) = - £ 1/Pi(*, h) = 0. 

If we write p ; = p^x, h) and realize that P(x + pjh) = 0 for all j , then 
x + Pjh £ Z(P) C 5 and (due to (1.3)-(1.5)) we have 

(3.2) Ux + Pjh) = (l/?,)(fc/ll*ll2) 6 ^ ( 5 ) . 

Since x d Sand S (E D(EU), we see that ^.r(5) is ifo-convex and from (3.2) 
we obtain 

(3.3) (1/w) 
3=1 

(h/\\hf) € *,(S). 

But the hypothesis œ (? 5 and the relation (1.7) imply that 

0 = * » $ *X(S). 

The relation (3.3) then suggests that 

That is, 

Ei/p^,*)ti/p^o, 
3=1 3=1 

which contradicts (3.1). This completes our proof. 

In the following corollary we shall take E = K as a 1-dimensional 
natural i£-inner product space over K, so that K satisfies the structural 
properties of the vector space E of Theorem 3.1 and D(Kœ) makes sense 
(see Remark 1.1 (I) and Remark 1.6 (I)). 

COROLLARY 3.2. ([18, Theorem 4, p. 360]). Let a polynomial f : K —> K 
be given by (2.8) and let f denote the (first) formal derivative of f (cf. (2.9) 
withk = I). If A G D(Kœ) such that u (2 AandZ(f) QA,thenZ(f) QA. 

Proof. In view of Remark 2.4 (III) we know t h a t / £ SPn (with £ = K), 
that F(f) = K - {0}, and that/* '(*) = hf(x) for every x G E and 
h £ K — {0}. In part icular , / / (x) = fix). S ince / and A satisfy the 
hypotheses of Theorem 3.1, we conclude that Z(f) = Z(fî) C A. 
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Remark. 3.3.(1) In the special case when K = C and A is taken as the 
interior of a circle (which is indeed a special variety of g.c.r.'s of Cw in 
view of Remark 1.6(111)), the above corollary reduces essentially to 
Lucas' theorem (see introduction) and, hence, the set A becomes a 
Lucas-set for polynomials from C to C. 

(II) In view of Remark (I) above and the terminology used earlier in 
the introductory material of this paper, we may now define a subset 
A C E to be a Lucas-set for abstract polynomials in &n if, whenever A 
contains the null-set Z(P) of any abstract polynomial P G &m A also 
contains the null-set Z{Ph

r) of the pseudo-derivative Ph
r of P (relative to 

each fixed h G F{P)). Theorem 3.1 then says that every g.c.r. A of 
Eu (co g A ) is a Lucas-set for abstract polynomials. 

Repeated applications of Theorem 3.1 and Proposition 2.3 immediately 
furnish the following theorem which includes Theorem 3.1 and which 
deals with the null-sets of successive pseudo-derivatives. 

THEOREM 3.4. If P e SPn and S G D(EU) such that œ $ S and Z(P) ç 5, 
thenZ(PhW) Q S for every h G F(P),k = 1, 2, . . . , n - 1. 

In the remainder of this section our attempt is to obtain, via applica
tion of Theorem 3.4, a formulation of Lucas' theorem that extends 
Theorem 3.4 and, hence, Theorem 3.1 to the class ^ n * and that answers 
the general problem posed in the beginning of this section. In order to be 
able to formulate a concise theorem, we need the following concepts. 

A mapping L : V —> K is called a linear-form on V if 

f(au + pv) = af(u) + 0f(v) for u, v Ç V and a, 0 g K. 

Translations of maximal subspaces of V are termed hyper planes of V and 
are characterized (cf. [13, p. 40]) by sets of the form {v g V : L(v) = /}, 
where L is a nontrivial linear form on V and / is a fixed element of K. 
A subset M oî F is called (see [3, p. 59] or [14, p. 95]) supportable if for 
every £ g V — M, there exists a hyperplane through £ and the origin 
which does not intersect M. That is, for every £ G F — M, there exists a 
linear form L ( ^0 ) on V such that L(£) = 0 but L(v) ^ 0 for every 
v G M. Quite obviously, the origin cannot belong to any supportable 
subset of V. The following proposition gives a general method for con
structing a supportable subset of an arbitrary vector space V. 

PROPOSITION 3.5. The complement of every maximal sub space of V is a 
supportable subset of V. 

Proof. If 5 is a maximal subspace of V, then (cf. the method used in 
the proof of Theorem 4 in [13, p. 40]) there exists a nontrivial linear form 
Lon F such that 

S= {v e V: L(v) = 0}. 
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Put M = V - S. To each £ G V - M, we see that L(£) = 0 and that 
L(A) T̂  0 for every v G M (note that, incidentally, the same L works for 
each £). That is, F — 5 is a supportable subset of V. 

If P G ̂ n * and is given by (2.1) and if M is a supportable subset of V, 
we shall write 

E(P) = E(P, M) = {x £ E: P(x) G M}, 
F*(P) s F*(P, M) = {ft G £ : i4n(0, ft) G M}. 

Note that F*(P) C P(P) , because ft cannot be zero and 0 g M. 

Remark 3.6. In the special case when V = K (so that ^ w * coincides 
with &n) we see that K — {0} = Af (say) is a supportable subset of K 
(due to Proposition 3.5), that the corresponding set E(P) = P ( P , M) 
reduces essentially to the null-set Z(P) of P , and that the set F*(P) = 
P*(P, M) coincides with the nonempty set P(P) given by (2.3). 

PROPOSITION 3.7. Let dim F ^ 2. Por every nonzero element a G F, £ftere 
exis/s a supportable subset M of V such that a £ M. 

Proof. Since dim V ^ 2, we can always find an element 6 G F such that 
a and & are linearly independent. If B denotes the subspace of V spanned 
by {&}, then a (£ B. Using the same method of proof as in Theorem 2 of 
Wilansky [13, p. 19], we can obtain a linear form L on V such that 
L(a) = 1 ^ 0 and L(x) = 0 for x G P- Since the set 

5 = {x G F : L(x) = 0} 

is a maximal subspace of V, by Proposition 3.5 its complement V — S = 
M (say) is a supportable subset of V. Obviously, a G M. This completes 
the proof. 

Remark 3.8. In case V = K, Remark 3.6 says that F*(P) = F(P) ^ 0 
for every P G ̂ n * = &n when AT is taken a s X — {0}. However, in case 
dim V ^ 2, every element ft of the nonempty set P(P) determines a 
nonzero element An(0, ft) G F and, via Proposition 3.7, a supportable 
subset M such that ^4W(0, ft) G M. That is for every ft G P(P) there exists 
an M such that ft G F*(P). In other words: For every P G <^V\ there 
exists an M such that F^(P) ^ 0. 

THEOREM 3.9. If P G <^V\ 5 É D (£„) (w G S) and if Misa supportable 
subset of V such that F*(P) ^ 0 and E{P) Q S, then E(Ph™) C 5 for 
every ft G P*(P), k = 1, 2, . . . , « - 1. 

Proof. For any ft G P*(P), let us note that ft G F(P) and the P*<*> are 
meaningful entities to talk about. Suppose, on the contrary, that E(Ph

{k)) 
Q S for some k in the set {1, 2, . . . , n — 1} and some ft G F*(P). There 
must then exist an element z G 5 for which Ph

(lc) (z) G M. The définition of 
M now guarantees the existence of a nontrivial linear form L on F such 
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that L(PhW(z)) = 0 but L(v) 9* 0 for v G if. If P is given by (2.1) and 
if we define a mapping Q : £ —> i£ by <2(x) = L(P(x)) for x G E, then 
for every x, y £ E, 

Q{x + Py) =L yZ,Ak(x,y)pk = t,Mx,y)pkVp£K, 

where Bk(x, y) = L(Ak(x, y)) are elements in K independent of p and 
where 

Bn(x,y) = L(An(x,y)) = L(An(0,y) = Bn(0,y). 

This implies that 

Bn(x, ft) = 5B(0, ft) = L(An(0, ft)) ^ 0 

(since ft G E*(P)) and that Z(Q) C £ ( P ) C 5. That is: Q Ç £Pn, ft 6 F(Ç) 
and Z(Q) C 5. From Theorem 3.4 we conclude that Z (&<*>) C 5. 
Finally, since 

&<*>(*) = &!£/c(x, ft) = L(k\Ak(x} ft)) = L(PhM(x)) Vx£ E, 

the property of the point s implies that 

Qh^(z) =L(PhM(z)) = 0. 

Therefore, z £ Z(Qh
{k)) C 5, which contradicts the fact that z d S. The 

proof is now complete. 

In the special case when V = K and Af = K — {0}, the above theorem 
reduces essentially to Theorem 3.4. In fact, Theorem 3.9 is the most 
general formulation of Lucas' theorem in the present paper. In conformity 
with our previous terminology, we see that g.c.r.'s of Eu are indeed the 
Lucas-sets for vector-valued abstract polynomials from E to V. 

4. Examples. In this section we give some interesting examples which 
fathom the degree of generality of our main theorems of Section 3 and 
which give assurances about the validity of hypotheses in the theorems 
that we have established. Let us first recall that the definition of the class 
&n (more generally ^ n * ) in Section 2 only requires the scalar field K 
to be of characteristic zero whereas, in addition, K has to be algebraically 
closed (in order for (£, ( . , . ) ) to be a i£-inner product space) for defining 
in Section 1 the concept of g.c.r.'s of E^ and (hence) for formulating our 
main theorems of Section 3. Let us also recall that if (£, ( . , . ) ) is a 
i^-inner product space then (using arguments similar to the ones follow
ing the proof of Theorem 1.5; see relations (1.13)-(1.15)) (E, (. , .)0) also 
becomes a i£0-inner product space over K0. Our first example below 
shows that Theorem 3.1 (and, hence, Theorems 3.4 and 3.9) cannot be 
further generalized to abstract polynomials from E to K0y where E is a 
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i^o-inner product space and K0 a maximal ordered field. That is, the 
theorems mentioned above cannot be generalized to vector spaces over 
nonalgebraically closed fields of characteristic zero. 

Example 4.1. Let KQ be a maximal ordered field, so that K0 is a non
algebraically closed field of characteristic zero (see [11, pp. 233, 250]) and 
Ko(i) = K (say) is algebraically closed and of characteristic zero (cf. 
[1, pp. 38-40] or [11, pp. 248-255]). Let us take E = K as a 1-dimensional 
natural i£-inner product space over K with Hamel basis H = {1} and 
(x, y) = xy for x, y G K. Then (cf. relations (1.13)—(1.15) and the discus
sions along the way) E = K0(i) = K becomes a 2-dimensional natural 
i^o-inner product space over K0 under the i£0-inner product defined by 

(x, y)0 = Re (x, y) = Sis2 + hh 

for elements x = Si + iti, y = s2 + it2 in K0(i) (with Hamel basis Hi = 
{1, i}). Furthermore, let us also recall that the definition of D(EJ) re
mains unaffected when, instead of treating £ as a natural i£-inner product 
space (K, (. , .)), we treat £ as a natural i£0-inner product space (Ko(i)f 

{. , .)0) and replace (in Definition 2.1) (. , .) by (. , ,)0 and || . || by || . ||0 

(see relations (1.4)—(1.5) and the discussion that follows). With this fact 
in view if we define, for a fixed element a = 1 — i G KQ(Ï) — E, 

S = {x G E : (x, a)0 ^ 0 } = {s + it : s, t G K0; s - t ^ 0}, 

then Proposition 1.4 and 1.5 imply that A G D(Eœ). Next, we define a 
mapping P from E = K0(i) to K0 by 

P ( x ) = (s - t) (s2 + 1) V x = s + it G E. 

Then for elements x = s + it and y = Si + it\ in E, we have 

Pipe + py) = P[(s + pSl) + i(t + ph)} Vp G Ko 

= i(s -t)+ p(Sl - h)] • [(s + pSl)
2 + 1] 

3 

= T,Mx,y)pk(&iy)VpeKo, 
k=0 

where Ak(x, y) G K0 and are independent of p such that 

A*(x, y) = Az(0, y) = s^(Sl - h) & 0. 

Therefore, P is an abstract polynomial from E = K0(i) to K0 and S G 
D{E0)) with co G S such that (since s2 + 1 cannot vanish for any 5 G K0 

(see [1, p. 36])) 

Z(P) = {s + it : 5, / G K0; s - t = 0} C S. 

But we can easily verify that h = 1 + 2i G F(P) (since Az{0,h) = — 1 
7̂  0) and, for this h, Ph'(x) = Ai(x, h) = 0 for x = (1 + V2) + i G 5. 
That is, Theorem 3.1 does not hold when K is replaced by K0. 
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In relation (2.3) we have already shown that F(P) 9e 0 for every 
P G &n. Therefore, in order that Theorem 3.1 should not be vacuously 
true, it is essential that we show the existence of abstract polynomials 
P G &n and g.c.r.'s 5 G D(E„) such that co G S. This is done in the 
following 

Example 4.2. Given a finite or infinite dimensional i£-inner product 
space (E, ( . , . ) ) and any fixed nonzero element a G E, let us take 

5 = {x G E : Re (x, a) ^ 0}. 

If we define L(x) = (x, a) for x G P, then L is a nontrivial linear form on 
£ and the set 

{x G E : L(x) = 0} = 5 (say) 

is a maximal subspace of E. Since a ^ 0 and L(a) = (a, a) = ||a||2 > 0, 
we see that a G B and (hence) that every element x G E can be uniquely 
represented as x = ta + b for some £ G K and b £ B. Obviously, 5 Ç 5 
and x G 5 (resp. x G -S) if and only if Re (t) ^ 0 (resp. t = 0). If X; 

(j = 1, 2, . . . , n) are arbitrarily selected elements in K such that 
Re (X;) ^ 0 and if we define a mapping P : E —•> i£ by 

P(x) = n (̂  + X*) Vx = /a + /? G -E, 

we see that for every element x = ta + b, y = tia + bi in E, 

n 

P{x + py) = n G + P'i + Xi) VP G X. 

The product on the right hand side of the last equality can obviously be 
expressed in the form (2.1) with 

An(x,y) = An(0,y) = hn ^ 0. 

Therefore, P G SPn and P(P) = £ - B. Also, P(x) = 0 if and only if 
x = — Xjd + & for some j and some b £ B. Since Re ( — X;) = — Re (X )̂ 
^ 0, every element x G Z(P) must lie in S. Consequently, P G SPn with 
P(P) = E - B such that Z(P) Q S, where co G 5 and 5 G D(E„) in 
view of Propositions 1.4 and 1.5. 

Remark 4.3. Since the choices for a and X; in the above example are 
arbitrary, we have now shown that for every g.c.r. S G D(E0}) determined 
(in the manner of the above example) by each point a G E — {0j, there 
exist (in fact) infinitely many abstract polynomials P G &n satisfying 
the hypotheses in Theorem 3.1. 

Since Theorem 3.1 is a special case of Theorem 3.9 for V = K, Example 
4.2 does in fact verify the validity of the hypotheses of the latter when 
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V = K. In the general case when dim V ^ 2, Remark 3.8 establishes only 
that the part hypothesis F*(P) ^ 0 in Theorem 3.9 is valid. In the 
following example, however, we show the validity of all the hypotheses 
in their totality. 

Example 4.4. Given a finite or infinité dimensional i£-inner product 
space (E, ( . , . ) ) with Hamel basis if, let us take 

5 = {x Ç E : Re (x,hi) ^ 0}, 

where hi is a fixed element arbitrarily selected from H. Then S £ D(EW) 
due to Propositions 1.4 and 1.5, and co g S. Next, we take F as a (finite 
or infinite dimensional) vector space over K of dim 7 ^ 2 with a Hamel 
basis if i and select out arbitrarily an element fi £ if i. Then if i — {/i} = 
if/ (say) T̂  0. Denote by 5 the subspace of V spanned by the set Hi. 
Since B is a maximal subspace of V, V — B = M (say) is a supportable 
subset of V (see Proposition 3.5) such that fi G M. If we arbitrarily 
choose elements b (z B and Xj; G K (j = 1, 2, . . . , n) with Re (X )̂ ^ 0, 
and if we define a mapping P : E —» F by 

p(*) 

then for every x, 3/ G £ , 

•/i + & v * e £, 

i>(* + P30 f i « * + py> hi) - \j) 
Lj=l 

-fi + bVpeK 

n (p(y,h!) + (x,hi)- h) 
3=1 

'fi+b. 

The last expression can obviously be expressed in the form (2.1) with 
the coefficient An(x, y) satisfying the relations 

An(x,y) = An(0,y) = (y,hi)nfi & 0. 

If we set h = hi/\\hi\\2, then 

An(0,h) = <ft,*i)»/i = / i ^ 0 . 

Therefore, P 6 ^ w * and, since 4n(0, fe) = /1 € M, we see that i Ç P*(P) 
and P*(P) ^ 0. Furthermore, P(x) £ M if and only if P(x) Ç J5, which 
holds if and only if (x, /h) — X;- = 0 (for, otherwise,/! would belong to B, 
contradicting tha t / i $ B). That is, if x £ £ ( P ) then 

Re (x, h\) = Re (X )̂ ^ 0 for some j 

and so x £ 5. We have, therefore, shown that all the hypotheses in 
Theorem 3.9 are satisfied by the g.c.r. S, the supportable subset M, and 
the polynomial P £ <^n* as considered in this example. 
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Due to the arbitrary nature of the selection of elements fei, / i , b, and 
\j} we observe that for every g.c.r. 5 £ D(EU)} determined in the manner 
of the above example, there exist infinitely many polynomials P £ <^n* 
satisfying the hypotheses of Theorem 3.9, including the case when E and 
or V are infinite dimensional. Consequently, Examples 4.2 and 4.4 to
gether reveal the fact that the hypotheses in Theorem 3.9 (and, hence, 
in Theorems 3.1 and 3.4) are not a mere assembly of figments of imagi
nation manipulated to produce a vacuously true mathematical state
ment. 

Concluding remarks. Though we have defined the concept of g.c.r.'s of 
Eu when E is a K-'mner product space, both the definition as well as 
Theorems 3.1, 3.4, and 3.9 as such remain valid when E is initially taken 
as a i£o-normed vector space over K. This is obvious in the light of the 
fact that only the i£0-norm, induced by the initial X-inner product on E, 
has been used in Definition 2.1 and in the proofs of those theorems (see 
(1.5)) and, naturally enough, the same analysis goes through if we start 
initially with a i£0-norm on E. The reason why we have not discussed 
D(EU) for i£0-normed vector spaces is that the family D(EU) in this case 
would not be as rich as it is in the case when E is a i£-inner product space. 
For, in the latter case, the sets 

{x € E : Re <*, a) è 0} 

are members of D(EU) while, in the former case, these sets are meaning
less to talk about. 
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