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Abstract

Recently, Makri, Philippou and Psillakis (2007b) studied the exact distribution of success
run statistics defined on an urn model. They derived the exact distributions of various
success run statistics for a sequence of binary trials generated by the Pólya–Eggenberger
sampling scheme. In our study we derive the joint distributions of run statistics defined
on the multicolor urn model using a simple unified combinatorial approach and extend
some of the results of Makri, Philippou and Psillakis (2007b). As a consequence of
our results, we obtain the joint distributions of success and failure runs defined on the
two-color urn model. The results enable us to compute the characteristics of particular
consecutive-type systems and start-up demonstration tests.
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1. Introduction

Runs and run-related statistics are useful tools for analyzing sequential data appearing in
many fields including statistical process control, reliability, and molecular biology. The distri-
bution theory of runs has been well developed using various techniques such as combinatorial,
probability generating function, and Markov chain approaches. Combinatorial methods have
been successfully used to derive the distribution of runs in a sequence of independent, identically
distributed (i.i.d.) binary trials (Philippou and Makri (1985), (1986), Makri and Philippou
(2005)). For an extensive review of the topic, we refer the reader to Balakrishnan and Koutras
(2002), as well as Fu and Lou (2003). The topic is still very attractive because of its wide range
of applications. Some recent contributions to the topic include Inoue and Aki (2005), Makri et
al. (2007a), Eryilmaz and Demir (2007), and Antzoulakos and Boutsikas (2007).

Early discussions on runs are based on a sequence of binary trials (Fu and Lou (2007), Wald
and Wolfowitz (1940), Mosteller (1941), Wolfowitz (1943)). Runs of sequences consisting of
multistate trials have also been studied in the literature using various techniques (Fu (1996),
Han and Aki (1999), Vaggelatou (2003), Eryılmaz (2008b)). There are various definitions of
runs for both binary and multistate trials. Various types of run statistics are used depending on
the type of problem. For example, the numbers of runs of length exactly equal to and greater
than or equal to a specified value, and the longest run are useful in statistical hypothesis testing
(Lou (1996), Koutras and Alexandrou (1997)). The longest run random variable is also an
important tool in reliability analysis (Philippou (1988), Chao et al. (1995), Eryılmaz (2008a))
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and molecular biology (Goldstein (1990), Lou (2003), Chang et al. (2003), Wang and Cheung
(2004)). Waiting time random variables associated with runs are indicative in statistical process
control applications (Fu et al. (2003), Chakraborti and Eryılmaz (2007)).

The problem of finding the distribution of runs in a sequence that consists of multistate trials
might be tedious. However, this problem should be carefully studied because the outcomes
of most of the random processes appear as a sequence of trials which can be classified into
more than two groups. For example, deoxyribonucleic acid (DNA) sequences consist of four
different nucleotides (with the bases A, T, C, and G).

In this paper we study the distribution of run statistics defined on the multicolor urn model.
This model generates a sequence that consists of multistate trials whose outcomes are denoted
by the type of ball selected from the urn. In this multicolor urn scheme, a ball is drawn from
the urn initially containing mj balls of color j, j = 1, 2, . . . , t , and its color is noted. If a ball
of color j is drawn at a stage, s balls of color j, j = 1, 2, . . . , t , are added to the urn. Drawing
a ball of color j is considered as a trial of type j, j = 1, 2, . . . , t . This scheme is repeated n

times and a sequence consisting of trials, namely {1, 2, . . . , t}, is derived. For a review of the
theory and applications of urn models, the reader is referred to Johnson and Kotz (1977).

In a recent paper, Makri et al. (2007b) studied the distribution of run statistics defined on a
two-color (t = 2) version of the abovementioned urn model. In the present paper we extend
some of the results of Makri et al. (2007b) to the multicolor urn model using a simple unified
combinatorial approach. Our paper is organized as follows. In Section 2 we provide the
definitions, notation, and some preliminary results that will be used throughout the paper. In
Section 3 we present general expressions for the joint distributions of run statistics defined on
the multicolor urn model. In Section 4 we provide an alternative definition for run statistics,
which is helpful in obtaining bounds. Section 5 includes some applications of the material
presented in this paper which can be helpful in the fields other than the urn model.

2. Definitions, notation, and preliminary results

Consider a generalized Pólya urn which initially contains mj balls of color j , j = 1, 2, . . . , t ,
m1 + · · · + mt = m. At each stage a ball is drawn from the urn and its color is noted. If a
ball of color j is drawn at a stage, s balls of color j, j = 1, 2, . . . , t , are added to the urn.
This multicolor Pólya sampling scheme is repeated and a sequence {Zi}i≥1, whose elements
represent the type of ball selected from the urn, is obtained. That is, Zi = j if the ith ball
selected is of type j , i = 1, 2, . . . and j = 1, 2, . . . , t .

Let Z1, Z2, . . . , Zn denote the first n outcomes associated with this sampling scheme. It
is obvious that the elements of Z1, Z2, . . . , Zn are dependent. For i = 1, 2, . . . and j =
1, 2, . . . , t , define the following random variables:

• R
(j)
n : the total number of runs of type j ,

• θ
(j)
i : the length of the ith run of type j ,

• E
(j)
n,kj

: the total number of runs of type j with length exactly equal to kj ,

• G
(j)
n,kj

: the total number of runs of type j with length at least kj ,

• L
(j)
n : the length of the longest run of type j ,

• Ln: the length of the longest run of any type in Z1, Z2, . . . , Zn,
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• W
(j)
kj

: the waiting time for the first ‘j ’ run of length kj ,

• Wk: the waiting time for the first run of any type with length k in Z1, Z2, . . . .

These definitions can be illustrated with the following example. Consider an urn which contains
three different colors of balls (t = 3). Let the first 15 trials be

221333112111231. (1)

Then, R(1)
n = 4, R(2)

n = 3, R(3)
n = 2, θ

(1)
1 = 1, θ(1)

2 = 2, θ(1)
3 = 3, θ(1)

4 = 1, θ(2)
1 = 2, θ(2)

2 = 1,

θ
(2)
3 = 1, θ

(3)
1 = 3, θ

(3)
2 = 1, E

(1)
15,1 = 2, E

(1)
15,2 = 1, E

(1)
15,3 = 1, E

(2)
15,1 = 2, E

(2)
15,2 = 1, E

(2)
15,3 =

0, G
(1)
15,2 = 2, G

(2)
15,3 = 0, G

(3)
15,2 = 1, L

(1)
15 = 3, L

(2)
15 = 2, L

(3)
15 = 3, L15 = 3, W

(1)
3 = 12, and

W3 = 6.
We readily have the following expressions:

E
(j)
n,kj

=
R

(j)
n∑

i=1

1{θ(j)
i = kj }, G

(j)
n,kj

=
R

(j)
n∑

i=1

1{θ(j)
i ≥ kj },

L
(j)
n = max

1≤i≤R
(j)
n

θ
(j)
i , Ln = max

1≤j≤t
L

(j)
n ,

Wk = min(W
(1)
k , W

(2)
k , . . . , W

(t)
k ),

where 1{A} = 1 if A occurs and 1{A} = 0 otherwise.
As is seen, most of the run statistics can be expressed as a compound random variable, which

is a function of the run lengths and the total number of runs. That is, if X
(j)
n,kj

represents any of
the random variables E

(j)
n,kj

, G
(j)
n,kj

, or L
(j)
n , then it can be viewed mathematically as

X
(j)
n,kj

= φ
(j)
kj

(θ
(j)
1 , . . . , θ

(j)

R
(j)
n

), j = 1, 2, . . . , t. (2)

Thus, the distribution of any run statistic based on a sequence Z1, Z2, . . . , Zn can be evaluated
using the distribution of the vector

(θ
(1)
1 , . . . , θ

(1)

R
(1)
n

, θ
(2)
1 , . . . , θ

(2)

R
(2)
n

, . . . , θ
(t)
1 , . . . , θ

(t)

R
(t)
n

).

It is known that the repetition of the multicolor Pólya sampling scheme defined above
derives a sequence of exchangeable multistate trials (see, e.g. Hill et al. (1987)). If Z1, Z2, . . .

is a sequence of multistate exchangeable trials with P{Zi = j} = pj , j = 1, 2, . . . , t, i ≥
1,

∑t
j=1 pj = 1, then as a generalization of de Finetti’s representation from an infinite sequence

of exchangeable binary variables to an infinite sequence of exchangeable multistate variables,
we have

P{Z1 = 1, . . . , Zn1 = 1, Zn1+1 = 2, . . . , Zn1+n2 = 2, . . . , Zn−nt+1 = t, . . . , Zn = t}

=
∫

∑
pj =1

t∏
j=1

p
nj

j dG(p1, . . . , pt−1) (3)

(see, e.g. Zabell (1982)), where dG(p1, . . . , pt−1) is the de Finetti measure that exists on the
simplex.
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The sequence (Z1, Z2, . . . ) derived in the aforementioned multicolor Pólya urn scheme is
exchangeable with the de Finetti measure, which is Dirichlet and given by

dG(p1, . . . , pt−1) = �(α1 + α2 + · · · + αt )

�(α1)�(α2) · · · �(αt )
p

α1−1
1 p

α2−1
2 · · · pαt−1−1

t−1

× (1 − p1 − · · · − pt−1)
αt−1 dp1 · · · dpt−1, (4)

where
∑t−1

j=1 pj ≤ 1 and αj = mj/s, j = 1, 2, . . . , t , s > 0. The Dirichlet measure given by
(4) has beta marginals, i.e.

dG(pj ) = 1

B(αj ,
∑

i �=j αi)
p

αj −1
j (1 − pj )

(
∑

i �=j αi )−1 dpj for j = 1, 2, . . . , t, (5)

where B(a, b) is the beta function defined by

B(a, b) =
∫ 1

0
xa−1(1 − x)b−1 dx for a > 0 and b > 0.

For s > 0, using (4) in (3), the probability of obtaining n1 balls of color 1, n2 balls of color 2,
etc. in n drawings is obtained as

pn(n1, . . . , nt ) = �(
∑t

i=1 αi)

�(
∑t

i=1 αi + n)

t∏
j=1

�(αj + nj )

�(αj )
,

where
∑t

j=1 nj = n and �(a) is the gamma function defined by

�(a) =
∫ ∞

0
xa−1e−x dx for a > 0.

The cases in which s = 0 (sampling with replacement) and s = −1 (sampling without
replacement) are of special interest in urn models. For s = 0, pn(n1, . . . , nt ) reduces to
p

n1
1 p

n2
2 · · · pnt

t with pj = mj/m, j = 1, 2, . . . , t . That is, this case corresponds to i.i.d.
multistate trials with respective probabilities p1, p2, . . . , pt . For s = −1, we have

pn(n1, . . . , nt ) = m
(n1)
1 m

(n2)
2 · · · m(nt )

t

m(n1)(m − n1)(n2) · · · (mt − ∑t−1
i=1 ni)(nt )

,

where x(a) = x(x − 1) · · · (x − a + 1), denoting the ath falling factorial of x with x(0) = 1.
Throughout the paper, for integers a and b, [a] denotes the integer part of a and

(
a
b

)
denotes

the extended binomial coefficient (see Feller (1968, pp. 50, 63)). For convenience, we also
apply

∑b
i=a = 0 for a > b.

The following lemma will be helpful in our developments.

Lemma 1. (Eryılmaz (2008b).) Let Z1, Z2, . . . be an infinite sequence of exchangeable
multistate trials. Suppose that each trial has t (t ≥ 2) possible outcomes labeled {1, 2, . . . , t}
with P{Zi = j} = pj , j = 1, 2, . . . , t , i ≥ 1. Then

P{θ(1)
1 = i

(1)
1 , . . . , θ (1)

r1
= i(1)

r1
, . . . , θ

(t)
1 = i

(t)
1 , . . . , θ (t)

rt
= i(t)rt

, R(1)
n = r1, . . . , R

(t)
n = rt }

= Ft(r1, . . . , rt )

∫
∑

pj =1

t∏
j=1

p
nj

j dG(p1, . . . , pt−1),
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where nj = ∑rj
m=1 i

(j)
m ,

Ft(r1, . . . , rt ) = (−1)r
r1∑

m1=1

· · ·
rt∑

mt=1

(−1)m
(

r1 − 1

m1 − 1

)
· · ·

(
rt − 1

mt − 1

)(
m

m1, . . . , mt

)
,

r = ∑t
j=1 rj ≤ n, and m = ∑t

j=1 mj .

Note that the number Ft(r1, . . . , rt ) denotes the total number of ways for getting r1 runs of
type 1, r2 runs of type 2, and so on, without two adjacent runs being of the same type, and it
has been derived by Kong (2006). When t = 2, F2(r1, r2) can be simplified as

( 2
r1−r2+1

)
.

In particular, for the multicolor Pólya sampling scheme, we have

P{θ(1)
1 = i

(1)
1 , . . . , θ (1)

r1
= i(1)

r1
, . . . , θ

(t)
1 = i

(t)
1 , . . . , θ (t)

rt
= i(t)rt

, R(1)
n = r1, . . . , R

(t)
n = rt }

= Ft(r1, . . . , rt )pn(n1, . . . , nt ). (6)

3. Joint distribution of run statistics

In this section we provide the joint distribution of run statistics defined on the multicolor
urn model described above. Let X

(j)
n,kj

denote any run statistic which can be represented as
a function of the run lengths and the total number of runs of the type with color j, j =
1, 2, . . . , t . The following theorem provides the joint distribution of the random variables
X

(1)
n,k1

, X
(2)
n,k2

, . . . , X
(t)
n,kt

.

Theorem 1. The joint distribution of X
(1)
n,k1

, X
(2)
n,k2

, . . . , X
(t)
n,kt

is given by

P{X(1)
n,k1

∈ B1, X
(2)
n,k2

∈ B2, . . . , X
(t)
n,kt

∈ Bt }

=
∑

r

∑
n

t∏
m=1

|I (m)
φkm

(Bm)|Ft(r1, . . . , rt )pn(n1, . . . , nt ), (7)

where r = (r1, . . . , rt ), n = (n1, . . . , nt ), and, for m = 1, 2, . . . , t , the Bms are Borel sets,

I
(m)
φkm

(Bm) = {(i(m)
1 , . . . , i(m)

rm
) : i

(m)
1 + · · · + i(m)

rm
= nm; φ

(m)
km

(i
(m)
1 , . . . , i(m)

rm
) ∈ Bm},

and |A| shows the cardinality of the set A. The first and second sums are taken respectively
over r1 + · · · + rt ≤ n and n1 + · · · + nt = n.

Proof. In view of (2) and conditioning on (R
(1)
n , . . . , R

(t)
n ) we have

P{X(1)
n,k1

∈ B1, . . . , X
(t)
n,kt

∈ Bt }
=

∑
r1

· · ·
∑
rt

P{φ(1)
k1

(θ
(1)
1 , . . . , θ (1)

r1
) ∈ B1, . . . , φ

(t)
kt

(θ
(t)
1 , . . . , θ (t)

rt
) ∈ Bt ,

R(1)
n = r1, . . . , R

(t)
n = rt }.
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Now, conditioning on the frequencies of each type of object, we obtain

P{X(1)
n,k1

∈ B1, . . . , X
(t)
n,kt

∈ Bt }
=

∑
r1

· · ·
∑
rt

∑
n1

· · ·
∑
nt

P{φ(1)
k1

(θ
(1)
1 , . . . , θ (1)

r1
) ∈ B1, . . . , φ

(t)
kt

(θ
(t)
1 , . . . , θ (t)

rt
) ∈ Bt ,

R(1)
n = r1, . . . , R

(t)
n = rt , S(1)

n = n1, . . . , S(t)
n = nt }

=
∑

r

∑
n

∑
· · ·

∑
i
(1)
1 +···+i

(1)
r1 =n1

φ
(1)
k1

(i
(1)
1 ,...,i

(1)
r1 )∈B1

· · ·

×
∑

· · ·
∑

i
(t)
1 +···+i

(t)
rt =nt

φ
(t)
kt

(i
(t)
1 ,...,i

(t)
rt )∈Bt

P{θ(1)
1 = i

(1)
1 , . . . , θ (1)

r1
= i(1)

r1
, . . . , θ

(t)
1 = i

(t)
1 , . . . , θ (t)

rt
= i(t)rt

,

R(1)
n = r1, . . . , R

(t)
n = rt }, (8)

where S
(j)
n denotes the total number of objects of type j . The contribution of the mth multiple

sum (m = 1, . . . , t) to the expression inside the sums is the total number of integer solutions
to the system

i
(m)
1 + · · · + i(m)

rm
= nm such that φ

(m)
km

(i
(m)
1 , . . . , i(m)

rm
) ∈ Bm, i

(m)
1 , . . . , i(m)

rm
> 0. (9)

This number coincides with the cardinality of the set I
(m)
φm

(Bm). The proof is now completed
using (6) in (8).

Joint distributions of various run statistics can be obtained using Theorem 1 with the
appropriate selections of Bms and the functions φ

(m)
km

, m = 1, 2, . . . , t . The cardinalities
|I (m)

φkm
(Bm)|, m = 1, 2, . . . , t , completely depend on the selection of φ

(j)
kj

(and, hence, X
(j)
n,kj

),
and the computation of |I (m)

φkm
(Bm)| is enough to derive the corresponding distributions. Thus,

the problem of finding the joint distributions of X
(1)
n,k1

, X
(2)
n,k2

, . . . , X
(t)
n,kt

is a combinatorial one,
specifically the determination of the total number of integer solutions to system (9).

Theorem 2. The joint probability mass function of E
(1)
n,k1

, E
(2)
n,k2

, . . . , E
(t)
n,kt

is given by

P{E(1)
n,k1

= x1, E
(2)
n,k2

= x2, . . . , E
(t)
n,kt

= xt }

=
∑

r

∑
n

t∏
m=1

(
rm

xm

)
A(nm − rm − xm(km − 1), rm − xm, km − 1)

× Ft(r1, . . . , rt )pn(n1, . . . , nt ),

where

A(α, r, k) =
[α/k]∑
j=0

(−1)j
(

r

j

)(
α − (k + 1)j + r − 1

α − jk

)
. (10)
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Proof. For m = 1, 2, . . . , t , choosing Bm = {xm} and

φ
(m)
km

(i
(m)
1 , . . . , i(m)

rm
) =

rm∑
j=1

1{i(m)
j = km},

we have

I
(m)
φkm

({xm}) = {(i(m)
1 , . . . , i(m)

rm
) : i

(m)
1 + · · · + i(m)

rm
= nm; xm of i

(m)
1 , . . . , i(m)

rm
equals km

and rm − xm of i
(m)
1 , . . . , i(m)

rm
differs from km}.

We readily have∣∣I (m)
φkm

({xm})∣∣ =
(

rm

xm

)
A(nm − rm − xm(km − 1), rm − xm, km − 1),

where A(nm − rm − xm(km − 1), rm − xm, km − 1) is the total number of integer solutions to
the system i

(m)
1 + · · · + i

(m)
rm−xm

= nm − kmxm such that i
(m)
1 �= km, . . . , i

(m)
rm−xm

�= km; i
(m)
1 >

0, . . . , i
(m)
rm−xm

> 0, or, equivalently, the number of allocations of nm − rm − xm(km − 1)

indistinguishable balls into rm − xm distinguishable cells, where no cell has exactly km − 1
balls. Equation (10) gives A(nm − rm − xm(km − 1), rm − xm, km − 1) with α = nm − rm −
xm(km − 1), r = rm − xm, and k = km − 1 (see, e.g. Sen et al. (2003)). Thus, the proof is
completed.

In the following example we compute the probability P{E(1)
5,2 = 1, E

(2)
5,1 = 2, E

(3)
5,1 = 1}. We

choose n = 5 so that the computations can also be done by hand, by writing out all possible
sequences from five trivariate trials.

Example 1. Let us consider an urn with initial composition m1 = 2, m2 = 2, m3 = 1, and
s = 1. Then

P{E(1)
5,2 = 1, E

(2)
5,1 = 2, E

(3)
5,1 = 1}

=
∑
r1≥1

∑
r2≥2

∑
r3≥1

∑
n1≥r1

∑
n2≥r2

(
r1

1

)(
r2

2

)(
r3

1

)
A(n1 − r1 − 1, r1 − 1, 1)

× A(n2 − r2, r2 − 2, 0)A(n − n1 − n2 − r3, r3 − 1, 0)

× F3(r1, r2, r3)p5(n1, n2, n − n1 − n2)

= F3(1, 2, 1)p5(2, 2, 1)

= 6p5(2, 2, 1),

where p5(2, 2, 1) = �(5)�(4)�(4)/�(10).

Corollary 1. For the two-color (t = 2) urn model, if getting a ball of color 1 or 2 represents
success or, respectively, failure, then the joint distribution of the total number of success runs
of length exactly k1 and the number of failure runs of length exactly k2 is given by

P{E(1)
n,k1

= x1, E
(2)
n,k2

= x2}
=

∑
r1

∑
r2

∑
n1

(
r1

x1

)(
r2

x2

)
A(n1 − r1 − x1(k1 − 1), r1 − x1, k1 − 1)

× A(n − n1 − r2 − x2(k2 − 1), r2 − x2, k2 − 1)

(
2

r1 − r2 + 1

)
pn(n1, n − n1).

https://doi.org/10.1239/jap/1231340230 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1231340230


1014 S. ERYILMAZ

Theorem 3. The joint probability mass function of G
(1)
n,k1

, G
(2)
n,k2

, . . . , G
(t)
n,kt

is given by

P{G(1)
n,k1

= x1, G
(2)
n,k2

= x2, . . . , G
(t)
n,kt

= xt }

=
∑

r

∑
n

t∏
m=1

(
rm

xm

)
C(rm, rm − xm, km − 1, nm)

× Ft(r1, . . . , rt )pn(n1, . . . , nt ),

where

C(r, j, k, l) =
j∑

z=0

(−1)z
(

j

z

)(
r + l − j − (k + 1)(r − j) − zk − 1

r − 1

)
.

Proof. For m = 1, 2, . . . , t , choosing Bm = {xm} and

φ
(m)
km

(i
(m)
1 , . . . , i(m)

rm
) =

rm∑
j=1

1{i(m)
j ≥ km},

we have

I
(m)
φkm

({xm}) = {(i(m)
1 , . . . , i(m)

rm
) : i

(m)
1 + · · · + i(m)

rm
= nm; xm of i

(m)
1 , . . . , i(m)

rm
≥ km

and rm − xm of i
(m)
1 , . . . , i(m)

rm
< km}.

It is clear that ∣∣I (m)
φkm

({xm})∣∣ =
(

rm

xm

)
C(rm, rm − xm, km − 1, nm),

where C(r, j, k, l) is the total number of integer solutions to the system i1+· · ·+ir = l such that
i1 < k+1, . . . , ij < k+1, ij+1 ≥ k+1, . . . , ir ≥ k+1; i1 > 0, . . . , ir > 0, or, equivalently,
the total number of integer solutions to the system y1 + · · · + yr = l − j − (k + 1)(r − j)

such that 0 ≤ y1 < k, . . . , 0 ≤ yj < k, yj+1 ≥ 0, . . . , yr ≥ 0. Let Ai be the event of
yi ≥ k, i = 1, . . . , j . Then

C(r, j, k, l) =
∣∣∣∣

j⋂
t=1

Ac
t

∣∣∣∣ = s(r, j, k, l) −
∣∣∣∣

j⋃
t=1

At

∣∣∣∣,
where s(r, j, k, l) denotes the total number of integer solutions to y1 +· · ·+ yr = l − j − (k +
1)(r − j) such that yi ≥ 0, i = 1, . . . , r . The number C(r, j, k, l) can now be easily obtained
by using the inclusion–exclusion principle along with Theorem 2.12 of Charalambides (2002,
p. 69). Thus, the proof is completed.

Corollary 2. Choosing {xm} = {0}, m = 1, 2, . . . , t , in Theorem 3 we obtain

P{L(1)
n < k1, L

(2)
n < k2, . . . , L

(t)
n < kt }

=
∑

r

∑
n

t∏
m=1

C(rm, rm, km − 1, nm)Ft (r1, . . . , rt )pn(n1, . . . , nt ),

which coincides with Corollary 4 of Eryilmaz (2008b).
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Remark 1. Sen et al. (2002, Theorem 6.2) obtained the probability mass function of the longest
run of any type denoted by Mn = max(L

(1)
n , L

(2)
n ) for the two-color urn model. Their result is

based on similar combinatorial formulae that we have used and can be readily obtained from
Corollary 2, since P{Mn = x} = P{L(1)

n < x + 1, L
(2)
n < x + 1} − P{L(1)

n < x, L
(2)
n < x}.

The distribution of the waiting time random variable Wk can be easily obtained using the
dual relationship

P{Wk > n} = P{W(1)
k > n, W

(2)
k > n, . . . , W

(t)
k > n}

= P{L(1)
n < k, L(2)

n < k, . . . , L(t)
n < k}

= P{Ln < k}.
Thus, we obtain the following corollary.

Corollary 3. Choosing k1 = k2 = · · · = kt = k in Corollary 2 we have

P{Wk > n} =
∑

r

∑
n

t∏
m=1

C(rm, rm, k − 1, nm)Ft (r1, . . . , rt )pn(n1, . . . , nt ).

Corollary 4. Choosing k1 = k2 = · · · = kt = 1 in Theorem 3 we have

P{R(1)
n = r1, R

(2)
n = r2, . . . , R

(t)
n = rt }

=
∑
n

t∏
m=1

(
nm − 1

rm − 1

)
Ft(r1, . . . , rt )pn(n1, . . . , nt ),

which coincides with Corollary 2 of Eryilmaz (2008b).

4. Alternative definition of run statistics

In this section we provide an alternative definition for run statistics which might be useful for
various purposes. For a sequence Z1, Z2, . . . , Zn that consists of multistate trials with possible
outcomes {1, 2, . . . , t}, let η

(i)
j denote the length of the ith run at the j th stage, i = 1, 2, . . . , t

and j = 1, 2, . . . , n. That is, we define a vector

ηj
� = (η

(1)
j , η

(2)
j , . . . , η

(t)
j )

of t components associated with the j th trial in Z1, Z2, . . . , Zn such that {η(i)
j = m} if and

only if {Zj = i, Zj−1 = i, . . . , Zj−m+1 = i, Zj−m �= i}. For the sequence given by
(1), we have η1

� = (0, 1, 0), η2
� = (0, 2, 0), η3

� = (1, 0, 0), η4
� = (0, 0, 1), η5

� =
(0, 0, 2), η6

� = (0, 0, 3), etc. It is clear that exactly one of the components of ηj
� is nonzero,

i.e. P{ηj
� = 0} = 0, where 0 is a 1 × t vector whose entries are all 0. If Z1, Z2, . . . , Zn is a

sequence of i.i.d. multistate trials with P{Zj = i} = pi, i = 1, 2, . . . , t , then we have

P{ηj
� = Ii,m} = P{η(1)

j = 0, . . . , η
(i−1)
j = 0, η

(i)
j = m, η

(i+1)
j = 0, . . . , η

(t)
j = 0}

= P{Zj = i, Zj−1 = i, . . . , Zj−m+1 = i, Zj−m �= i}

=
{

pm
i (1 − pi) if m < j ≤ n,

pm
i if m = j,
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where Ii,m = (0, . . . , m, . . . , 0) denotes the vector whose ith entry is m (greater than 1) and
the others are 0.

Run statistics can also be defined in terms of the vectors ηj
�, j ≥ 1. For example, the

longest run of type i can be defined as L
(i)
n = max1≤j≤n η

(i)
j . Similarly, the longest run of any

type in Z1, Z2, . . . , Zn can be represented as

Ln = max
1≤i≤t

max
1≤j≤n

η
(i)
j . (11)

The total number of runs of type i with length exactly equal to ki and the total number of
runs of type i with length at least ki can be respectively represented as

E
(i)
n,ki

=
n∑

j=ki

1{η(i)
j = ki, η

(i)
j+1 = 0} and G

(i)
n,ki

=
n∑

j=ki

1{η(i)
j ≥ ki, η

(i)
j+1 = 0}. (12)

Thus, the statistics E
(i)
n,ki

and G
(i)
n,ki

are represented as the sum of dependent Bernoulli vari-
ables with success probabilities P{η(i)

j = ki, η
(i)
j+1 = 0} and P{η(i)

j ≥ ki, η
(i)
j+1 = 0}, respec-

tively, and we have

P{η(i)
j = ki, η

(i)
j+1 = 0} =

{
p

ki

i (1 − pi)
2 if ki < j < n,

p
ki

i (1 − pi) if j = ki or j = n.

In the following we compute the expectations of E
(i)
n,ki

and G
(i)
n,ki

using the representations given
by (12). Propositions 1 and 2, below, hold for s > 0.

Proposition 1. Let µ
E

(i)
n,ki

, i = 1, 2, . . . , t , denote the mean of the total number of runs of type

i with length exactly equal to ki . Then

µ
E

(i)
n,ki

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2B(αi + ki, (
∑

j �=i αj ) + 1) + (n − ki − 1)B(αi + ki, (
∑

j �=i αj ) + 2)

B(αi,
∑

j �=i αj )
,

ki = 1, . . . , n − 1,

B(αi + n,
∑

j �=i αj )

B(αi,
∑

j �=i αj )
, ki = n,

where αi = mi/s.

Proof. We can write

µ
E

(i)
n,ki

=
∫ 1

0
µ

E
(i)
n,ki

| pi
dG(pi), (13)

where µ
E

(i)
n,ki

| pi
denotes the mean of E

(i)
n,ki

in a sequence of n i.i.d. multistate trials with

P{Zi = j} = pj . Since (p1, p2, . . . , pt ) has a Dirichlet density for the considered multicolor
urn model, pi has a beta distribution with parameters αi and

∑
j �=i αj . Thus, using

µ
E

(i)
n,ki

| pi
= P{η(i)

ki
= ki, η

(i)
ki+1 = 0} +

n−1∑
j=ki+1

P{η(i)
j = ki, η

(i)
j+1 = 0} + P{η(i)

n = ki}

=
{

p
ki

i (1 − pi)[2 + (n − ki − 1)(1 − pi)], ki = 1, . . . , n − 1,

pn
i , ki = n,

together with (5) in (13), the proof is completed.
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Proposition 2. Let µ
G

(i)
n,ki

, i = 1, 2, . . . , t , denote the mean of the random variable G
(i)
n,ki

.
Then

µ
G

(i)
n,ki

= B(αi + ki,
∑

j �=i αj ) + (n − ki)B(αi + ki,
∑

j �=i αj + 1)

B(αi,
∑

j �=i αj )
, ki ≤ n.

Proof. The proof immediately follows using similar arguments as in Proposition 1 and

µ
G

(i)
n,ki

| pi
= p

ki

i (1 + (n − ki)(1 − pi))

(see, e.g. Balakrishnan and Koutras (2002, p. 170)).

As is seen from Propositions 1 and 2, we first find the mean of the corresponding run
statistic for i.i.d. multistate trials and then, conditioning it on pj , we obtain the means for the
multistate (exchangeable) trials defined on the urn model. Below we obtain some bounds for
the distribution of the longest run random variable using the same idea. Using (11), we can
write

P{Ln < k} = P{ηk ≺ k, ηk+1 ≺ k, . . . , ηn ≺ k}, (14)

where k = (k, . . . , k) and, for the vectors x� = (x1, . . . , xt ) and y� = (y1, . . . , yt ), we write
x ≺ y if xi < yi for i = 1, . . . , t . The representation given by (14) enables us to obtain bounds
for the distribution of Ln using Bonferroni- and product-type inequalities. Using the first-order
Bonferroni-type inequality, we have

P{Ln < k} = P

{ n⋂
j=k

Ej

}
≥ 1 −

n∑
j=k

P{Ec
j }, (15)

where Ej ≡ ⋂t
i=1 A

k,i
j and A

k,i
j ≡ {η(i)

j < k}.
Proposition 3. Let Z1, Z2, . . . , Zn be a sequence of i.i.d. multistate trials with P{Zi = j} =
pj , j = 1, 2, . . . , t . Then

P{Ln < k} ≥ 1 − (n − k + 1)

(
1 −

t∑
i=1

(pi − pk
i )

)
.

Proof. It is obvious that

P{Ec
j } = 1 − P

{ t⋂
i=1

A
k,i
j

}

= 1 − P{η(1)
j < k, η

(2)
j < k, . . . , η

(t)
j < k}

= 1 −
t∑

i=1

k−1∑
m=1

P{η(i)
j = m, η

(s)
j = 0; s �= i}

= 1 −
t∑

i=1

(pi − pk
i ).

The result now follows using P{Ec
j } in (15).
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Proposition 4. Let Z1, Z2, . . . , Zn be a sequence of i.i.d. multistate trials with P{Zi = j} =
pj , j = 1, 2, . . . , t . Then

P{Ln < k} ≤
( t∑

i=1

(pi − pk
i )

)[n/k]
.

Proof. We have

P{Ln < k} = P

{ n⋂
j=k

Ej

}
≤ P{Ek ∩ E2k ∩ · · · ∩ E(r+1)k}, (16)

where r = [(n − k)/k]. Since the events on the right-hand side of (16) are independent, we
have

P{Ln < k} ≤ (P{Ek})[n/k].

Thus, the proof is completed.

We obtain the following corollary as a consequence of Propositions 3 and 4.

Corollary 5. Let Z1, Z2, . . . , Zn be a sequence of i.i.d. binary trials with

P{Zi = 1} = p = 1 − P{Zi = 2}.
Then

1 − (n − k + 1)(pk + qk) ≤ P{Ln < k} ≤ (1 − pk − qk)[n/k],

where q = 1 − p.

Using the foregoing results, we can also obtain similar bounds for exchangeable multistate
trials and, hence, for the longest run arising in the multicolor urn model that we have discussed.
In this case we have

P{Ec
j } = 1 −

t∑
i=1

∫ 1

0
(pi − pk

i ) dG(pi). (17)

For the multicolor urn model, using (5) in (17), we obtain

P{Ec
j } = 1 −

t∑
i=1

B(αi + 1,
∑

j �=i αj ) − B(αi + k,
∑

j �=i αj )

B(αi,
∑

j �=i αj )
.

Thus, we obtain

P{Ln < k} ≥ 1 − (n − k + 1)

(
1 −

t∑
i=1

B(αi + 1,
∑

j �=i αj ) − B(αi + k,
∑

j �=i αj )

B(αi,
∑

j �=i αj )

)
.

An upper bound can also be obtained similarly.
For an illustration, we provide some numerical results for the longest run distribution defined

on the two-color urn model. Table 1 contains exact values, lower bounds (LBs), and upper
bounds (UBs) for P{Ln < k} defined on the urn model with various initial compositions m1,
m2, and s = 1. Since the probabilities in Table 1 depend on s, m1, and m2 through the values
of α1 = m1/s and α2 = m2/s, we obtain the same numerical results for different selections of
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Table 1: Exact values and bounds for the longest run distribution.

m1 m2 n k Exact LB UB

1 1 50 10 0.4708 – 0.6028
1 1 50 20 0.7889 – 0.8583
1 1 50 30 0.8952 – 0.9355
1 1 50 40 0.9396 0.4634 0.9512
1 1 100 30 0.8284 – 0.8828
1 1 100 40 0.8889 – 0.9271
1 1 100 50 0.9231 – 0.9414
3 1 50 10 0.3921 – 0.5203
3 1 50 20 0.7229 – 0.8073
3 3 50 20 0.9625 0.7304 0.9840
4 4 50 20 0.9794 0.8764 0.9924
4 4 100 20 0.9577 0.6769 0.9832
4 4 100 30 0.9916 0.9247 0.9971

s, m1, and m2 when s = m1 = m2. Although the performance of the upper bound is generally
good, the first-order Bonferroni-type inequality provides poor results, especially when n − k is
large. Undoubtedly, consideration of higher-order Bonferroni-type inequalities provides better
results. These kinds of bound which have simple forms are preferred for approximating the
reliability of consecutive-type systems.

5. Applications

In a Bayesian perspective, the probabilities (parameters) associated with the events are
assumed to be random variables. These kinds of consideration are widely available in reliability
studies (see, e.g. Singpurwalla (2006)). If, for example, p denotes the functioning probability of
a component then it can be modeled as a random variable for the following reasons. Lau (1992)
noted that ‘the randomness of p can arise from many different situations. For example, a
complex system is operated in a random environment and the magnitude of p changes as the
environment changes.’ The randomness of p can also arise from the production line of the
components. Thus, it will be convenient to consider p as a random variable if one or more of
these situations occur.

Replacing pn(n1, . . . , nt ) by the probability given in (3), we obtain the distribution of runs
whenever the set of probabilities p = (p1, p2, . . . , pt ) is a random vector having a measure
dG(p). This consideration might be useful for some reliability problems associated with the
distribution of runs. In the following we provide two examples.

5.1. Consecutive-k, r-out-of-n: DFM systems

A consecutive-k, r-out-of-n: DFM system introduced by Koutras (1997) is a system which
has two different kinds of failure and fails if and only if at least k consecutive components
are failed-open or at least r consecutive components are failed-short. Let Zi denote the state
of the ith component, i = 1, 2, . . . , n. Suppose that states 1, 2, and 3 represent failed-open,
failed-short, and working states, respectively, and that P{Zi = j} = pj , j = 1, 2, 3. If
p = (p1, p2, p3) is considered to be a random variable then the reliability of a consecutive-k,
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Table 2: Reliability of a consecutive-k, r-out-of-n: DFM system.

k r a b c n Rn

2 2 0.5 0.5 3 2 0.9250
5 0.8038

10 0.6782
0.5 0.5 4 2 0.9500

5 0.8591
10 0.7548

1.0 0.5 4 2 0.9231
5 0.7901

10 0.6463

2 3 0.5 0.5 3 2 0.9625
5 0.8695

10 0.7709
0.5 0.5 4 2 0.9750

5 0.9099
10 0.8337

1.0 0.5 4 2 0.9441
5 0.8335

10 0.7106

r -out-of-n: DFM system can be calculated using

Rn = P{L(1)
n < k, L(2)

n < r}
= P{L(1)

n < k, L(2)
n < r, L(3)

n < n + 1}
=

∑
r

∑
n

C(r1, r1, k − 1, n1)C(r2, r2, r − 1, n2)C(r3, r3, n, n3)

× F3(r1, r2, r3)

∫ ∫
p1+p2≤1

p
n1
1 p

n2
2 (1 − p1 − p2)

n−n1−n2 dG(p1, p2),

where first and second sums are taken respectively over r1 + r2 + r3 ≤ n and n1 +n2 +n3 = n.
In Table 2 we present some numerical values for Rn, assuming that

dG(p1, p2) = �(a + b + c)

�(a)�(b)�(c)
pa−1

1 pb−1
2 (1 − p1 − p2)

c−1 dp1 dp2

for a, b, c > 0 and p1 + p2 < 1.

5.2. Start-up demonstration tests

A start-up demonstration test is typically used in practice to elicit information about the
reliability of equipment. Items such as gas lawn mowers, water pumps, car batteries, and
outboard motors may be placed on this type of test which basically consists of attempting to
start (start-up) the unit several times and observing the outcomes, a success meaning the unit
turned on and a failure meaning that it did not. A decision regarding the reliability is made
based on these outcomes and certain statistical rules. According to the consecutive successes
and consecutive failures (CSCF) rule, a unit is accepted if k consecutive successful start-ups
occur before d consecutive failures. See, e.g. Smith and Griffith (2008) for CSCF and other
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Table 3: Probability of acceptance of a particular equipment.

k d a b P u
k,d

5 3 1 1.00 0.3890
0.75 0.4875
0.50 0.6149
0.25 0.7811
0.10 0.9050

5 2 1 1.00 0.3002
0.75 0.3969
0.50 0.5318
0.25 0.7230
0.10 0.8764

types of start-up demonstration test. Let Z1, Z2, . . . denote the outcomes of successive start-
up tests applied to a device, where Zi is a binary random variable taking values 1 (successful
start-up) and 2 (failure). Let p denote the probability of the event that Zi = 1, i.e. the ith
start-up test is a successful start-up. Characteristics of a CSCF start-up demonstration test can
be computed using the formulae presented in the previous section. The test length Wk,d , which
is the total number of attempts (or start-ups) until termination of the experiment, is defined by
Wk,d = min(W

(1)
k , W

(2)
d ). Using Corollary 2, we have

P{Wk,d > n}

=
[(n+1)/2]∑

r1=1

n−r1∑
r2=1

n−r2∑
n1=r1

C(r1, r1, k − 1, n1)C(r2, r2, d − 1, n − n1)

×
(

2

r1 − r2 + 1

) ∫ 1

0
pn1(1 − p)n−n1 dG(p).

One of the most important quantities in start-up demonstration tests is the probability of
accepting the equipment, which is defined as Pk,d = P{W(1)

k < W
(2)
d } for a CSCF test. In

Table 3 we evaluate Pk,d , assuming beta distribution for p, i.e.

dG(p) = 1

B(a, b)
pa−1(1 − p)b−1 dp, 0 < p < 1, a, b > 0.

The beta distribution has been found to be useful because its domain is from 0 to 1, and since
we can obtain distributions of very different shapes by the appropriate choices of parameters a

and b. An upper bound for the probability Pk,d can be obtained using Corollary 2 since

Pk,d = P{W(1)
k < W

(2)
d }

=
∑
n≥k

P{W(1)
k < W

(2)
d , W

(1)
k = n}

≤
∑
n≥k

(P{L(1)
n < k + 1, L(2)

n < d} − P{L(1)
n < k, L(2)

n < d})

= P u
k,d .
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