THE REFLECTION PRINCIPLE FOR BANACH
SPACE-VALUED ANALYTIC FUNCTIONS

MARK FINKELSTEIN

We give sufficient conditions for the continuation of an analytic function
with values in a Branch space. For analytic functions taking complex numbers
as values, the principle is known as the Schwarz Reflection Principle.

A function defined on a domain of the complex plane with values in a
Banach space X is analytic if it possesses at each point 2z, of the domain a
convergent power series in 2, with coefficients in X.

THEOREM. Let D be a domain in the upper half-plane, and E o regular subset
of the boundary of D. Suppose that E is an interval of the real axis (a, b). Let f be
an analytic function defined on D, continuous up to E, taking values in a Banach
space X. Let the image of D under f be Q, and let T be the part of the boundary of Q
which is the image of E under f. Suppose that T is an analytic arc in X. Then
f can be continued analytically across E, to a domain containing D + E.

We call E a regular subset of the boundary of D if the following is true: on
the side of E on which D lies, all points sufficiently close to E belong to D.
This hypothesis, which is necessary even in the one-dimensional case, is
usually omitted from the statement of the theorem. We require that the
interval (a. b) be a regular boundary arc so that after reflection, each ¢ € (a, b)
will be an interior point of the extended domain. This will not be the case if
we allow the possibility of slit domains, say

{lo] <1} N\ {Imz > 0}\{M]0 < X < }}.
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An arc T in a Banach space is analytic if I' is non-self intersecting, and
there exists an analytic function ¢(z) defined in a neighbourhood of (0, 1),
and T is the image under ¢ of (0, 1). Further, it is required that ¢'(s) # 0, for
all 0 < s < 1. We shall show later that this last assumption is essential.

At first glance, this theorem may seem to be a straightforward generalization
of the case when X is the complex plane. This is not the case, however, for in
the one-dimensional case, the hypothesis of analyticity of the arc T' (under
the map ¢) ensures that f and ¢ have a part of their ranges in common. In the
general case, we have no guarantee a priort of this. Further, the fact that
f and ¢ each carry an interval onto the same point set does not on the face
of it imply that f and ¢ are analytically related. The difficulty lies in showing
that a re-parametrization of the interval, s(¢), chosen so that f(¢) = ¢(s(¢)),
is actually analytic. In the one-dimensional case, this follows easily by con-
sidering ¢!, which we know to be analytic, and this is not an appeal we can
make in the general case.

Proof. With f, T', and ¢ as in the hypothesis, we have that for every ¢ € (a, b)
there exists a unique s € (0, 1) such that f(t) = ¢(s). Thus s is a function
of ¢, and we write

(1) F@) = ¢(s(@®).

We now show that s is an analytic function in a neighbourhood of («, b).
Let #y € (a, b). By hypothesis, ¢’ (s(¢0)) 5 0 so there exists a linear functional
T on X with T[¢'(s(t0))] 5% 0. Define ¢7 = T 0 ¢; fr = T of. Then ¢ and fr
are analytic functions in the ‘“usual” sense (1, p. 224).

Note that ¢/ (s(t0)) = T[¢'(s(te))] # 0, and

fr(t) = ¢r(s(t)).

Since ¢7' (s(fp)) # 0, we see that ¢, is a one-to-one analytic function in a
neighbourhood of s(%), and hence ¢! is a well-defined analytic function in a
neighbourhood of fr(¢). Then we have

s(t) = ¢ (fz(D)

on an interval of the real axis about t,. However, in a ‘“half-disc’’ above ¢,
(i.e. a complex neighbourhood of f, intersected with the upper half-plane),
o7 1(fr(2)) is an analytic function. Thus s(2) = ¢ '(fr(z)) is analytic in
a ‘‘half disc”’ above o, with real boundary values s(¢), satisfying (1). However,
to was an arbitrary point, and since the definition of s(¢) is independent of
the choice of T, we have that s(z) is an analytic function in a domain above
the real axis, with real boundary values on (a, b). By the usual Reflection
Principle, s(z) is analytic in a full neighbourhood of (a, b).

Let ¢ (2) = ¢(s(2)). ¢ is analytic in a neighbourhood of the interval (a, b),
and by (1), ¥(¢) agrees with f(¢) on (a, b). We could now conclude that ¢ is
the analytic continuation of f across (e, d) by an application of Morera's
Theorem for Banach space-valued analytic functions. Instead, let us prove
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this directly. For any linear functional T on X, consider f7 and ¢ as defined
earlier. The function fy — ¢ is analytic in a domain above (a, b), and has 0
boundary values on (a,b). We conclude that (f— ¢)r = fr — ¢r = 0.
However, this is true for any linear functional 7', and hence f = ¢. As ¢ is
analytic in a neighbourhood of (a, b), it represents the analytic continuation
of f across (a, b).

As in the usual Reflection Principle, we can relax the assumptions on D and
E to read: D is a domain in the complex plane, E is a regular subset of the
boundary of D, and E is an analytic arc (in the usual sense).

We cannot, in general, remove the hypothesis that ¢'(¢) £ Oforall¢ € (0, 1),
as the following example will show.

Consider
2
F4
¢(Z) - (’L + Z> ’

which maps an interval (—X\, \) onto a cusp, I

_ {////O////< L

Suppose that D is a domain bounded in part by (—\, \), and F is a domain
in the left half-plane, bounded by T. If f: D — F, and f(0) = 0, then it is
easily shown that f cannot possess a power series at 0 (and hence cannot be
continued across (—A, \)).
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