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WORST-CASE ERRORS IN A SOBOLEV SPACE SETTING FOR
CUBATURE OVER THE SPHERE S2

KERSTIN HESSE AND IAN H. SLOAN

This paper studies the problem of numerical integration over the unit sphere S2 C E3

for functions in the Sobolev space ff3^2(52). We consider sequences Qm(n), n 6 N,
of cubature (or numerical integration) rules, where Qm(n) *s assumed to integrate
exactly all (spherical) polynomials of degree ^ n, and to use m = m(n) values of / .
The cubature weights of all rules <2m(n) are assumed to be positive, or alternatively
the sequence Qm(n), n € N, is assumed to have a certain local regularity property
which involves the weights and the points of the rules Qm(n), n € N. Under these
conditions it is shown that the worst-case (cubature) error, denoted by -E3/2(Qm(n))>
for all functions in the unit ball of the Hilbert space .ff3/2(S2) satisfies the estimate
-E3/2(Qm(n)) ^ cn~3/2, where the constant c is a universal constant for all sequences
of positive weight cubature rules. For a sequence Qm(n)> n € N, of cubature rules
that satisfies the alternative local regularity property the constant c may depend on
the sequence Qm(n), n € N. Examples of cubature rules that satisfy the assumptions
are discussed.

1. INTRODUCTION

In this paper we study the problem of numerical integration over the unit sphere
S2 C R3,

S2 = {x = (x,y,z) e R3 I x2 + y2 + z2 = l } .

The exact integral of a (continuous) function / denned on S2 is

(1.1) If:

where CLJ(X) denotes the surface measure on S2. In terms of the usual polar coordinates
0,0, the integral takes the explicit form

2TT -IT

(1.2) / / = / f(sm0cos<t>,sm6sm<l>,cose)sin6d6d<f>.
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82 K. Hesse and I.H. Sloan [2]

We are interested in the approximation of / / by cubature rules of the form

(1.3) Qm/:

where

x.j 6 S 2 , Wj 6 R, j = l,...,m.

Most of the time we shall assume also that Qm integrates exactly all (spherical) polyno-
mials of degree < n. Thus we assume m = m(n), and

(1.4) QmP = Ip Vp G PBI

where Pn is the set of spherical polynomials of degree < n, that is the set of all polynomials

in x,y,z of total degree at most n, restricted to the unit sphere S2. It is important for

our considerations that dimPn = (n + l)2.

There are many cubature rules with the property (1.4). Most obviously, there are

product Gauss rules discussed by Stroud [18], considered in detail in Section 6. But there

are also many others (see Section 6).

The integrands / are assumed to be selected from a particular Sobolev space Hs

= H3(S2), with s > 1. (Roughly, H" is the space of square-integrable functions on

S2 whose generalised (distributional) derivatives of order s are also square-integrable.

Precise definitions are given in Section 2.)

By definition, the worst-case error for the cubature rule Qm in the space H", endowed

with the norm || • ||s, is

Ea{Qm) := sup \Qmf - If\.

11/11.̂ 1

For a particular choice of s > 1, and a well chosen sequence (Qm(n))neN of cubature
rules, how fast can E3(Qm(n)) converge to zero as n —» oo? The present paper is motivated
by persuasive numerical evidence, presented in [15], suggesting that, for the particular
case of s — 3/2 and for cubature rules based on extremal systems,

(1.5) E3/2(Qm{n)) < c (m(n))-3/4 = c(n + I)'3'2.

An extremal system is a set of (n + I)2 points for which the determinant of the inter-
polation matrix with respect to any fixed basis of Pn takes its greatest possible value.
The cubature rules in [15] are obtained by exact integration of the interpolating spherical
polynomial in Pn that coincides with a given function at the (n+1)2 points of an extremal
system. The analysis in [15] obtains only the much weaker result £3/2(<2m(n)) ^ en"1/2.

(In this paper c denotes a generic constant, which may take different values in different
places, while CQ,CI, . . . denote constants with fixed values.)
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[3] Worst-case errors for cubature over the sphere S2 83

In this paper we do indeed prove that

(1.6) E3/2{Qm(n)) ^ en-3'2,

under the assumption that, for each n € N, Qm(n) satisfies Qm(n)P — Ip for all p e Pn

and that the weights Wj of Qm(n) are positive. The constant c in (1.6) is in this case
independent of the particular sequence (Qm(n)) of positive weight cubature rules. The
assumption of positive weights can be replaced by the assumption that (Qm(n)) satisfies
a certain local regularity property, in which case the constant c in (1.6) may depend on
the sequence of cubature rules (Qm(n)). (The precise statement is given in Theorem 6.)
Examples of cubature rules satisfying the conditions are discussed in Section 6. For the
case of the rules corresponding to the extremal systems in [15] the reported weights, for
degree n up to 50, are all positive.

The proof of Theorem 6 rests on an unusual representation (in Lemma 9) of the
tail of a certain Legendre series as the sum of a polynomial and other terms involving a
more rapidly converging Legendre series. The proof of Lemma 9 (in Section 5) uses the
Christoffel-Darboux formula to give an integral representation of the tail of a particular
Legendre series, and the integrand in this integral representation is then manipulated
algebraically. The proof of Lemma 9 does not extend in an obvious way to general values
of s > 1.

2. PRELIMINARIES

Let L2 = L2(S
2) be the space of square-integrable measurable functions on S2, that

is, the set of measurable functions / on S2 for which

| | / (x) | 2du;(x)<oo.

s2

The space L2 is a Hilbert space with the inner product

s2

On the unit sphere S2 C R3, for I € No let

be an orthonormal set (with respect to (-, -)i2) of (real) spherical harmonics of exact
degree £. Of central importance is the addition theorem of spherical harmonics (see [9]),

21+1 If -+- 1
(2.1) £ r t t ( x ) r « ( y ) = ^ ^ P , ( x - y ) , x , y € 5 2 ,

https://doi.org/10.1017/S0004972700038041 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038041


84 K. Hesse and I.H. Sloan [4]

where x • y denotes the usual Euclidean inner product of x and y in R3, and P( is the
Legendre polynomial of degree £.

A function / € L-i is equal in the Z/2-sense to its Laplace (or Fourier) series,

(2.2)

where

oo 2/+1

EE
/ = 0 Jfe=l

EE/

fa:= J'
For s > 0, the Sobolev space if* C L2 may be denned as the completion of the space

oo

of all spherical polynomials, (J ¥e, with respect to the norm
1=0

«/"•=• ( E E K ) * & )
1/2

(We follow [4] in the definition of the norm.) The space H' is a Hilbert space, with inner
product

oo 21+1 , ,2s

<=0 *=1 V ^

For 5 > 1 it follows from the Cauchy-Schwarz inequality that

(2.3)
= / V J b = l

o 1/2

where with the help of the addition theorem (2.1)

1/2 1/2

which is finite for all TV € No and converges to zero as JV -> oo, because 1 - 2s < — 1.
Thus the Fourier series of / e Hs, for s > 1, converges uniformly, and hence converges to
a continuous function that coincides almost everywhere with / . Taking / as the uniform
limit of the Fourier series, it follows that / is continuous, and (on setting N = 0 in (2.3))

(2.4)
oo 2t+l

1=0 k=l

Vx € S2.
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Hence

X€S'

and we obtain an embedding of H' into C(S2). The estimate (2.4) also implies that
for s > 1 point evaluation is a bounded linear functional on Hs, and hence Hs is a
reproducing kernel Hilbert space. That is to say, there exists Ks : S2 x S2 -> K, with
Ks(x,y) = Ks{y,x) and K,{x, •) G H° for all x,y G S2, such that

(2.5) (/, K.(; y))a - / (y) V/ G /fs, Vy G S2.

From (2.5), it can be easily seen that the reproducing kernel Ka(x,y) is given explicitly
by

oo 2/+1 _2 j

"s(xi y) = / „ / ^
/=0 fc=l

which converges absolutely and uniformly for (x, y) G S2 x S2 because s > 1. Thus A^
is a continuous function on S2 x S2.

3. W O R S T - C A S E CUBATURE ERROR IN A REPRODUCING KERNEL HILBERT SPACE

Let H be a reproducing kernel Hilbert space of real continuous functions defined on
S2, with inner product (-, •), norm || • ||, and reproducing kernel K. We also assume that
H can be embedded into C(S2), that is, there exists a constant c such that sup I/(x) I

X6S*'

for all / G H. For / in the space H let

be an m-point cubature formula. (Of course Qmf is well defined, because point evaluation
is well defined for / G H.) We assume that Qmf is an approximation to / / , the integral
of / over S2,

s2

Since if is a reproducing kernel Hilbert space with reproducing kernel K, we can
write

and hence
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Similarly, integration over S2 is a bounded linear functional on H with representer

/ A-(-,y)dw(y),thatis

Thus the cubature error is

(3.1) Qmf -U= ^jrwjKi-^)- J K(-,
52

The worst-case (cubature) error for the cubature rule Qm in the space H is denned
as

E(Qm):= sup \Qmf-If\.
f€H,

11/11
From (3.1) it follows easily that

= l l f ^ ^ x , ) - f K(;y)du(y)\[

In turn, on using \\g\\ = {g,g)lt2, together with the reproducing property (2.5) of K, it
follows that

( mm m *

«=i i=i i=i / 2
«=i i=i i=i / 2

S2 52

So far our reproducing kernel Hilbert space is rather general. The expression (3.2)
is in fact well known (see, for example [16]), and has been found useful in other settings.

4. WORST-CASE CUBATURE ERROR IN HS

Now we specialise our discussion of worst-case cubature error to the particular case
of the Hilbert space Hs, with s > 1, for which the reproducing kernel Ks is given by
(2.6). Moreover, let us assume that the weights of the cubature rule satisfy

(4.1)
m .

^ = 4*= /<Mx),
=i «

so that the cubature rule is exact at least for constant functions. It follows immediately
from (2.6) (on noticing that in the series representation (2.6) of Ka the terms with £ ̂  0
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contribute nothing to the integral) that

[Ks(x,y)<L)(y) = 22' Vx 6 5 2 .

This allows the second and third terms of (3.2) to be evaluated explicitly, yielding the

simplified expression

1/2

(4.2) [^2Yl1)

where K^a\ a € N, denotes the contribution to the reproducing kernel (2.6) from the
terms with (. ̂  a; that is,

(4-3) #JOJ(x,y) = —
"" l=a

We want to study the asymptotic behaviour of the worst-case error for a sequence
of cubature rules (Qm(n)), where <3m(n) is exact for all polynomials of degree ^ n, that
is, (1.4) is satisfied. From this it follows that for l ^ ^ n w e have

£ Wj Pe(x • Xj) = f P,(x • y) dw(y) =0 Vx € S2,

leading to (4.2) being further simplified to

i m m v 1/2

(4.4) E,(Qm{n)) = ^ ^ w ^ i ^ n + 1 ) ( x « ' x i ) •
^i=l j=l '

The main result of this paper, Theorem 6 below, is restricted to the case s = 3/2,
and also requires that the sequence of cubature rules has a certain regularity property
expressed in terms of spherical caps.

DEFINITION 1: For each point x e S2, let S(x,r) be the 'spherical cap' with axis
x and angular radius r, that is

5(x, r) := {y G 52 | c a r l ( x • y) ^ r } .

The surface measure (or area) of 5(x,r) is denoted by |5(x, r)|.

LEMMA 2 . Let Qm be a cubature rule on S2, with points x ; G S2 and weights
w}; € K, j = 1,. . . , m. Assume tiat there exist r0 € (0,7r] and a constant Co > 0 such
that for all x £ 52

(4.5)
i ,

Xj€S(x,ro)
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Then for all r e [r0, w] and for all x G S2

(4.6)

Xj6S(x,r)

In particular, (4.6) implies that
m

(4.7)

The proof of Lemma 2 will be given in Section 5.

COROLLARY 3 . Let the assumptions be the same as in Lemma 2, with
r0 G (0, (TT/2)] . Tien for every spherical cap S(x,r) of angular radius r0 ^ r ^ TT/2

(4.8)

XjgS(x,r)

PROOF: The area of 5(x, r) is given by

|5(x,r) | =2TT(1 -cosr) .

Observing that 1 — cosr = (sinr)2(l + cosr)"1, and that for r ^ 7r/2 we have
(1 + cosr)-1 ^ 1, we obtain (4.8) from (4.6). D

DEFINITION 4: (PROPERTY (R)) A sequence of cubature rules (Qm{n)) is said to
have the property (R), or to be 'quadrature regular' (see [14]), if there exist positive
constants Co and Ci independent of n with C\ ^ TT/2, such that for all n ^ 1 the points
Xj and the weights Wj, j = 1 , . . . , m, of Qm(n) satisfy

(4.9)

REMARK 5. The assumption c\ < TT/2 in the property (R) can be removed, because
(4.9) with a constant C\ > n/2 implies after a change of the constant c$ that (4.9) is also
satisfied with a new constant Ci ^ TT/2. Furthermore it is sufficient if (4.9) is satisfied for
all n ^ N, because with a change of CQ we can arrange that (4.9) is satisfied for all n ^ 1.

If the property (R) holds, then for each n 6 N the cubature rule Qm(n) satisfies the
hypothesis of Lemma 2 with ro = C\/n. We make use of this fact in the proof of the
following theorem, which is the main result of the paper.

THEOREM 6 . Assume that (Qm(n)) is an infinite sequence of cubature rules on
S2, where Qm{n) is an m{n)-point rule satisfying Qm(n)P — Ip for all p G Pn. Assume also
that the sequence {Qm(n)) has the property (R). Then there exists c> 0 such that

(4.10) E3/2(Qm{n)) < en-3'2 Vn ^ 1.
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REMARK 7. The constant c in (4.10) in Theorem 6 depends on the constants Co and
Ci in the regularity property (R), and therefore may depend on the sequence (Qm(n)) of
cubature rules. However, Reimer [12, Lemma 1] shows that if the weights are all positive
then (4.9) holds automatically, with universal constants Co and c\, under the assumption
that Qm(n)P = Ip for all p € Pn- Thus the constants Co and c\ in (4.9) are in this case
independent of (Qm(n)), and so also is the constant c in (4.10). We formulate this stronger
result as a corollary.

COROLLARY 8 . TAere exists a constant c > 0 such that for any positive weight

m(n)-point cubature rule Qm(n), witi Qm(n)P = Ip for allp € Pn, the worst-case cubature

error in H3'2 satisfies

E3/2(Qm(n)) ^ en-3'2.

The proof of Theorem 6 will proceed by way of two lemmas and a corollary.

In the following P}a'0> denotes the Jacobi polynomial of degree t and indices

a,/3> —1, as defined by [19, Chapter II, 2.4, and Chapter IV], thus satisfying the

orthogonality relation

- t)a (1 + t)13 dt = 0 Vm, I € No with £ ̂  m.

The particular Jacobi polynomial Pf assumes its maximum at t = 1, more precisely

\P{iU°\t)\ < Pill0)(l) = (£+ 1) for all t € [-1,1], while Pf'0)(-l) = (-1)'.

The first lemma gives a representation of

l=n+l

in a convenient form for further analysis.

LEMMA 9 . For n ̂  0 and - 1 ^ t < 1,

ŷ  U\lY2r(t) 2 (n + 1) rn-0)(t)
+ m ) 7r(2n-l)(2n+l)(2n + 3)^ W

1 2 ( n + l )

( 4 1 2 )

•K (2n- l ) (2n
oc 1 °°

£_n_i_l \ — ~ / \ — ~/v— • **/\—~ • d)

oo

(2t-l){2i+l)2{2e

COROLLARY 1 0 . For x, y e S2 and x • y = cos 6, with 0 < 6 < IT, there exists a

constant c > 0, independent ofn, such that

(4,3) | J C V y) * I (2n _ n ^ p . + 3) tf* («»)| < en-"' (sin
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for all n € No, and hence for fixed x, y

(4.14) < 2
+ 1 ) ( x , y) = n-5'2 Dn{0) + 0{n-

where
limsup|Dn(0)|

n»oo

REMARK 11. The corollary brings to attention a delicate aspect of the proof of
Theorem 6. To prove the theorem we must show that (from (4.4))

(4.15) E2
3/2(Qm{n)) =

t=i j=i

is of order 0{n~~3). Yet for fixed x,y, with x / y and x ^ - y , the second conclusion in
the corollary tells us that for large n the kernel K^}*1^ (x • y) is larger than the desired
O(n~3) result for (4.15). The troublesome term is, of course, the first term on the right-
hand side of (4.12). Fortunately, the order of this term is improved (by an additional
factor of n~1/2) through the application of the cubature sum, as the following simple
lemma shows. The key is that, because Pn ' is a polynomial of degree n, we can make
yet another application of the exactness property (1.4) of the cubature sum.

LEMMA 1 2 . For n ^ 1, assume that Qm is an m-point cubature rule on S2 satis-
fying Qmp = Ip for all p 6 Pn. Then

Lemma 9, Corollary 10, and Lemma 12 will be proved in Section 5.
P R O O F OF THEOREM 6: In order to deal separately with the first term on the

right-hand side of (4.12), we rewrite (4.15), using (4.11) and (4.12), as

(-1) (2n _ D ^

where for x, y e S2

Applying Lemma 12, we obtain

32TT
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Clearly, the first term is of the desired order O(n~3). We split the remaining term, writing

(4.17) E2
3/2(Qm(n)) = O(n~3) + A++ A~,

where

and where for i — 1,..., m

H? := {x G S2 | Xi • x ^ 0},

That is, with respect to x< as the 'north pole' we decompose the set S2 into a 'northern'
hemisphere H? and a 'southern' hemisphere H~, arbitrarily putting points on the equator
inH+.

The estimate (4.13) in Corollary 10 tells us that for x, y e S2 and x y = cos#, with

0G(O,TT) ,

|*»(x,y)| ^ C T T 7 / 2 (sind)~5'2.

Since this bound diverges toward 0 = 0 and 0 = n, it is convenient to split each of
the sums A± into a 'diagonal' part D±, which includes for each i G { l , . . . , n } the
contributions from points x ; that lie in the spherical cap S(±Xj, (ci/n)) centred at ±xit

and a remainder R±. Here Ci is the constant in the property (R). Thus we write

(4.18) A± = D± + R±,

where
m m

D±:=

To estimate D± we use, from (4.16) and (4.11),

* ' ^ ! ( 2 n - 1 ) ^

2
, f (i+

n (2n - l)(2n + l)(2n + 3) 2TT ^ V 2
v ' v ' v ' £ = n + l

cn~l,
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where we have used \P^'0)(t)\ < {£+ 1) and \Pt(t)\ < 1 for all t € [-1,1] and all £ ̂  0.
This yields

and hence from the property (R) and (4.7)

n

^
where we have written c2 := (l + (37T2)/4)co, and used

5f±Xi, %) I = 27rfl - cos^-) = 47rfsin ^ - ) 2 ^ n^n'2.
V n / l v n/ V 2n/

It only remains to estimate R±. For this purpose we use the estimate for kn from
Corollary 10 to obtain

(4.20) 1/^| ^ en"7/2

where fly = cos~1(±xi • Xj), 9^ e (0, TT). Arguing as in Reimer [12], we define for

xi6(//,*\S(±xi>ci/n))nS(±xi,e)

Thus pjt (fl) is the contribution to the sum of the absolute values of the weights from the

cubature points whose angular distance from ±x< lies in the interval ((ci/n),fl] (except

that the half open interval is replaced by the open interval in the case 9 = it/2 and

g~). Note that gf vanishes at C\/n, and (because it is monotone) that it is a function of

bounded variation on Ci/n, n/2 \. Define also

/ («) := (an*)" '* *

and note that / is a continuous function. This allows us to write the inner sum in (4.20)

as a Riemann-Stieltjes integral (see [6, Chapter X]),

= / f{9)dgf{9).
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Integration by parts then yields

ir/2 jr/2

J ' \ 2 / * \ 2 / \ n J * \ n ) J
ci/n ci/n

ci/n

On using (see Corollary 3)

we finally obtain from (4.20)

ci/n

27rc2cn-7/2 (47rc2) f - 4 + 5 (sin Hl

where we have used (4.7) in the last step. Observing that sin(0) ^ (20)/it for 0 ^ 9 ^ 7r/2,
we finally obtain

Putting this together with (4.19), (4.18) and (4.17) completes the proof. D

REMARK 13. The key to the proof of the theorem is thus the representation of
/"Q?2 (x, y) in Lemma 9 - a representation that might seem remarkable, in that for
fixed x € 5 2 the critical first term, being a polynomial of degree n, is orthogonal to
#J2

+ 1 ) (x , •) in both L2 and i / 3 ' 2 .

5. P R O O F OF LEMMAS AND A COROLLARY IN SECTION 4

P R O O F OF LEMMA 2: The ideas of the proof of this lemma are taken from [14,

Lemma 5.5.3], but as the statement and the proof are simplified here we include the

proof.

The general idea is to cover the spherical cap 5(x, r) with smaller spherical caps

S{y,rQ) and to use the assumption (4.5) for these smaller caps. To achieve this we
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proceed in two steps: firstly, for rx > 0 and r2 = rx + r0 < n we cover the spherical collar
S(x,rx,r2), defined by

S(x,ri,r2) := {y € S2 | rx < coS-l(x-y) s$ r2} = S(x,r2)\S(x,rx),

by spherical caps S(y, r0) and derive a result analogous to (4.6) for such spherical collars.
Then we cover our spherical cap 5(x, r) with such spherical collars and the spherical cap
5(x, r0), and use (4.5) and the results for the spherical collars to prove (4.6).

PART 1. For fixed x € S2, let S(x,rx,r2) be a spherical collar with rx ^ 0 and
r2 — rx 4- r0 ^ n. The angle 7 := (rx +r2) /2 is in [(ro/2),7r - (ro/2)], and we dis-
tinguish the two cases 7 ^ TT/2 and 7 > w/2. We observe that

(5.1) S(x, rx, r2) = 5(-x, n - r2, n - rx),

and that

/ , - n \ ("" — ^2) + ( T T - r i )
(5.2) = * - r

If 7 > n/2 we consider 5(—x, 7r — r2, TT — r^), that is we regard 5(x, ri, r2) as the spherical
collar 5(—x, 7r — r2,?r — rx) with axis —x, due to (5.1). Because of (5.2), we now obtain
for 5(—x, 7T — r2,7r — ri) that ((TT — r2) + (w — rx))/2 < n/2. Therefore we may restrict
our discussion to the case of spherical collars 5(x, rx, r2) for which 7 = (rx + r2)/2 ^ TT/2,
and more precisely, 7 € [ro/2, TT/2] .

Let 7 < TT/2 and consider the latitude £y := {y e 52 | x • y = cos 7}, which is a
circle of radius sin 7. Choose K := [27rr0"

1 sin 7] equally spaced points yx,..., y^ on £7,
from which it follows that the separation between y, and yJ+i (and between y*- and yx)

along £7 is at most r0. We claim that the spherical caps S(yj, r0), j — 1 , . . . , K, cover
our spherical collar 5(x,r i , r2) .

To show this we select an arbitrary point y € S(x,rx,r2), and show that it is
contained in one of these caps. Let y denote the point of intersection (closest to y) of
the great circle through x and y and the circle £y, and let y7 be the axis (of one of our
spherical caps) which is closest to y. Then an upper bound of the great circle (that
is, geodesic) distance between y and y, is given by the sum of the great circle distance
between y and y and the distance between y and y, along £y, that is the great circle
distance between y and y, is bounded from above by ro/2+ro/2 = r0. Thus y G S(yj, r0).

It follows from this covering property and (4.5) that

m K

E
(5.3)

7T rlco(2irr0
1 sin 7 + 1 ) ,
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where we have used |S(yi , r o ) | = 2TT(1 — cosr0) = 47r(sin(ro/2)) ^ Trr2,. Using sinr
^ 2r/ir, 0 ^ r ^ TT/2, we get the following lower bound for the surface area of the
spherical collar S(x.,ri,r2)

\S(x,rl,r2)\ = 27r(cosri - c o s r 2 )

(5.4) = 4TT sin 7 sin(ro/2)

^ 4r0 sin 7.

Due to 7 G [ro/2, TT/2] , we have sin7 ^ sin(ro/2), and thus also

(5.5) \S(x,rur2)\ ^ 4r0 sin(ro/2) ^ (4/?r)rg.

Combining (5.3), (5.4), and (5.5) yields

(5-6) xy€S(x,ri

= —Co|S(x,ri , r2) | .
4

Due to our initial observation, (5.6) is also valid for the case 7 > w/2.

PART 2. With the help of (5.6) and (4.5) we can now prove (4.6). For the spherical cap
S(x,r), with r ^ r0, there exists A; € N such that kr0 < r < (k + l)r0. Then

T K-l
i=i, 7=1, i=- i=i,

Xj€S(x,r) Xj€5(x,r0) Xj6S(x,r-ir0)r-(i-l)r0)

This completes the proof. D

P R O O F OF LEMMA 9: Firstly, we rewrite the sum in the following way:

8 - ^ 1
(2*-l)(2*+l)2(2* + 3) l®'
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Now we know (see Section 7) that

but in the first term on the right-hand side of (5.7) the first (n + 1) terms of the series
expansion (5.8) are missing. Therefore the first term in (5.7), denoted from now on by

(5.9) / ^

is the error in the approximation of

by
2 n

which is the nth partial sum of its Legendre series. In other words, /^n+1' is / minus
its L2([—1,1])-orthogonal projection onto the space Poln([-1,1]) of all polynomials in a
single variable up to degree n on [—1,1].

More precisely, with the reproducing kernel Gn of Poln([-1,1]) (endowed with the

norm || • ||ia([—i.i])»

Gn(s, t) := £ ££±^1 Pt(s) P((t), a, t e [-1,1],
<=o

the orthogonal projection Vn : L2([-l,l\) -> Poln([-l,l]), defined by V\ = Vn and
CPn0, %,([-i,i]) = (9, /I)L2([-I,I])

 f o r a" 9 e L2([-l,\}) and for all h e Poln([-1,1]), is
given by

f (£ ) l 9(S) Gn{8, •) d*.

In particular, Vnf = f - f(n+11 and P n l = 1. Due to the Christoffel-Darboux formula
(see [19, (3.2.3)]), Gn can be expressed in closed form as

r t *\ - (n + 1) Pn+l(t) Pn(s) - Pn
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and we obtain (using J_l Gn(s, i) ds = Vnl = 1)

/("+1)W = f(t) - Vnf{t)
1

= f(f(t)-f(8))Gn(8,t)ds
(5.10) ^

I

i+llrJ "•n\s) ~ *nW *n+\\2 J t-s
- 1

Assuming from now on that t E [—1,1), we can rewrite the first factor in the integrand
as follows:

fit) - f(s) = > / 2 / ( l -= > / 2 / ( l 8 )
t - s 2?r V ( 1 - t ) ( l - « ) ( t - s )

Thus

(5.11)

where

- 1

(5.12) bn(t) := - 2 7 r ( i _ 0 _/ ((1 - * ) V 2 - (1 - s)3 / 2 )C?n(S , t) ds.

- l

From the series expansion (5.8) we know that

- i

Thus, we can compute an(t) exactly:

(
n (1-t) \(2n-l)(2n+l)(2n + 3) (2n+ l)(2n + 3)(2n + 5)

= 2 (n + 1) / Pn+I(t)-Pn(f) 6Pn(t) \
7T (1-t) V(2n-l)(2n+l)(2n + 3) (2n - l)(2n+ l)(2n + 3)(2n + 5)/(2n- l ) (2n+l ) (2n + 3) (2n - l)(2n+ l)(2n + 3)(2n + 5)

Using Pn(t) - Pn+i(t) = (1 - i)Pill0)(<), which follows easily from Rodrigues' formula
(see [19, (4.3.1)]), we get

(5.13) an(t)- 7 r ( 2 n _ 1 ) ( 2 n + 1 ) ( 2 n + 3 ) ^ W

12 (n+1) Pn(t)
7T (2n - l)(2n + l)(2n + 3)(2n + 5) (1 - t)'
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Now, we turn to bn(t). It follows from (5.12) (compare (5.10)) that

where

But we know that (see Section 7)

(5.14, C

In analogy to (5.10), we can therefore write bn(t) as

36 °°
(5.15) bn(t) =

The identities (5.7), (5.9), (5.11), (5.13), and (5.15) together imply (4.12) in Lemma 9. D

P R O O F OF COROLLARY 10: The estimate (4.13) follows from (4.11), (4.12), and

the estimate

(1 - cos 6)-1 = (sin 0)-2 (1 + cos 0)^2 (sin 0)~2,

and from [19, (7.3.8)],

(5.16) |P*(cos0)| (sinfl)1/2 < (l

It follows from (4.11), (4.12), and (4.13) that for fixed 9 e (O,TT)

Now it is known that for 0 < 0 < IT

which is a special case of Darboux's asymptotic formula (see [19, Theorem 8.21.8]), thus
(4.14) follows with

D

PROOF OF LEMMA 12: AS Pill0)(xj • x) e Pn for alH e { 1 , . . . , m}, the cubature
rule Qm integrates it exactly. That is,

T7i m m p

4?r 16TT 2
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where we have used (4.1) and

(5.17)

- 1

which can be easily proved with the help of Rodrigues' formula (see [19, (4.3.1)]). D

6. EXAMPLES

In this section we discuss examples of cubature rules that satisfy both the exact-
ness property (1.4) and the regularity property (R) of Theorem 6 and Corollary 8. For
sequences of such rules, the O(n~3^2) estimate for the worst-case error in H3!2 therefore
applies, with a constant c independent of the sequence in the case of positive weight rules.

6.1. P R O D U C T RULES. The most popular cubature rules over S2 are product rules.
Writing the integrand in (1.2) as

cos(f>,sin9 sin<f>,cos9) = F(cos0,</>), for 9 G [O,Tr],<j>€ [0,2TT),

the integral (1.2) may be writ ten as

o - l

A product rule is then a rule of the form

2ir 1

= I f F(t,cj>)dtd<t>.

j=o e=i

which is just the product of two 1-dimensional rules:

2)T

;ri
3=° 0

a rule which integrates exactly all trigonometric polynomials of degree < n; and

r
(6.2) ^2»th(tt)*i h(t)dt,

<=i - i

a rule which we shall require to have positive weights fj,t and to integrate exactly all

algebraic polynomials of degree ^ n. It is easily seen that every such product rule

satisfies (1.4). Because they also have positive weights, a sequence (Qm(n)) of such rules

also has the property (R), as we remarked after Theorem 6.
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There are many possible choices for the rule (6.2). For example, the rule could be a
Gauss rule [2], in which case n' = \(n + l)/2], or a Clenshaw-Curtis rule [2], in which
case n' = n + 1. The total number of points of the cubature rule is m = (n + l)n', if
we allow the possibility of cubature points coinciding. The value of m can be reduced to
m = (n+ l)(rc' - 2) + 2 if (as in the Clenshaw-Curtis rule or the Lobatto rule [2]) the set
of quadrature points {ti} in (6.2) includes the two endpoints.

We observe that in the examples above m is exactly of the order n2, thus the rate of
convergence of E3/2(Qm(n)) when expressed in terms of m is O(m~3/4), which is believed
to be optimal.

6.2. SPHERICAL TI-DESIGNS. A point set {xi,...,xm} c S2 is called a spherical
n-design on S2 if the cubature rule

. 7 = 1

is exact for all polynomials of degree ^ n. That is to say, if the weights in (1.3) are
given by Wj = Air/m and (1.4) is satisfied. As noted already, for a sequence of positive-
weight rules such as this the regularity property (R) holds automatically, and therefore
Theorem 6 applies.

The concept of spherical designs was introduced in [3], and in [13] the existence of
spherical n-designs for any n and sufficiently large m was proved. For practical purposes
it is, of course, desirable to have spherical n-designs with a small number of points m.

For the minimal number M(n) of points such that a spherical n-design with
m = M{n) points exists, the lower bound

M{n) >cn2

is known (see [1, 3]).
In [5] for n = 2q — 1 ^ 1, spherical n-designs with O(n3) points were constructed

as product rules, but these are not serious contenders as cubature rules, as they use too
many points. Whether spherical n-designs with 0{n2) points exist for arbitrarily large n
seems to be as yet unknown. (Rabau and Bajnok [10, Conjecture 4.4], conjecture that
the minimum number of points of a spherical n-design on S2 is of order O(n3), but in
[5] Korevaar and Meyers conjecture that the minimum number of points is O(n2); we
support the second conjecture.) Finally, in [1] it is shown that the minimum number of
points M'(n) such that for all m ^ M'{n) a spherical n-design of m points exists, has
the upper bound

6.3. RULES OF SOBOLEV TYPE. Sobolev [17] introduced the concept of cubature rules
that are invariant under a finite symmetry group of the sphere, based on the observation
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that if a is the lowest degree of the non-trivial invariant polynomials under the particular
group, then all spherical polynomials of degree less than a are integrated exactly. Lebedev
and co-workers [7, 8] have constructed many rules on the sphere by exploiting the Sobolev
theory for the particular case of the octahedral group with inversion, with values of n in
equation (1.4) as high as n = 131 (see [8]). The weights are often positive. As long as
this is the case (given that positivity of the weights is not guaranteed) the conclusion of
Theorem 6 applies. The number of points m is always O(n2), and indeed is smaller than
the number of points for product rules that are exact for polynomials up to degree n.

6.4. EXTREMAL SYSTEMS. An extremal system (see [11]) on S2 is a set of (n + I)2

distinct points {XJ} for which the determinant of the interpolation matrix
{^*(xj)}g~{^'n I'll 2f+i t akes its maximal value. In a recent study [15] of interpolatory
cubature on S2 with respect to extremal systems (which by definition has the property
(1.4)) it was found numerically that the resulting weights are all positive for all degrees
n up to at least n = 50.

Of course, the conclusions of Theorem 6 hold as long as the weights are positive, but
an alternative condition on the absolute values of the weights would also be adequate,
because of the good geometrical distribution of extremal points. Specifically, the following
property of extremal systems is known:

THEOREM 1 4 . (See [11].) For n ^ 1, let xi,..., x(n+1)2 be an extremal system

on S2. Then

(6.3) cos~1(x,-Xit) ^ ^ - ioxi^k.

Because of this result, the property (R) holds if the ratio of the weights to the average
weight is bounded uniformly in n.

PROPOSITION 15 . For n ^ 1 and m(n) satisfying an2 ^ m(n) ^ bn2 for some

a, b > 0, independent ofn, let x i , . . . , xm(n) be a set of distinct points on S2 that satisfy

(6.3). Let (<2m(n)) be a sequence of cubature ruies Qm{n), given by (1.3), with the points

xi,... ,xm(n), and with the corresponding weights satisfying

4n . .

for some constant c3 > 0, independent of n. Then the property (R) holds with

Co - (32c3)/a and Ci = TT/4.

P R O O F OF PROPOSITION 15: Because of the bound on the weights, for all x 6 S2

we have

m(n)

xy6S(x,7r/(4n))
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Now because of the condition (6.3), at most two of the cubature points can lie in
5(x, 7r/(4n)) (this happens if and only if the two points lie at opposite ends of a 'di-
ameter' of the spherical cap). Thus

where in the last step we used the easily found bound

with r = 7r/(4n). Thus the property (R) holds, with cx = ?r/4 and c0 = (32c3)/a. D

7. SOME SERIES EXPANSIONS IN LEGENDRE POLYNOMIALS

In this section we sketch derivations of the series expansions (5.8) and (5.14). The
functions (1 — t)1/2 and (1 — t)3^2 are both in L2{\—1,1]) and have therefore a series
expansion (in the Lebesgue sense) with respect to the L2([-1,1])-complete orthonormal
system { ((2n + 1)/2)1/2 Pn) . Thus

da) ̂ ^ - Pt(t),

and analogously for (1 — i)3/2. In order to compute the integrals, we observe that

I

(7.1) J(l-s)aPe(s)ds
- l

is well-defined for a > —1. Using the Legendre polynomial property that (see [4, (3.2.19)])

(21 + 1) Pt(t) = P>t+1(t) - PUW, i € N,

we derive by partial integration, for a > 0 and £ ̂  1, the relation

I

(7.2) f{l-s)aPi{s)ds
- i i i

= j^^j ( /(I ~ s)*-1 Pt+i(s) ds - | (1 - s)°-1 P^s) da).
l l

(
- l - l

It follows from (7.2) that the integrals (7.1) with a = 1/2, and in turn the integrals with
a = 3/2, can be evaluated once the integrals (7.1) with a = —1/2 are known.

https://doi.org/10.1017/S0004972700038041 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038041


[23] Worst-case errors for cubature over the sphere S2 103

The key result we need is therefore

(7.3) -J=JKL- s) -• rt\s) as = ,2l+\y c fc n°m

- l

We sketch briefly how this can be proved. The basic idea is to use (see, for example [4,

Lemma 3.2.4]) the generating function of the Legendre polynomials,

00

(7.4) (1 + h2 - 2ht)-1'2 =y£dh
k Pk{t), t G [-1,1], h G (-1,1) .

For each fixed h G (—1,1) the function on the left-hand side of (7.4) is infinitely often dif-

ferentiable on [— 1,1] and its series expansion on the right-hand side converges uniformly

for t G [-1,1]. Taking the limit h -¥ 1 we get for the left-hand side of (7.4)

iim(i + h2- 2ht)-l>2 = 4 = (i - *)~1/2> t e [ -1 , i ) .

For fixed O O w e define now fjp : [-1,1] -> M for h € [h0,1), h0 > 0, by

Obviously

and the estimate

1 + h 2 - 2 h t = ( 1 - h i ) 2 + / i 2 ( i - t ) ( l + t ) ^ h2
0{l - t ) ( l + t)

for t £ [-1,1], h e [h0,1), implies for t € (-1,1)

I fw(t)\ < 1P<^)I — aW(t)

The function gW is in Li([—1,1]) and independent of h. Thus the dominated convergence

theorem (see [6, Chapter VI, Theorem 5.8]) implies that limh_n / ^ = / ( < ) in the Lebesgue

sense, and in particular

- l - l - l

Now for he [ho, 1) fixed it is clear that (7.4) converges uniformly, thus

-1 * = 0 -1

https://doi.org/10.1017/S0004972700038041 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038041


104 K. Hesse and I.H. Sloan [24]

This proves (7.3).

Application of (7.2), starting with a = 1/2 and using (7.3), yields in the L2([—1,1])

sense

(7.5) ( 1 « ) » • £
c—0

(7.6) (1

Both series also converge uniformly on [—1,1], and therefore (7.5) and (7.6) are valid
pointwise.
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