S_{3}-Covers of Schemes

Robert W. Easton

Abstract. We analyze flat S_{3}-covers of schemes, attempting to create structures parallel to those found in the abelian and triple cover theories. We use an initial local analysis as a guide in finding a global description.

1 Introduction

Given a finite group G, a G-cover of a scheme X is a scheme Y together with a faithful G-action on Y and a finite G-equivariant morphism $\pi: Y \rightarrow X$ which identifies X with the geometric quotient Y / G. If we consider only schemes over a fixed algebraically closed field k of characteristic prime to the order of G, then to each G-cover $\pi: Y \rightarrow X$ there is a decomposition $\pi_{*} \mathcal{O}_{Y}=\bigoplus_{\rho \in G^{\vee}} \mathcal{F}_{\rho}$, where \mathcal{F}_{ρ} is an $\mathcal{O}_{X}[G]-$ module with G-action related to the irreducible representation ρ. Under suitable additional hypotheses (e.g., X, Y integral and Noetherian, π flat), the sheaf \mathcal{F}_{ρ} is locally free of rank equal to $(\operatorname{dim} \rho)^{2}$. Conversely, to construct a cover given an appropriate collection of locally free $\mathcal{O}_{X}[G]$-modules $\left\{\mathcal{F}_{\rho}\right\}_{\rho}$, we must define a commutative, associative $\mathcal{O}_{X}[G]$-algebra structure on $\mathcal{A}=\bigoplus_{\rho} \mathcal{F}_{\rho}$. We then obtain the G-cover $\pi: \operatorname{Spec}_{X} \mathcal{A} \rightarrow X$.

The theory for abelian groups was analyzed by Pardini in [19]. In that case, the decomposition runs over the irreducible characters of G, and the $\mathcal{O}_{X}[G]$-submodule \mathcal{F}_{χ} is the invertible χ-eigensheaf of $\pi_{*} \mathcal{O}_{Y}$, whose sections are those on which the group acts as multiplication by the character χ. The algebra structure on $\pi_{*} \mathcal{O}_{Y}$ is determined by a compatible collection of morphisms $\left\{\mathcal{F}_{\chi} \otimes \mathcal{F}_{\chi^{\prime}} \rightarrow \mathcal{F}_{\chi \chi^{\prime}}\right\}_{\chi, \chi^{\prime}}$, or equivalently by a collection of global sections of $\left\{\mathcal{F}_{\chi}^{-1} \otimes \mathcal{F}_{\chi^{\prime}}^{-1} \otimes \mathcal{F}_{\chi \chi^{\prime}}\right\}_{\chi, \chi^{\prime}}$. These sections are closely related to the branch divisor of the cover; given invertible sheaves $\left\{\mathcal{F}_{\chi}\right\}_{\chi}$, to construct a G-cover we may replace the explicit definition of the algebra structure with a specification of the branching data. As long as a "covering condition" is satisfied, we obtain a G-cover.

A key aspect of the abelian theory is that it allows us to understand geometry of the covering scheme in terms of geometry of the (usually simpler) base scheme. When X is a surface, we can use geometrically interesting configurations of curves in X to construct new surfaces whose intrinsic geometry reflects the geometry of the configuration. For example, a standard result in the theory of complex surfaces is the Bogomolov-Miyaoka-Yau inequality, which states that $K_{X}^{2} / \chi\left(\Theta_{X}\right) \leq 9$ for any smooth, complex surface X of general type [2], [17], [26]. This inequality is sharp, and Hirzebruch produced examples of equality by constructing abelian covers of \mathbb{P}^{2}

[^0]branched over "extreme" configurations of lines [12]. The inequality is known to fail in positive characteristic [14], and infinite families of counterexamples can be produced using abelian covers branched over configurations of lines unique to positive characteristic [6]. A similar construction was employed in [8] to prove a higherdimensional analogue of Belyi's theorem.

The situation in the nonabelian case is more complicated, but the permutation group S_{3} is within reach. Indeed, complex dihedral covers have been studied by H. Tokunaga, who reduced the problem to a study of the Galois theory of the associated function fields [22], [23], [24], [25]. The S_{3}-covers we study here are a special case of Tokunaga's dihedral covers, but we pursue a different approach, one more closely paralleling the technique used to study triple covers in [16]. Our aim is to create structures parallel to those found in the abelian and triple cover cases, laying the groundwork for future applications. (For example, the triple cover results in [16] have recently been used in [3] to construct and study stacks of trigonal curves.) To realize our goal, we begin with a local analysis of S_{3}-covers, which we then use as a guide in a global analysis. The result of our analyses is the following description of S_{3}-covers.

1.1 Summary of Results

Let R be a domain in which 6 is invertible, and let $\tau \in S_{3}$ be a fixed transposition. If $\pi: Y \rightarrow X$ is a flat S_{3}-cover of integral, Noetherian R-schemes, then $Y \cong \operatorname{Spec}_{X} \pi_{*} \mathcal{O}_{Y}$ and we have a direct sum decomposition $\pi_{*} \mathcal{O}_{Y} \cong \mathcal{O}_{X} \oplus \mathcal{L} \oplus \mathcal{E} \oplus \tau \mathcal{E}$, with \mathcal{L} the invertible subsheaf on which S_{3} acts as the sign character and \mathcal{E} a locally free sheaf of rank two (with S_{3} acting on $\mathcal{E} \oplus \tau \mathcal{E}$ by its two-dimensional representation).

Conversely, suppose X is an integral, Noetherian R-scheme, and \mathcal{L} and \mathcal{E} are locally free sheaves of ranks one and two, respectively. Suppose S_{3} acts on \mathcal{L} by the sign character and on $\tilde{\mathcal{E}}=\mathcal{E} \oplus \tau \mathcal{E}$ by its two-dimensional representation. Letting $\mathcal{A}=\mathcal{O}_{X} \oplus \mathcal{L} \oplus \tilde{\mathcal{E}}$, the S_{3}-covers of the form $\operatorname{Spec}_{X} \mathcal{A} \rightarrow X$ are parameterized by the R-submodule $S_{3} \operatorname{Cov}_{X}(\mathcal{A}) \leq \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{A}, \mathcal{A}\right)$ of elements defining commutative, associative \mathcal{O}_{X}-algebra structures on \mathcal{A} compatible with the given S_{3} action. After identifying $S_{3} \operatorname{Cov}_{X}(\mathcal{A})$ with an R-submodule of $\operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus$ $\operatorname{Hom}_{X}\left(\mathcal{L} \otimes_{\mathcal{O}_{X}} \tilde{\varepsilon}, \tilde{\varepsilon}\right) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\mathcal{E}}, \mathcal{A}\right)$, a local analysis leads us to define the R modules

$$
\begin{gathered}
\operatorname{Build}_{X}(\mathcal{A})=\operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \\
\oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{3} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \oplus \operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E}, \mathcal{L}\right) \\
\operatorname{Compat}_{X}(\mathcal{A})=\operatorname{Hom}_{X}\left(\mathcal{L} \otimes\left(\bigwedge^{2} \mathcal{E}\right){ }^{\otimes 2} \otimes \mathcal{E},\left(\bigwedge^{2} \mathcal{E}\right)^{\otimes 2}\right) \\
\oplus \operatorname{Hom}_{X}\left(\bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right), \bigwedge^{2} \mathcal{E}\right)
\end{gathered}
$$

parameterizing the data required to build S_{3}-covers and the compatibility conditions on such data. After identifying $\operatorname{Build}_{X}(\mathcal{A})$ with an R-submodule of

$$
\operatorname{Hom}_{X}(\mathcal{L} \otimes \mathcal{E}, \mathcal{E}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{E}\right) \oplus \operatorname{Hom}_{X}(\mathcal{E} \otimes \tau \mathcal{E}, \mathcal{L})
$$

we construct R-module morphisms

$$
\begin{aligned}
& \text { P: } \mathcal{S}_{3} \operatorname{Cov}_{X}(\mathcal{A}) \rightarrow \operatorname{Hom}_{X}(\mathcal{L} \otimes \mathcal{E}, \mathcal{E}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{E}\right) \oplus \operatorname{Hom}_{X}(\mathcal{E} \otimes \tau \mathcal{E}, \mathcal{L}), \\
& \text { C: } \operatorname{Build}_{X}(\mathcal{A}) \rightarrow \operatorname{Compat}_{X}(\mathcal{A}), \\
& \text { B: } \operatorname{Build}_{X}(\mathcal{A}) \rightarrow \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus \operatorname{Hom}_{X}(\mathcal{L} \otimes \tilde{\mathcal{E}}, \tilde{\varepsilon}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\varepsilon}, \mathcal{A}\right),
\end{aligned}
$$

such that $\mathbf{P}\left(S_{3} \operatorname{Cov}_{X}(\mathcal{A})^{0}\right) \subseteq$ ker \mathbf{C} and $\mathbf{B}(\operatorname{ker} \mathbf{C}) \leq S_{3} \operatorname{Cov}_{X}(\mathcal{A})$, where $S_{3} \operatorname{Cov}_{X}(\mathcal{A})^{0}$ is the subset of elements defining algebras that are domains. In other words, \mathbf{P} extracts from those S_{3}-covers whose covering schemes are integral the building data of the covers, and such data lies in the kernel of \mathbf{C}; and conversely, given building data in the kernel of \mathbf{C}, the morphism \mathbf{B} builds an S_{3}-cover (whose covering scheme might not be integral).

Remark 1.2 It is worth noting that S_{3}-covers are particular instances of degree six covers, and that our results, taken together with Pardini's abelian results [19], give a complete description of degree six Galois covers in terms of \mathcal{O}_{X}-algebra structures on $\pi_{*} \Theta_{Y}$. The problem of dealing with non-Galois covers, however, is wide open. This contrasts greatly with the situation for triple and quadruple covers, in which complete descriptions are known [10], [16], [20].

2 Preliminary Analysis

Fix a presentation, say $S_{3}=\left\langle\sigma, \tau \mid \sigma^{3}=\tau^{2}=1, \tau \sigma=\sigma^{2} \tau\right\rangle$, and let R be a domain in which 6 is invertible. As a free R-module, the group ring $R\left[S_{3}\right]$ decomposes as $R\left[S_{3}\right]=C_{1} \oplus C_{2} \oplus C_{3}$, where

$$
\begin{aligned}
C_{1} & =\operatorname{span}_{R}\left\{1+\sigma+\sigma^{2}+\tau+\sigma \tau+\sigma^{2} \tau\right\} \\
& =\left\{v \in R\left[S_{3}\right] \mid \forall g \in S_{3}, g \cdot v=v\right\}, \\
C_{2} & =\operatorname{span}_{R}\left\{1+\sigma+\sigma^{2}-\tau-\sigma \tau-\sigma^{2} \tau\right\} \\
& =\left\{v \in R\left[S_{3}\right] \mid \forall g \in S_{3}, g \cdot v=\operatorname{sgn}(g) v\right\},
\end{aligned}
$$

and where a basis for C_{3} is given by

$$
\begin{array}{ll}
u_{11}=-1+\sigma+\tau-\sigma^{2} \tau, & u_{21}=-1+\sigma^{2}+\tau-\sigma \tau, \\
u_{12}=-\sigma+\sigma^{2}-\tau+\sigma \tau, & u_{22}=1-\sigma+\sigma \tau-\sigma^{2} \tau .
\end{array}
$$

Under this decomposition of $R\left[S_{3}\right]$, we have $1=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}$, where

$$
\begin{aligned}
& \epsilon_{1}=\frac{1}{6}\left(1+\sigma+\sigma^{2}+\tau+\sigma \tau+\sigma^{2} \tau\right), \\
& \epsilon_{2}=\frac{1}{6}\left(1+\sigma+\sigma^{2}-\tau-\sigma \tau-\sigma^{2} \tau\right), \\
& \epsilon_{3}=\frac{1}{3}\left(2-\sigma-\sigma^{2}\right) .
\end{aligned}
$$

Note that each ϵ_{i} is in the center of $R\left[S_{3}\right]$ and satisfies $\epsilon_{i} \epsilon_{j}=\delta_{i j} \epsilon_{i}$. We also have a non-equivariant decomposition $C_{3}=C_{31} \oplus C_{32}$, where $C_{3 i}=\operatorname{span}_{R}\left\{u_{i 1}, u_{i 2}\right\}$. Under this decomposition, ϵ_{3} decomposes as $\epsilon_{3}=\epsilon_{31}+\epsilon_{32}$, where

$$
\epsilon_{31}=\frac{1}{3}\left(1-\sigma+\sigma \tau-\sigma^{2} \tau\right), \quad \epsilon_{32}=\frac{1}{3}\left(1-\sigma^{2}-\sigma \tau+\sigma^{2} \tau\right)
$$

which also satisfy $\epsilon_{3 i} \epsilon_{3 j}=\delta_{i j} \epsilon_{3 i}$ (but are not central).
Suppose X is an R-scheme, and \mathcal{F} is an $\mathcal{O}_{X}\left[S_{3}\right]$-module with action explicitly given by a group homomorphism $\mu: S_{3} \rightarrow \operatorname{Aut}_{\mathcal{O}_{X}}(\mathcal{F})$. Extend this morphism R-linearly to a ring homomorphism $\mu: R\left[S_{3}\right] \rightarrow \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{F})$. Recalling that for any $f \in \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{F})$ satisfying $f \circ f=f$ the image presheaf of f is automatically a sheaf, let $\mathcal{F}_{i} \subseteq \mathcal{F}$ denote the image (pre)sheaf of $\mu\left(\epsilon_{i}\right)$. (In particular, \mathcal{F}_{1} is the subsheaf of invariant sections of \mathcal{F}, and \mathcal{F}_{2} is the subsheaf of sections on which S_{3} acts as multiplication by the sign character.) Since $\mu(1)=\mathrm{Id}_{\mathcal{F}}$, and since 1 decomposes as $1=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}$ with elements ϵ_{i} satisfying the aforementioned properties, the morphisms $\mu\left(\epsilon_{i}\right)$ induce an $\mathcal{O}_{X}\left[S_{3}\right]$-module direct sum decomposition $\mathcal{F} \cong \mathcal{F}_{1} \oplus \mathcal{F}_{2} \oplus \mathcal{F}_{3}$. Using the decomposition $\epsilon_{3}=\epsilon_{31}+\epsilon_{32}$, we can further obtain an \mathcal{O}_{X}-module direct sum decomposition $\mathcal{F}_{3} \cong \mathcal{F}_{31} \oplus \mathcal{F}_{32}$. Note that the $\mathcal{F}_{3 i}$ are not invariant under the group action: we have $\tau \epsilon_{31}=\epsilon_{32} \tau$, so $\left.\mu(\tau)\right|_{\mathcal{F}_{3}}$ is an automorphism interchanging the summands, and hence $\mathcal{F}_{3} \cong \mathcal{F}_{31} \oplus \tau \mathcal{F}_{31}$. This decomposition encodes the action of S_{3} on \mathcal{F}_{3} : by a direct calculation we see that $\sigma \epsilon_{31}=-\tau \epsilon_{31}$ and $\sigma^{2} \epsilon_{31}=(-1+\tau) \epsilon_{31}$, so the S_{3}-action on $\mathcal{F}_{31} \oplus \tau \mathcal{F}_{31}$ is given by

$$
\begin{equation*}
\tau \cdot\left(s_{1}+\tau s_{2}\right)=s_{2}+\tau s_{1}, \quad \sigma \cdot\left(s_{1}+\tau s_{2}\right)=s_{2}+\tau\left(-s_{1}-s_{2}\right) \tag{1}
\end{equation*}
$$

for sections s_{1}, s_{2} of \mathcal{F}_{31}. (For the second equality, note that we must have $\sigma \cdot\left(\tau s_{2}\right)=$ $\left.(\sigma \tau) \cdot s_{2}=\left(\tau \sigma^{2}\right) \cdot s_{2}=\tau \cdot\left(\sigma^{2} \cdot s_{2}\right)=\tau \cdot\left(-s_{2}+\tau s_{2}\right)=s_{2}-\tau s_{2}.\right)$

Now suppose $\pi: Y \rightarrow X$ is a flat S_{3}-cover of R-schemes. Then $\pi_{*} \mathcal{O}_{Y}$ is a locally free $\mathcal{O}_{X}\left[S_{3}\right]$-module of rank six, with $\left(\pi_{*} \mathcal{O}_{Y}\right)^{S_{3}} \cong \mathcal{O}_{X}$. By the above, we have an induced $\mathcal{O}_{X}\left[S_{3}\right]$-module direct sum decomposition $\pi_{*} \mathcal{O}_{Y} \cong \mathcal{O}_{X} \oplus \mathcal{F}_{2} \oplus \mathcal{F}_{3}$, as well as an \mathcal{O}_{X}-module decomposition $\mathcal{F}_{3} \cong \mathcal{F}_{31} \oplus \tau \mathcal{F}_{31}$. If we assume X and Y are integral, Noetherian R-schemes, then \mathcal{F}_{2} and \mathcal{F}_{31} are locally free of ranks one and two, respectively. Moreover, since a finite morphism is affine, it follows that $Y \cong \operatorname{Spec}_{X}\left(\mathcal{O}_{X} \oplus \mathcal{F}_{2} \oplus \mathcal{F}_{31} \oplus \tau \mathcal{F}_{31}\right)$. Thus, to construct an S_{3}-cover of X we need the following data:
(i) an invertible \mathcal{O}_{X}-module \mathcal{L}, on which S_{3} is to act via the sign character;
(ii) a locally free \mathcal{O}_{X}-module \mathcal{E} of rank two; the group S_{3} is then to act on $\mathcal{E} \oplus \tau \mathcal{E}$ as defined by (1);
(iii) a commutative, associative $\mathcal{O}_{X}\left[S_{3}\right]$-algebra structure on $\mathcal{O}_{X} \oplus \mathcal{L} \oplus \mathcal{E} \oplus \tau \mathcal{E}$. (As we will see, both associativity and compatibility with the group action impose strong conditions on the algebra structure.)
We aim to precisely describe data (iii), given data (i) and (ii). To that end, let us fix an integral, Noetherian R-scheme X, together with locally free \mathcal{O}_{X}-modules \mathcal{L} and \mathcal{E} of ranks one and two, respectively. For notational convenience, let us also define $\tilde{\mathcal{E}}=\mathcal{E} \oplus \tau \mathcal{E}$ and $\mathcal{A}=\mathcal{O}_{X} \oplus \mathcal{L} \oplus \tilde{\mathcal{E}}$. As commutative \mathcal{O}_{X}-algebra structures on \mathcal{A} are given by the elements of $\operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{A}, \mathcal{A}\right)$, we make the following definition.

Definition 2.1 Let $S_{3} \operatorname{Cov}_{X}(\mathcal{A}) \leq \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{A}, \mathcal{A}\right)$ denote the R-submodule of elements that define commutative, associative $\mathcal{O}_{X}\left[S_{3}\right]$-algebra structures on \mathcal{A}.

Our goal, then, is to find an intrinsic description of $S_{3} \operatorname{Cov}_{X}(\mathcal{A})$. We begin with the following preliminary observation.

Lemma 2.2 Each commutative $\mathcal{O}_{X}\left[S_{3}\right]$-algebra structure on \mathcal{A} is defined by an element of $\operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus \operatorname{Hom}_{X}\left(\mathcal{L} \otimes_{\mathcal{O}_{X}} \tilde{\varepsilon}, \tilde{\varepsilon}\right) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\varepsilon}, \mathcal{A}\right)$.

Proof A priori, an arbitrary \mathcal{O}_{X}-algebra structure on \mathcal{A} is given by an \mathcal{O}_{X}-module morphism $\mathcal{A} \otimes_{\mathcal{O}_{X}} \mathcal{A} \rightarrow \mathcal{A}$, which is equivalent to an \mathcal{O}_{X}-module morphism

$$
\begin{aligned}
&\left(\mathcal{O}_{X} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}\right) \oplus\left(\mathcal{O}_{X} \otimes_{\mathcal{O}_{X}} \mathcal{L}\right) \oplus\left(\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}\right) \oplus\left(\mathcal{O}_{X} \otimes_{\mathcal{O}_{X}} \tilde{\varepsilon}\right) \oplus\left(\tilde{\mathcal{E}} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}\right) \\
& \oplus\left(\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{L}\right) \oplus\left(\mathcal{L} \otimes_{\mathcal{O}_{X}} \tilde{\varepsilon}\right) \oplus\left(\tilde{\varepsilon} \otimes_{\mathcal{O}_{X}} \mathcal{L}\right) \oplus\left(\tilde{\varepsilon} \otimes_{\mathcal{O}_{X}} \tilde{\varepsilon}\right) \rightarrow \mathcal{A}
\end{aligned}
$$

The first coordinate of this morphism must be given by the algebra structure on \mathcal{O}_{X}, and the following four coordinates must be given by the left and right \mathcal{O}_{X}-module structures on \mathcal{L} and $\tilde{\mathcal{E}}$, respectively. If the algebra is to be commutative, then the sixth and ninth coordinates must factor through the canonical morphisms to the corresponding symmetric products, namely $\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{L} \rightarrow \operatorname{Sym}^{2} \mathcal{L}$ and $\tilde{\mathcal{E}} \otimes_{\mathcal{O}_{X}} \tilde{\mathcal{E}} \rightarrow$ $\operatorname{Sym}^{2} \tilde{\mathcal{E}}$. Similarly, the seventh and eighth coordinates must agree after the canonical isomorphism $\mathcal{L} \otimes_{\mathcal{O}_{X}} \tilde{\mathcal{E}} \cong \tilde{\mathcal{E}} \otimes_{\mathcal{O}_{X}} \mathcal{L}$.

If the algebra is to be compatible with the S_{3}-action, then S_{3} must act as $(\mathrm{sgn})^{2}=$ Id on the image of $\operatorname{Sym}^{2} \mathcal{L} \rightarrow \mathcal{A}$, and so this morphism must factor through the embedding $\mathcal{O}_{X} \subseteq \mathcal{A}$ of invariant sections. Similarly, $\mathcal{L} \otimes_{\mathcal{O}_{X}} \tilde{\mathcal{E}} \rightarrow \mathcal{A}$ must factor through the embedding $\tilde{\mathcal{E}} \subseteq \mathcal{A}$.

We may thus regard $S_{3} \operatorname{Cov}_{X}(\mathcal{A})$ as an R-submodule of $\operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus$ $\operatorname{Hom}_{X}\left(\mathcal{L} \otimes \mathcal{O}_{X} \tilde{\varepsilon}, \tilde{\varepsilon}\right) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\varepsilon}, \mathcal{A}\right)$. Of course, not every element of the latter will satisfy all the necessary compatibilities with the S_{3}-action, nor will it necessarily define an associative algebra. To characterize those elements that do satisfy these conditions, and hence find a description of $S_{3} \operatorname{Cov}_{X}(\mathcal{A})$, we first analyze the local situation.

3 Local Analysis

Let $U \subseteq X$ be an affine open such that $\mathcal{L}(U)$ and $\mathcal{E}(U)$ are free $\mathcal{O}_{X}(U)$-modules of ranks one and two, respectively. (In general, when we work with \mathcal{L} and \mathcal{E} locally, we will always mean over such an affine U.) Let t be a generator for $\mathcal{L}(U)$ and v_{1}, v_{2} be generators for $\mathcal{E}(U)$. To understand the algebra structure on $\mathcal{A}(U)$, we need to analyze (the images of) the following products (with tensor symbols suppressed):

- $t^{2} \in \mathcal{O}_{X}(U)$;
- $t v_{i}, t \cdot \tau v_{i} \in \tilde{\mathcal{E}}(U)=\mathcal{E}(U) \oplus \tau \mathcal{E}(U)$, for $i=1,2$;
- $v_{i} v_{j}, v_{i} \cdot \tau v_{j}, \tau v_{i} \cdot \tau v_{j} \in \mathcal{A}(U)$, for $i, j=1,2$.

Momentarily leaving aside associativity concerns, we find the following lemma.

Lemma 3.1 With respect to the basis $\left\{1, t, v_{1}, v_{2}, \tau v_{1}, \tau v_{2}\right\}$ for $\mathcal{A}(U)$, the commutative $\mathcal{O}_{X}(U)\left[S_{3}\right]$-algebra structures on $\mathcal{A}(U)$ are precisely those of the form

$$
\begin{aligned}
t^{2} & =a \\
t v_{1} & =b_{1} v_{1}+b_{2} v_{2}-2 b_{1} \tau v_{1}-2 b_{2} \tau v_{2} \\
t v_{2} & =c_{1} v_{1}+c_{2} v_{2}-2 c_{1} \tau v_{1}-2 c_{2} \tau v_{2} \\
t \cdot \tau v_{1} & =2 b_{1} v_{1}+2 b_{2} v_{2}-b_{1} \tau v_{1}-b_{2} \tau v_{2} \\
t \cdot \tau v_{2} & =2 c_{1} v_{1}+2 c_{2} v_{2}-c_{1} \tau v_{1}-c_{2} \tau v_{2} \\
v_{1}^{2} & =d_{1}+d_{3} v_{1}+d_{4} v_{2}-2 d_{3} \tau v_{1}-2 d_{4} \tau v_{2} \\
v_{1} v_{2} & =e_{1}+e_{3} v_{1}+e_{4} v_{2}-2 e_{3} \tau v_{1}-2 e_{4} \tau v_{2} \\
v_{2}^{2} & =f_{1}+f_{3} v_{1}+f_{4} v_{2}-2 f_{3} \tau v_{1}-2 f_{4} \tau v_{2} \\
v_{1} \cdot \tau v_{1} & =\frac{1}{2} d_{1}-d_{3} v_{1}-d_{4} v_{2}-d_{3} \tau v_{1}-d_{4} \tau v_{2} \\
v_{1} \cdot \tau v_{2} & =\frac{1}{2} e_{1}+h_{2} t+h_{3} v_{1}+h_{4} v_{2}-e_{3} \tau v_{1}-e_{4} \tau v_{2} \\
v_{2} \cdot \tau v_{1} & =\frac{1}{2} e_{1}-h_{2} t-e_{3} v_{1}-e_{4} v_{2}+h_{3} \tau v_{1}+h_{4} \tau v_{2} \\
v_{2} \cdot \tau v_{2} & =\frac{1}{2} f_{1}-f_{3} v_{1}-f_{4} v_{2}-f_{3} \tau v_{1}-f_{4} \tau v_{2} \\
\left(\tau v_{1}\right)^{2} & =d_{1}-2 d_{3} v_{1}-2 d_{4} v_{2}+d_{3} \tau v_{1}+d_{4} \tau v_{2} \\
\left(\tau v_{1}\right)\left(\tau v_{2}\right) & =e_{1}-2 e_{3} v_{1}-2 e_{4} v_{2}+e_{3} \tau v_{1}+e_{4} \tau v_{2} \\
\left(\tau v_{2}\right)^{2} & =f_{1}-2 f_{3} v_{1}-2 f_{4} v_{2}+f_{3} \tau v_{1}+f_{4} \tau v_{2},
\end{aligned}
$$

for some $a, b_{i}, c_{i}, d_{i}, e_{i}, f_{i}, h_{i} \in \mathcal{O}_{X}(U)$.

Remark 3.2 In particular, every element of $S_{3} \operatorname{Cov}_{X}(\mathcal{A})$ is locally of the above form.
Proof Compatibility with the action of τ requires $\tau \cdot\left(t v_{i}\right)=(\tau \cdot t)\left(\tau v_{i}\right)=-t \cdot \tau v_{i}$, and so $t \cdot \tau v_{i}$ is determined by $t v_{i}$. Similarly, $\tau v_{i} \cdot \tau v_{j}$ is determined by $v_{i} v_{j}$, and $v_{2} \cdot \tau v_{1}$ is determined by $v_{1} \cdot \tau v_{2}$. Suppose

$$
\begin{aligned}
t^{2} & =a \\
t v_{1} & =b_{1} v_{1}+b_{2} v_{2}+b_{3} \tau v_{1}+b_{4} \tau v_{2} \\
t v_{2} & =c_{1} v_{1}+c_{2} v_{2}+c_{3} \tau v_{1}+c_{4} \tau v_{2} \\
v_{1}^{2} & =d_{1}+d_{2} t+d_{3} v_{1}+d_{4} v_{2}+d_{5} \tau v_{1}+d_{6} \tau v_{2} \\
v_{1} v_{2} & =e_{1}+e_{2} t+e_{3} v_{1}+e_{4} v_{2}+e_{5} \tau v_{1}+e_{6} \tau v_{2}
\end{aligned}
$$

$$
\begin{aligned}
v_{2}^{2} & =f_{1}+f_{2} t+f_{3} v_{1}+f_{4} v_{2}+f_{5} \tau v_{1}+f_{6} \tau v_{2} \\
v_{1} \cdot \tau v_{1} & =g_{1}+g_{2} t+g_{3} v_{1}+g_{4} v_{2}+g_{5} \tau v_{1}+g_{6} \tau v_{2} \\
v_{1} \cdot \tau v_{2} & =h_{1}+h_{2} t+h_{3} v_{1}+h_{4} v_{2}+h_{5} \tau v_{1}+h_{6} \tau v_{2} \\
v_{2} \cdot \tau v_{2} & =i_{1}+i_{2} t+i_{3} v_{1}+i_{4} v_{2}+i_{5} \tau v_{1}+i_{6} \tau v_{2},
\end{aligned}
$$

for some $a, b_{j}, c_{j}, d_{j}, e_{j}, f_{j}, g_{j}, h_{j}, i_{j} \in \mathcal{O}_{X}(U)$. By our initial remark, we then must have

$$
\begin{aligned}
t \cdot \tau v_{1} & =-b_{3} v_{1}-b_{4} v_{2}-b_{1} \tau v_{1}-b_{2} \tau v_{2} \\
t \cdot \tau v_{2} & =-c_{3} v_{1}-c_{4} v_{2}-c_{1} \tau v_{1}-c_{2} \tau v_{2} \\
\left(\tau v_{1}\right)^{2} & =d_{1}-d_{2} t+d_{5} v_{1}+d_{6} v_{2}+d_{3} \tau v_{1}+d_{4} \tau v_{2} \\
\left(\tau v_{1}\right)\left(\tau v_{2}\right) & =e_{1}-e_{2} t+e_{5} v_{1}+e_{6} v_{2}+e_{3} \tau v_{1}+e_{4} \tau v_{2} \\
\left(\tau v_{2}\right)^{2} & =f_{1}-f_{2} t+f_{5} v_{1}+f_{6} v_{2}+f_{3} \tau v_{1}+f_{4} \tau v_{2} \\
v_{2} \cdot \tau v_{1} & =h_{1}-h_{2} t+h_{5} v_{1}+h_{6} v_{2}+h_{3} \tau v_{1}+h_{4} \tau v_{2}
\end{aligned}
$$

Such an algebra structure is now ensured to be compatible with the action of τ, and so compatibility with the full S_{3}-action will follow from compatibility with the action of σ. Using the equations above, together with equation (11), we compute

$$
\sigma \cdot\left(t v_{1}\right)=b_{3} v_{1}+b_{4} v_{2}+\left(-b_{1}-b_{3}\right) \tau v_{1}+\left(-b_{2}-b_{4}\right) \tau v_{2}
$$

and

$$
\begin{aligned}
(\sigma \cdot t)\left(\sigma \cdot v_{1}\right) & =t\left(\sigma \cdot v_{1}\right)=t\left(-\tau v_{1}\right)=-t\left(\tau v_{1}\right) \\
& =b_{3} v_{1}+b_{4} v_{2}+b_{1} \tau v_{1}+b_{2} \tau v_{2} .
\end{aligned}
$$

So, compatibility with σ requires $b_{3}=-2 b_{1}$ and $b_{4}=-2 b_{2}$. The corresponding computation for the relation $\sigma \cdot\left(t v_{2}\right)=(\sigma \cdot t)\left(\sigma \cdot v_{2}\right)$ requires $c_{3}=-2 c_{1}$ and $c_{4}=-2 c_{2}$.

Computing

$$
\sigma \cdot\left(v_{1}^{2}\right)=d_{1}+d_{2} t+d_{5} v_{1}+d_{6} v_{2}+\left(-d_{3}-d_{5}\right) \tau v_{1}+\left(-d_{4}-d_{6}\right) \tau v_{2},
$$

and

$$
\begin{aligned}
\left(\sigma \cdot v_{1}\right)^{2} & =\left(-\tau v_{1}\right)^{2}=\left(\tau v_{1}\right)^{2} \\
& =d_{1}-d_{2} t+d_{5} v_{1}+d_{6} v_{2}+d_{3} \tau v_{1}+d_{4} \tau v_{2},
\end{aligned}
$$

we must have $d_{2}=0, d_{5}=-2 d_{3}$, and $d_{6}=-2 d_{4}$. Similarly, the relation $\sigma \cdot\left(v_{1} v_{2}\right)=$ $\left(\sigma \cdot v_{1}\right)\left(\sigma \cdot v_{2}\right)$ requires $e_{2}=0, e_{5}=-2 e_{3}$, and $e_{6}=-2 e_{4}$. The relation $\sigma \cdot\left(v_{2}\right)^{2}=$ $\left(\sigma \cdot v_{2}\right)^{2}$ requires $f_{2}=0, f_{5}=-2 f_{3}$, and $f_{6}=-2 f_{4}$.

Lastly, we compute

$$
\sigma \cdot\left(v_{1} \cdot \tau v_{1}\right)=g_{1}+g_{2} t+g_{5} v_{1}+g_{6} v_{2}+\left(-g_{3}-g_{5}\right) \tau v_{1}+\left(-g_{4}-g_{6}\right) \tau v_{2}
$$

and

$$
\begin{aligned}
\left(\sigma \cdot v_{1}\right)\left(\sigma \cdot \tau v_{1}\right)= & \left(-\tau v_{1}\right)\left(v_{1}-\tau v_{1}\right)=-\left(v_{1} \cdot \tau v_{1}\right)+\left(\tau v_{1}\right)^{2} \\
= & \left(-g_{1}+d_{1}\right)+\left(-g_{2}-d_{2}\right) t+\left(-g_{3}+d_{5}\right) v_{1}+\left(-g_{4}+d_{6}\right) v_{2} \\
& +\left(-g_{5}+d_{3}\right) \tau v_{1}+\left(-g_{6}+d_{4}\right) \tau v_{2}
\end{aligned}
$$

From this (and the previously obtained relations), we deduce $g_{1}=\frac{1}{2} d_{1}, g_{2}=0$, $g_{3}=g_{5}=-d_{3}$, and $g_{4}=g_{6}=-d_{4}$. The relation $\sigma \cdot\left(v_{1} \cdot \tau v_{2}\right)=\left(\sigma \cdot v_{1}\right)\left(\sigma \cdot \tau v_{2}\right)$ requires $h_{1}=\frac{1}{2} e_{1}, h_{5}=-e_{3}$, and $h_{6}=-e_{4}$. The relation $\sigma \cdot\left(v_{2} \cdot \tau v_{2}\right)=\left(\sigma \cdot v_{2}\right)\left(\sigma \cdot \tau v_{2}\right)$ requires $i_{1}=\frac{1}{2} f_{1}, i_{2}=0, i_{3}=i_{5}=-f_{3}$, and $i_{4}=i_{6}=-f_{4}$.

The previous lemma specifically omitted any mention of associativity. Indeed, associativity imposes many additional constraints.

Proposition 3.3 With respect to the basis $\left\{1, t, v_{1}, v_{2}, \tau v_{1}, \tau v_{2}\right\}$ for $\mathcal{A}(U)$, every commutative, associative $\mathcal{O}_{X}(U)\left[S_{3}\right]$-algebra structure on $\mathcal{A}(U)$ that defines a domain is of the form

$$
\begin{aligned}
t^{2} & =-3 b_{1}^{2}-3 b_{2} c_{1} \\
t v_{1} & =b_{1} v_{1}+b_{2} v_{2}-2 b_{1} \tau v_{1}-2 b_{2} \tau v_{2} \\
t v_{2} & =c_{1} v_{1}-b_{1} v_{2}-2 c_{1} \tau v_{1}+2 b_{1} \tau v_{2} \\
t \cdot \tau v_{1} & =2 b_{1} v_{1}+2 b_{2} v_{2}-b_{1} \tau v_{1}-b_{2} \tau v_{2} \\
t \cdot \tau v_{2} & =2 c_{1} v_{1}-2 b_{1} v_{2}-c_{1} \tau v_{1}+b_{1} \tau v_{2} \\
v_{1}^{2} & =6\left(d_{3}^{2}-d_{4} f_{4}\right)+d_{3} v_{1}+d_{4} v_{2}-2 d_{3} \tau v_{1}-2 d_{4} \tau v_{2} \\
v_{1} v_{2} & =3\left(d_{4} f_{3}-d_{3} f_{4}\right)-f_{4} v_{1}-d_{3} v_{2}+2 f_{4} \tau v_{1}+2 d_{3} \tau v_{2} \\
v_{2}^{2} & =6\left(f_{4}^{2}-d_{3} f_{3}\right)+f_{3} v_{1}+f_{4} v_{2}-2 f_{3} \tau v_{1}-2 f_{4} \tau v_{2} \\
v_{1} \cdot \tau v_{1} & =3\left(d_{3}^{2}-d_{4} f_{4}\right)-d_{3} v_{1}-d_{4} v_{2}-d_{3} \tau v_{1}-d_{4} \tau v_{2} \\
v_{1} \cdot \tau v_{2} & =\frac{3}{2}\left(d_{4} f_{3}-d_{3} f_{4}\right)+h_{2} t+f_{4} v_{1}+d_{3} v_{2}+f_{4} \tau v_{1}+d_{3} \tau v_{2} \\
v_{2} \cdot \tau v_{1} & =\frac{3}{2}\left(d_{4} f_{3}-d_{3} f_{4}\right)-h_{2} t+f_{4} v_{1}+d_{3} v_{2}+f_{4} \tau v_{1}+d_{3} \tau v_{2} \\
v_{2} \cdot \tau v_{2} & =3\left(f_{4}^{2}-d_{3} f_{3}\right)-f_{3} v_{1}-f_{4} v_{2}-f_{3} \tau v_{1}-f_{4} \tau v_{2} \\
\left(\tau v_{1}\right)^{2} & =6\left(d_{3}^{2}-d_{4} f_{4}\right)-2 d_{3} v_{1}-2 d_{4} v_{2}+d_{3} \tau v_{1}+d_{4} \tau v_{2} \\
\left(\tau v_{1}\right)\left(\tau v_{2}\right) & =3\left(d_{4} f_{3}-d_{3} f_{4}\right)+2 f_{4} v_{1}+2 d_{3} v_{2}-f_{4} \tau v_{1}-d_{3} \tau v_{2} \\
\left(\tau v_{2}\right)^{2} & =6\left(f_{4}^{2}-d_{3} f_{3}\right)-2 f_{3} v_{1}-2 f_{4} v_{2}+f_{3} \tau v_{1}+f_{4} \tau v_{2},
\end{aligned}
$$

for some $b_{1}, b_{2}, c_{1}, d_{3}, d_{4}, f_{3}, f_{4}, h_{2} \in \mathcal{O}_{X}(U)$ satisfying
(i) $2 b_{1} d_{3}-b_{2} f_{4}+c_{1} d_{4}=0$;
(iii) $b_{2} h_{2}+3\left(d_{3}^{2}-d_{4} f_{4}\right)=0$;
(ii) $2 b_{1} f_{4}-b_{2} f_{3}+c_{1} d_{3}=0$;
(iv) $2 b_{1} h_{2}+3\left(d_{3} f_{4}-d_{4} f_{3}\right)=0$;
(v) $c_{1} h_{2}+3\left(d_{3} f_{3}-f_{4}^{2}\right)=0$.

Conversely, any multiplicative structure on $\mathcal{A}(U)$ of the above form defines a commutative, associative $\mathcal{O}_{X}(U)\left[S_{3}\right]$-algebra structure on $\mathcal{A}(U)$, although possibly not a domain.

Remark 3.4 Consequently, if we define $S_{3} \operatorname{Cov}_{X}(\mathcal{A})^{0} \subset S_{3} \operatorname{Cov}_{X}(\mathcal{A})$ as the subset of elements defining domains, then we see that every element of $S_{3} \operatorname{Cov}_{X}(\mathcal{A})^{0}$ is locally of the form described above. Conversely, every element of $\operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus$ $\operatorname{Hom}_{X}\left(\mathcal{L} \otimes_{\mathcal{O}_{X}} \tilde{\mathcal{E}}, \tilde{\varepsilon}\right) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\varepsilon}, \mathcal{A}\right)$ that is locally of the above form lies in $S_{3} \operatorname{Cov}_{X}(\mathcal{A})$.

Proof The proof consists of systematically imposing the third-order associativity conditions. As the calculations are straightforward but tedious, we only give full details for the first few. So as to maintain symmetry between v_{1} and v_{2}, we endeavor to express e_{i} and h_{i} in terms of d_{i} and f_{i} whenever possible. Using Lemma 3.1 we compute

$$
\begin{aligned}
& \left(t^{2}\right) v_{1}=a v_{1} \\
& t\left(t v_{1}\right)=\left(-3 b_{1}^{2}-3 b_{2} c_{1}\right) v_{1}+\left(-3 b_{1} b_{2}-3 b_{2} c_{2}\right) v_{2}
\end{aligned}
$$

Equating coefficients gives

$$
\begin{align*}
& a=-3 b_{1}^{2}-3 b_{2} c_{1} \tag{2}\\
& 0=b_{2}\left(b_{1}+c_{2}\right) . \tag{3}
\end{align*}
$$

Similarly, we compute

$$
\begin{aligned}
& \left(t^{2}\right) v_{2}=a v_{2} \\
& t\left(t v_{2}\right)=\left(-3 b_{1} c_{1}-3 c_{1} c_{2}\right) v_{1}+\left(-3 b_{2} c_{1}-3 c_{2}^{2}\right) v_{2}
\end{aligned}
$$

and so must have

$$
\begin{align*}
& 0=c_{1}\left(b_{1}+c_{2}\right) \tag{4}\\
& a=-3 b_{2} c_{1}-3 c_{2}^{2} \tag{5}
\end{align*}
$$

Note that the relations $\left(t^{2}\right) \tau v_{1}=t\left(t \tau v_{1}\right)$ and $\left(t^{2}\right) \tau v_{2}=t\left(t \tau v_{2}\right)$ immediately follow from the above relations and the compatibility with τ. Indeed, we have $\left(t^{2}\right) \tau v_{1}=$ $(-t)^{2} \tau v_{1}=(\tau \cdot t)^{2} \tau v_{1}=\tau \cdot\left(\left(t^{2}\right) v_{1}\right)=\tau \cdot\left(t\left(t v_{1}\right)\right)=-t\left(-t \cdot \tau v_{1}\right)=t\left(t \tau v_{1}\right)$, and similarly for $\left(t^{2}\right) \tau v_{2}$.

We next compute

$$
\begin{aligned}
t\left(v_{1}^{2}\right) & =d_{1} t+\left(-3 b_{1} d_{3}-3 c_{1} d_{4}\right) v_{1}+\left(-3 b_{2} d_{3}-3 c_{2} d_{4}\right) v_{2} \\
\left(t v_{1}\right) v_{1} & =\left(-2 b_{2} h_{2}\right) t+\left(3 b_{1} d_{3}+b_{2} e_{3}-2 b_{2} h_{3}\right) v_{1}+\left(3 b_{1} d_{4}+b_{2} e_{4}-2 b_{2} h_{4}\right) v_{2}
\end{aligned}
$$

which implies

$$
\begin{align*}
d_{1} & =-2 b_{2} h_{2} \tag{6}\\
6 b_{1} d_{3}+b_{2} e_{3}-2 b_{2} h_{3}+3 c_{1} d_{4} & =0 \tag{7}\\
3 b_{1} d_{4}+3 b_{2} d_{3}+b_{2} e_{4}-2 b_{2} h_{4}+3 c_{2} d_{4} & =0 . \tag{8}
\end{align*}
$$

We claim $c_{2}=-b_{1}$. Indeed, suppose $c_{2} \neq-b_{1}$. Recalling that we have assumed X is integral, and hence $\mathcal{O}_{X}(U)$ is a domain, equations (3) and (4) imply $b_{2}=c_{1}=0$. Equations (2) and (5) then become $-3 c_{2}^{2}=a=-3 b_{1}^{2}$. By hypothesis, the algebra $\mathcal{A}(U)$ is a domain, so $t^{2}=a$ is nonzero, and hence it follows that b_{1} and c_{2} are both nonzero. Since their squares are equal and $c_{2} \neq-b_{1}$, we must have $c_{2}=b_{1}$. But then equations (6)-(8) imply $d_{1}=d_{3}=d_{4}=0$, and hence $v_{1}^{2}=0$, which again violates the assumption $\mathcal{A}(U)$ is a domain.

We must therefore have $c_{2}=-b_{1}$, and equations (2)-(8) reduce to

$$
\begin{align*}
a & =-3 b_{1}^{2}-3 b_{2} c_{1} \tag{9}\\
d_{1} & =-2 b_{2} h_{2} \tag{10}\\
6 b_{1} d_{3}+b_{2} e_{3}-2 b_{2} h_{3}+3 c_{1} d_{4} & =0 \tag{11}\\
3 b_{2} d_{3}+b_{2} e_{4}-2 b_{2} h_{4} & =0 . \tag{12}
\end{align*}
$$

Similar computations for the relations $t\left(v_{1} v_{2}\right)=\left(t v_{1}\right) v_{2}$ and $t\left(v_{2}^{2}\right)=\left(t v_{2}\right) v_{2}$ yield

$$
\begin{align*}
h_{3} & =-e_{3}=f_{4} \tag{13}\\
h_{4} & =-e_{4} \tag{14}\\
e_{1} & =2 b_{1} h_{2} \tag{15}\\
f_{1} & =2 c_{1} h_{2} \tag{16}\\
2 b_{1} f_{4}-b_{2} f_{3}-c_{1} e_{4} & =0 . \tag{17}
\end{align*}
$$

Imposing the conditions so far collected, a calculation reveals the relations $t\left(v_{1} \tau v_{1}\right)=$ $\left(t v_{1}\right) \tau v_{1}, t\left(v_{1} \tau v_{2}\right)=\left(t v_{1}\right) \tau v_{2}$, and $t\left(v_{2} \tau v_{2}\right)=\left(t v_{2}\right) \tau v_{2}$ all now hold. Compatibility with the action of τ then implies that the relations $t\left(\tau v_{1}\right)^{2}=\left(t \cdot \tau v_{1}\right) \tau v_{1}, t\left(\tau v_{1} \cdot \tau v_{2}\right)=$ $\left(t \cdot \tau v_{1}\right) \tau v_{2}, t\left(\tau v_{2}\right)^{2}=\left(t \cdot \tau v_{2}\right) \tau v_{2}$, and $t\left(v_{2} \cdot \tau v_{1}\right)=\left(t v_{2}\right) \tau v_{1}$ also hold.

Similar calculations for the relations $\left(v_{1}^{2}\right) v_{2}=v_{1}\left(v_{1} v_{2}\right), v_{1}\left(v_{2}^{2}\right)=\left(v_{1} v_{2}\right) v_{2}$, and $v_{1}^{2}\left(\tau v_{1}\right)=v_{1}\left(v_{1} \tau v_{1}\right)$ yield

$$
\begin{align*}
e_{4} & =-d_{3} \tag{18}\\
2 b_{1} h_{2}-3 d_{4} f_{3}+3 d_{3} f_{4} & =0 \tag{19}\\
b_{2} h_{2}+3 d_{3}^{3}-3 d_{4} f_{4} & =0 \tag{20}\\
c_{1} h_{2}+3 d_{3} f_{3}-3 f_{4}^{2} & =0 . \tag{21}
\end{align*}
$$

At this point, we've reached the statement of the proposition: equation (9) gives a in terms of b_{1}, b_{2}, c_{1}; equations (10) and (20), (15) and (19), and (16) and (21) give d_{1}, e_{1}, and f_{1} in terms of $d_{3}, d_{4}, f_{3}, f_{4}$, respectively; equations (11) and (13) give condition (i); equations (17) and (18) give condition (ii); and equations (19)(21) gives conditions (iii)-(v). A calculation verifies that all remaining associativity relations are now satisfied.

Remark 3.5 Examining the coefficients in Proposition 3.3, it is evident that elements of

$$
\begin{aligned}
\operatorname{Hom}\left(\operatorname{Sym}^{2} \mathcal{L}(U), \mathcal{O}_{X}(U)\right) & \oplus \operatorname{Hom}\left(\mathcal{L}(U) \otimes_{\mathcal{O}_{x}(U)} \tilde{\mathcal{E}}(U), \tilde{\mathcal{E}}(U)\right) \\
& \oplus \operatorname{Hom}\left(\operatorname{Sym}^{2} \tilde{\mathcal{E}}(U), \mathcal{A}(U)\right)
\end{aligned}
$$

of the given form are in bijection with elements

$$
\begin{aligned}
\left(\phi_{U}, \psi_{U}, \xi_{U}\right) \in \operatorname{Hom}(\mathcal{L}(U) \otimes \mathcal{E}(U), \mathcal{E}(U)) & \oplus \operatorname{Hom}\left(\operatorname{Sym}^{2} \mathcal{E}(U), \mathcal{E}(U)\right) \\
& \oplus \operatorname{Hom}(\mathcal{E}(U) \otimes \tau \mathcal{E}(U), \mathcal{L}(U))
\end{aligned}
$$

of the form

$$
\begin{array}{lcl}
\phi_{U}\left(t \otimes v_{1}\right)=a v_{1}+b v_{2} & \psi_{U}\left(v_{1}^{2}\right)=d v_{1}+e v_{2} & \xi_{U}\left(v_{1} \otimes \tau v_{1}\right)=0 \\
\phi_{U}\left(t \otimes v_{2}\right)=c v_{1}-a v_{2} & \psi_{U}\left(v_{1} v_{2}\right)=-g v_{1}-d v_{2} & \xi_{U}\left(v_{1} \otimes \tau v_{2}\right)=h t \\
& \psi_{U}\left(v_{2}^{2}\right)=f v_{1}+g v_{2} & \xi_{U}\left(v_{2} \otimes \tau v_{1}\right)=-h t \\
& & \xi_{U}\left(v_{2} \otimes \tau v_{2}\right)=0 .
\end{array}
$$

for $a, b, c, d, e, f, g, h \in \mathcal{O}_{X}(U)$ satisfying the relations
(i) $-b g+2 a d+c e=0$;
(iii) $b h+3\left(d^{2}-e g\right)=0$;
(ii) $-b f+2 a g+c d=0$;
(iv) $2 a h+3(d g-e f)=0$;
(v) $c h+3\left(d f-g^{2}\right)=0$.

Remark 3.6 In Miranda's study of triple covers, morphisms $\psi \in \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{E}\right)$ locally of the form in Remark 3.5 are called triple cover homomorphisms [16, Definition 3.1]. They are shown to induce commutative, associative \mathcal{O}_{X}-algebra structures on $\mathcal{O}_{X} \oplus \mathcal{E}$, and hence define triple covers $\operatorname{Spec}_{X}\left(\mathcal{O}_{X} \oplus \mathcal{E}\right) \rightarrow X$ [16, Theorem 2.7]. This connection with triple covers is not unexpected. Indeed, if $\operatorname{Spec}_{X} \mathcal{A} \rightarrow X$ is an S_{3}-cover and we let $\mathcal{A}^{\tau} \subset \mathcal{A}$ denote the submodule of τ-invariant sections, then it is straightforward to verify (using Proposition 3.3 and [16, Theorem 2.7]) that $\operatorname{Spec}_{X} \mathcal{A}^{\tau} \rightarrow X$ is a triple cover. Similarly, $\operatorname{Spec}_{X} \mathcal{A}^{\sigma \tau} \rightarrow X$ and $\operatorname{Spec}_{X} \mathcal{A}^{\sigma^{2} \tau} \rightarrow X$ are triple covers (and all three of these triple covers are conjugate).

Remark 3.7 Proposition 3.3 gives a full description of affine S_{3}-covers, as well as a simple method for generating them, namely by choosing solutions to equations (i)(v), above. (For instance, $b_{1}=b_{2}=c_{1}=d_{3}=f_{4}=1, d_{4}=-1, f_{3}=3, h_{2}=-6$ and $b_{1}=b_{2}=c_{1}=d_{3}=f_{3}=1, d_{4}=-2, f_{4}=0, h_{2}=-3$ are both solutions.) The description of the multiplicative structure of $\mathcal{A}(U)$ defines an $\mathcal{O}_{X}(U)$ algebra isomorphism $\mathcal{A}(U) \cong \mathcal{O}_{X}(U)\left[1, t, v_{1}, v_{2}, \tau v_{1}, \tau v_{2}\right] / I$, where I is the ideal of relations generated by the fifteen equations of Proposition 3.3. One consequence of this explicit description is that we also have a description of the ramification locus of $\left.\pi\right|_{\pi^{-1}(U)}: \operatorname{Spec} \mathcal{A}(U) \rightarrow U$, as the zero locus of the ideal generated by all 5×5 minors of the matrix

$$
\left[\begin{array}{ccccc}
2 t & 0 & 0 & 0 & 0 \\
v_{1} & t-b_{1} & -b_{2} & 2 b_{1} & 2 b_{2} \\
v_{2} & -c_{1} & t+b_{1} & 2 c_{1} & -2 b_{1} \\
\tau v_{1} & -2 b_{1} & -2 b_{2} & t+b_{1} & b_{2} \\
\tau v_{2} & -2 c_{1} & 2 b_{1} & c_{1} & t-b_{1} \\
0 & 2 v_{1}-d_{3} & -d_{4} & 2 d_{3} & 2 d_{4} \\
0 & v_{2}+f_{4} & v_{1}+d_{3} & -2 f_{4} & -2 d_{3} \\
0 & -f_{3} & 2 v_{2}-f_{4} & 2 f_{3} & 2 f_{4} \\
0 & \tau v_{1}+d_{3} & d_{4} & v_{1}+d_{3} & d_{4} \\
-h_{2} & \tau v_{2}-f_{4} & -d_{3} & -f_{4} & v_{1}-d_{3} \\
h_{2} & -f_{4} & \tau v_{1}-d_{3} & v_{2}-f_{4} & -d_{3} \\
0 & f_{3} & \tau v_{2}+f_{4} & f_{3} & v_{2}+f_{4} \\
0 & 2 d_{3} & 2 d_{4} & 2 \tau v_{1}-d_{3} & -d_{4} \\
0 & -2 f_{4} & -2 d_{3} & \tau v_{2}+f_{4} & \tau v_{1}+d_{3} \\
0 & 2 f_{3} & 2 f_{4} & -f_{3} & 2 \tau v_{2}-f_{4}
\end{array}\right] .
$$

4 Global Analysis

We now use our local description of S_{3}-covers to obtain a global description. In light of Proposition 3.3 and Remark 3.5 we expect to characterize such covers by an R submodule of $\operatorname{Hom}_{X}(\mathcal{L} \otimes \mathcal{E}, \mathcal{E}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{E}\right) \oplus \operatorname{Hom}_{X}(\mathcal{E} \otimes \tau \mathcal{E}, \mathcal{L})$. We need a global restatement of Remark 3.5

Definition 4.1 Let $M_{1} \leq \operatorname{Hom}_{X}(\mathcal{L} \otimes \mathcal{E}, \mathcal{E}), M_{2} \leq \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{E}\right)$, and $M_{3} \leq$ $\operatorname{Hom}_{X}(\mathcal{E} \otimes \tau \mathcal{E}, \mathcal{L})$ denote the R-submodules consisting of elements locally of the forms

$$
\begin{array}{ccl}
\phi_{U}\left(t \otimes v_{1}\right)=a v_{1}+b v_{2} & \psi_{U}\left(v_{1}^{2}\right)=d v_{1}+e v_{2} & \xi_{U}\left(v_{1} \otimes \tau v_{1}\right)=0 \\
\phi_{U}\left(t \otimes v_{2}\right)=c v_{1}-a v_{2} & \psi_{U}\left(v_{1} v_{2}\right)=-g v_{1}-d v_{2} & \xi_{U}\left(v_{1} \otimes \tau v_{2}\right)=h t \\
& \psi_{U}\left(v_{2}^{2}\right)=f v_{1}+g v_{2} & \xi_{U}\left(v_{2} \otimes \tau v_{1}\right)=-h t \\
& & \xi_{U}\left(v_{2} \otimes \tau v_{2}\right)=0,
\end{array}
$$

respectively, for each affine open $U \subseteq X$ (over which $\mathcal{L}(U)$ and $\mathcal{E}(U)$ are free) with generators t for $\mathcal{L}(U)$ and v_{1}, v_{2} for $\mathcal{E}(U)$.

Lemma 4.2 M_{1}, M_{2}, and M_{3} are well defined, i.e., do not depend on the choices of local generators for \mathcal{L} and \mathcal{E}.

Proof Let $U \subseteq X$ be an open affine over which $\mathcal{L}(U)$ and $\mathcal{E}(U)$ are free, and suppose $(\phi, \psi, \xi) \in \operatorname{Hom}_{X}(\mathcal{L} \otimes \mathcal{E}, \mathcal{E}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{E}\right) \oplus \operatorname{Hom}_{X}(\mathcal{E} \otimes \tau \mathcal{E}, \mathcal{L})$ are locally of the above form with respect to generators t for $\mathcal{L}(U)$ and v_{1}, v_{2} for $\mathcal{E}(U)$. Let $s=\eta t$ be another generator for $\mathcal{L}(U)$, and $\left\{w_{1}, w_{2}\right\}$ be another basis for $\mathcal{E}(U)$, with change of basis matrix $C=\left[\begin{array}{cc}\lambda_{1} & \mu_{1} \\ \lambda_{2} & \mu_{2}\end{array}\right]$. A straightforward calculation reveals

$$
\begin{array}{lll}
\phi\left(s \otimes w_{1}\right)=a^{\prime} w_{1}+b^{\prime} w_{2} & \psi\left(w_{1}^{2}\right)=d^{\prime} w_{1}+e^{\prime} w_{2} & \xi\left(w_{1} \otimes \tau w_{1}\right)=0 \\
\phi\left(s \otimes w_{2}\right)=c^{\prime} w_{1}-a^{\prime} w_{2} & \psi\left(w_{1} w_{2}\right)=-g^{\prime} w_{1}-d^{\prime} w_{2} & \xi\left(w_{1} \otimes \tau w_{2}\right)=h^{\prime} s \\
& \psi\left(w_{2}^{2}\right)=f^{\prime} w_{1}+g^{\prime} w_{2} & \xi\left(w_{2} \otimes \tau w_{1}\right)=-h^{\prime} s \\
& & \xi\left(w_{2} \otimes \tau w_{2}\right)=0,
\end{array}
$$

where

$$
\begin{aligned}
a^{\prime} & =\frac{\eta}{\operatorname{det}(C)}\left(-\lambda_{1} \lambda_{2} b+\lambda_{1} \mu_{2} a+\lambda_{2} \mu_{1} a+\mu_{1} \mu_{2} c\right) \\
b^{\prime} & =\frac{\eta}{\operatorname{det}(C)}\left(\lambda_{1}^{2} b-2 \lambda_{1} \mu_{1} a-\mu_{1}^{2} c\right) \\
c^{\prime} & =\frac{\eta}{\operatorname{det}(C)}\left(-\lambda_{2}^{2} b+2 \lambda_{2} \mu_{2} a+\mu_{2}^{2} c\right) \\
d^{\prime} & =\frac{1}{\operatorname{det}(C)}\left(-\lambda_{1}^{2} \lambda_{2} e+\lambda_{1}^{2} \mu_{2} d+2 \lambda_{1} \lambda_{2} \mu_{1} d-2 \lambda_{1} \mu_{1} \mu_{2} g-\lambda_{2} \mu_{1}^{2} g+\mu_{1}^{2} \mu_{2} f\right) \\
e^{\prime} & =\frac{1}{\operatorname{det}(C)}\left(\lambda_{1}^{3} e-3 \lambda_{1}^{2} \mu_{1} d+3 \lambda_{1} \mu_{1}^{2} g-\mu_{1}^{3} f\right) \\
f^{\prime} & =\frac{1}{\operatorname{det}(C)}\left(-\lambda_{2}^{3} e+3 \lambda_{2}^{2} \mu_{2} d-3 \lambda_{2} \mu_{2}^{2} g+\mu_{2}^{3} f\right) \\
g^{\prime} & =\frac{1}{\operatorname{det}(C)}\left(\lambda_{1} \lambda_{2}^{2} e-2 \lambda_{1} \lambda_{2} \mu_{2} d+\lambda_{1} \mu_{2}^{2} g-\lambda_{2}^{2} \mu_{1} d+2 \lambda_{2} \mu_{1} \mu_{2} g-\mu_{1} \mu_{2}^{2} f\right) \\
h^{\prime} & =\frac{\operatorname{det}(C)}{\eta} h .
\end{aligned}
$$

The following lemma gives intrinsic descriptions of the R-modules M_{1}, M_{2}, and M_{3}.

Lemma 4.3 There exist R-module isomorphisms
(i) $\mathbf{G}_{1}: \operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \underset{\rightarrow}{\sim} M_{1}$,
(ii) $\mathbf{G}_{2}: \operatorname{Hom}_{X}\left(\operatorname{Sym}^{3} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \underset{\rightarrow}{\sim} M_{2}$,
(iii) $\mathbf{G}_{3}: \operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E}, \mathcal{L}\right) \xrightarrow{\rightarrow} M_{3}$.

Proof The proof of (ii) is detailed in [16, Proposition 3.3]. The proofs of (i) and (iii) are similar and are given here. The method of proof will be used repeatedly. We begin by proving (iii).

Define $\mathbf{G}_{3}: \operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E}, \mathcal{L}\right) \rightarrow \operatorname{Hom}_{X}(\mathcal{E} \otimes \tau \mathcal{E}, \mathcal{L})$ by precomposing elements of $\operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E}, \mathcal{L}\right)$ with the morphism $\mathcal{E} \otimes \tau \mathcal{E} \xrightarrow{1 \otimes \tau} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \bigwedge^{2} \mathcal{E}$. We claim \mathbf{G}_{3} maps $\operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E}, \mathcal{L}\right)$ isomorphically onto M_{3}. To see this, suppose $\Xi \in \operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E}, \mathcal{L}\right)$ is locally given by

$$
v_{1} \wedge v_{2} \longmapsto h t
$$

Then $\mathrm{G}_{3}(\Xi)$ is locally given by

$$
\begin{aligned}
& v_{1} \otimes \tau v_{1} \longmapsto v_{1} \otimes v_{1} \longmapsto v_{1} \wedge v_{1}=0 \longmapsto 0 \\
& v_{1} \otimes \tau v_{2} \longmapsto v_{1} \otimes v_{2} \longmapsto v_{1} \wedge v_{2} \longmapsto h t \\
& v_{2} \otimes \tau v_{1} \longmapsto v_{2} \otimes v_{1} \longmapsto v_{2} \wedge v_{1} \longmapsto-h t \\
& v_{2} \otimes \tau v_{2} \longmapsto v_{2} \otimes v_{2} \longmapsto v_{2} \wedge v_{2}=0 \longmapsto 0
\end{aligned}
$$

It is then clear that \mathbf{G}_{3} is an isomorphism onto M_{3}. Indeed, the inverse morphism can be described locally as follows. Suppose $\xi \in M_{3}$ is locally of the form of Definition 4.1. The morphism $\mathcal{E}(U) \otimes \mathcal{E}(U) \xrightarrow{1 \otimes \tau} \mathcal{E}(U) \otimes \mathcal{E}(U) \xrightarrow{\xi_{U}} \mathcal{L}(U)$ is then locally given by

$$
\begin{aligned}
& v_{1} \otimes v_{1} \longmapsto v_{1} \otimes \tau v_{1} \longmapsto 0 \\
& v_{1} \otimes v_{2} \longmapsto v_{1} \otimes \tau v_{2} \longmapsto h t \\
& v_{2} \otimes v_{1} \longmapsto v_{2} \otimes \tau v_{1} \longmapsto-h t \\
& v_{2} \otimes v_{2} \longmapsto v_{2} \otimes \tau v_{2} \longmapsto 0
\end{aligned}
$$

and hence factors through the canonical morphism $\mathcal{E}(U) \otimes \mathcal{E}(U) \rightarrow \bigwedge^{2} \mathcal{E}(U)$. The induced morphism is $\mathbf{G}_{3}^{-1}(\xi)_{U}: \bigwedge^{2} \mathcal{E}(U) \rightarrow \mathcal{L}(U)$. Letting U vary, this defines the sheaf morphism $\mathbf{G}_{3}^{-1}(\xi): \bigwedge^{2} \mathcal{E} \rightarrow \mathcal{L}$.

We now prove (i). Observe that we have isomorphisms

$$
\begin{aligned}
& \operatorname{Hom}_{R}\left(\operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right), \operatorname{Hom}_{X}(\mathcal{L} \otimes \mathcal{E}, \mathcal{E})\right) \\
& \quad \cong \operatorname{Hom}_{X}\left(\mathcal{L}^{*} \otimes\left(\operatorname{Sym}^{2} \mathcal{E}\right)^{*} \otimes \bigwedge^{2} \mathcal{E}, \mathcal{L}^{*} \otimes \mathcal{E}^{*} \otimes \mathcal{E}\right) \\
& \quad \cong \operatorname{Hom}_{X}\left(\mathcal{L} \otimes \bigwedge^{2} \mathcal{\varepsilon} \otimes \mathcal{E}, \mathcal{L} \otimes \mathcal{E} \otimes \operatorname{Sym}^{2} \mathcal{E}\right)
\end{aligned}
$$

An element of this final group is the morphism \mathbf{G}_{1} locally defined by

$$
l \otimes\left(e_{1} \wedge e_{2}\right) \otimes e_{3} \longmapsto l \otimes e_{1} \otimes e_{2} e_{3}-l \otimes e_{2} \otimes e_{1} e_{3}
$$

for $l \in \mathcal{L}(U), e_{i} \in \mathcal{E}(U)$. We claim \mathbf{G}_{1} (considered as an element of the first group) maps $\operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right)$ isomorphically onto M_{1}. To see this, suppose $\Phi \in$ $\operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right)$ is locally given by

$$
\begin{aligned}
& t \otimes v_{1}^{2} \longmapsto-b v_{1} \wedge v_{2} \\
& t \otimes v_{1} v_{2} \longmapsto a v_{1} \wedge v_{2} \\
& t \otimes v_{2}^{2} \longmapsto c v_{1} \wedge v_{2}
\end{aligned}
$$

Considered as a section of $\mathcal{L}^{*} \otimes\left(\operatorname{Sym}^{2} \mathcal{E}\right)^{*} \otimes \bigwedge^{2} \mathcal{E}, \Phi$ corresponds to the element locally given by

$$
\left(-b t^{*} \otimes\left(v_{1}^{2}\right)^{*}+a t^{*} \otimes\left(v_{1} v_{2}\right)^{*}+c t^{*} \otimes\left(v_{2}^{2}\right)^{*}\right) \otimes\left(v_{1} \wedge v_{2}\right)
$$

Now let us chase \mathbf{G}_{1} backwards through the chain of isomorphisms. Locally, \mathbf{G}_{1} is given by

$$
\begin{aligned}
& t \otimes\left(v_{1} \wedge v_{2}\right) \otimes v_{1} \longmapsto t \otimes v_{1} \otimes v_{1} v_{2}-t \otimes v_{2} \otimes v_{1}^{2} \\
& t \otimes\left(v_{1} \wedge v_{2}\right) \otimes v_{2} \longmapsto t \otimes v_{1} \otimes v_{2}^{2}-t \otimes v_{2} \otimes v_{1} v_{2}
\end{aligned}
$$

As an element of $\operatorname{Hom}_{X}\left(\mathcal{L}^{*} \otimes\left(\operatorname{Sym}^{2} \mathcal{E}\right)^{*} \otimes \bigwedge^{2} \mathcal{E}, \mathcal{L}^{*} \otimes \mathcal{E}^{*} \otimes \mathcal{E}\right)$, this corresponds to the morphism locally given by

$$
\begin{aligned}
& t^{*} \otimes\left(v_{1}^{2}\right)^{*} \otimes\left(v_{1} \wedge v_{2}\right) \longmapsto-t^{*} \otimes v_{1}^{*} \otimes v_{2} \\
& t^{*} \otimes\left(v_{1} v_{2}\right)^{*} \otimes\left(v_{1} \wedge v_{2}\right) \longmapsto t^{*} \otimes v_{1}^{*} \otimes v_{1}-t^{*} \otimes v_{2}^{*} \otimes v_{2} \\
& t^{*} \otimes\left(v_{2}^{2}\right)^{*} \otimes\left(v_{1} \wedge v_{2}\right) \longmapsto t^{*} \otimes v_{2}^{*} \otimes v_{1}
\end{aligned}
$$

Hence, the image of Φ under \mathbf{G}_{1} is the section locally given by

$$
b t^{*} \otimes v_{1}^{*} \otimes v_{2}+a\left(t^{*} \otimes v_{1}^{*} \otimes v_{1}-t^{*} \otimes v_{2}^{*} \otimes v_{2}\right)+c t^{*} \otimes v_{2}^{*} \otimes v_{1}
$$

which corresponds to the map locally given by

$$
\begin{aligned}
& t \otimes v_{1} \longmapsto a v_{1}+b v_{2} \\
& t \otimes v_{2} \longmapsto c v_{1}-a v_{2}
\end{aligned}
$$

It is now clear that \mathbf{G}_{1} does indeed map isomorphically onto M_{1}. Indeed, the inverse morphism can also be described locally, as follows. Suppose $\phi \in M_{1}$ is locally of the form of Definition 4.1. The morphism

$$
\mathcal{L}(U) \otimes \mathcal{E}(U) \otimes \mathcal{E}(U) \xrightarrow{\phi_{U} \otimes 1} \mathcal{E}(U) \otimes \mathcal{E}(U) \xrightarrow{\mathrm{can}} \bigwedge^{2} \mathcal{E}(U)
$$

maps

$$
\begin{aligned}
& t \otimes v_{1} \otimes v_{1} \longmapsto\left(a v_{1}+b v_{2}\right) \otimes v_{1} \longmapsto-b v_{1} \wedge v_{2} \\
& t \otimes v_{1} \otimes v_{2} \longmapsto\left(a v_{1}+b v_{2}\right) \otimes v_{2} \longmapsto a v_{1} \wedge v_{2} \\
& t \otimes v_{2} \otimes v_{1} \longmapsto\left(c v_{1}-a v_{2}\right) \otimes v_{1} \longmapsto a v_{1} \wedge v_{2} \\
& t \otimes v_{2} \otimes v_{2} \longmapsto\left(c v_{1}-a v_{2}\right) \otimes v_{2} \longmapsto c v_{1} \wedge v_{2}
\end{aligned}
$$

and hence factors through the canonical morphism $\mathcal{L}(U) \otimes \mathcal{E}(U) \otimes \mathcal{E}(U) \rightarrow \mathcal{L}(U) \otimes$ $\operatorname{Sym}^{2} \mathcal{E}(U)$. The induced morphism is $\mathbf{G}_{1}^{-1}(\phi)_{U}: \mathcal{L}(U) \otimes \operatorname{Sym}^{2} \mathcal{E}(U) \rightarrow \bigwedge^{2} \mathcal{E}(U)$. Letting U vary, this defines the sheaf morphism $\mathbf{G}_{1}^{-1}(\phi): \mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E} \rightarrow \bigwedge^{2} \mathcal{E}$.

Definition 4.4 Define Build $_{X}(\mathcal{A})$ to be

$$
\operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{3} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \oplus \operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E}, \mathcal{L}\right)
$$

Recall that, by Lemma 2.1, we are viewing $S_{3} \operatorname{Cov}_{X}(\mathcal{A})$ as an R-submodule of $\operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus \operatorname{Hom}_{X}\left(\mathcal{L} \otimes_{\mathcal{O}_{X}} \tilde{\varepsilon}, \tilde{\varepsilon}\right) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\mathcal{E}}, \mathcal{A}\right)($ where $\tilde{\mathcal{E}}=\mathcal{E} \oplus \tau \mathcal{E})$. Let \mathbf{P} denote the projection from this latter module to

$$
\operatorname{Hom}_{X}(\mathcal{L} \otimes \mathcal{E}, \mathcal{E}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{E}\right) \oplus \operatorname{Hom}_{X}(\mathcal{E} \otimes \tau \mathcal{E}, \mathcal{L})
$$

Using the isomorphisms of Lemma 4.3, we may regard $\operatorname{Build}_{X}(\mathcal{A})$ as an R-submodule of this latter R-module. Recalling that $S_{3} \operatorname{Cov}_{X}(\mathcal{A})^{0} \subset S_{3} \operatorname{Cov}_{X}(\mathcal{A})$ denotes the subset of those elements that define domains, we have the following corollary.

Corollary $4.5 \quad \mathbf{P}\left(S_{3} \operatorname{Cov}_{X}(\mathcal{A})^{0}\right) \subseteq \operatorname{Build}_{X}(\mathcal{A})$.
Proof This follows from Proposition 3.3, Remark 3.5, Lemma 4.2, and Lemma 4.3.

Intuitively, we can think of the projection map \mathbf{P} as extracting from an S_{3}-cover the "building data" necessary to construct the cover.

We next need a global restatement of conditions (i)-(v) of Remark 3.5 We first translate those conditions (using the isomorphisms of Lemma 4.3) into local conditions on the elements of $\operatorname{Build}_{X}(\mathcal{A})$. Note that if $(\Phi, \Psi, \Xi) \in \operatorname{Build}_{X}(\mathcal{A})$ are locally of the form

$$
\begin{array}{rlrl}
\Phi_{U}\left(t \otimes v_{1}^{2}\right) & =A\left(v_{1} \wedge v_{2}\right) & \Psi_{U}\left(v_{1}^{3}\right) & =D\left(v_{1} \wedge v_{2}\right) \quad \Xi_{U}\left(v_{1} \wedge v_{2}\right)=h t \\
\Phi_{U}\left(t \otimes v_{1} v_{2}\right) & =B\left(v_{1} \wedge v_{2}\right) & \Psi_{U}\left(v_{1}^{2} v_{2}\right) & =E\left(v_{1} \wedge v_{2}\right) \\
\Phi_{U}\left(t \otimes v_{2}^{2}\right) & =C\left(v_{1} \wedge v_{2}\right) & \Psi_{U}\left(v_{1} v_{2}^{2}\right) & =F\left(v_{1} \wedge v_{2}\right) \\
\Psi_{U}\left(v_{2}^{3}\right) & =G\left(v_{1} \wedge v_{2}\right),
\end{array}
$$

then the corresponding elements $(\psi, \phi, \xi) \in M_{1} \oplus M_{2} \oplus M_{3}$ are locally of the form

$$
\begin{array}{rlr}
\phi_{U}\left(t \otimes v_{1}\right) & =B v_{1}-A v_{2} \quad \psi_{U}\left(v_{1}^{2}\right)=E v_{1}-D v_{2} \quad \xi_{U}\left(v_{1} \otimes \tau v_{2}\right)=h \\
\phi_{U}\left(t \otimes v_{2}\right) & =C v_{1}-B v_{2} & \psi_{U}\left(v_{1} v_{2}\right)=F v_{1}-E v_{2} \\
\psi_{U}\left(v_{2}^{2}\right) & =G v_{1}-F v_{2} . &
\end{array}
$$

The correspondence with our earlier notation is thus $A=-b, B=a, C=c, D=-e$, $E=d, F=-g, G=f$. Using this dictionary, the five conditions of Remark 3.5 become the following five local conditions on $(\Phi, \Psi, \Xi) \in \operatorname{Build}_{X}(\mathcal{A})$:

$$
\begin{array}{ll}
\left(\text { (i) }{ }^{\prime} A F-2 B E+C D=0 ;\right. & \text { (iii) }^{\prime} A h+3\left(D F-E^{2}\right)=0 \\
(\text { ii })^{\prime} A G-2 B F+C E=0 ; & \text { (iv) }{ }^{\prime} 2 B h+3(D G-E F)=0 \\
& \text { (v) }{ }^{\prime} C h+3\left(E G-F^{2}\right)=0
\end{array}
$$

Lemma 4.6 There exists an R-module morphism

$$
\mathbf{C}_{1}: \operatorname{Build}_{X}(\mathcal{A}) \rightarrow \operatorname{Hom}_{X}\left(\mathcal{L} \otimes\left(\bigwedge^{2} \mathcal{E}\right)^{\otimes 2} \otimes \mathcal{E},\left(\bigwedge^{2} \mathcal{E}\right)^{\otimes 2}\right)
$$

whose kernel consists of precisely those elements that locally satisfy conditions (i)' and (ii)'.

Proof First, consider the morphism $\Theta_{1}:\left(\bigwedge^{2} \mathcal{E}\right)^{\otimes 2} \rightarrow\left(\operatorname{Sym}^{2} \mathcal{E}\right)^{\otimes 2}$ locally defined by

$$
\left(e_{1} \wedge e_{2}\right) \otimes\left(e_{3} \wedge e_{4}\right) \longmapsto e_{1} e_{3} \otimes e_{2} e_{4}-e_{1} e_{4} \otimes e_{2} e_{3}-e_{2} e_{3} \otimes e_{1} e_{4}+e_{2} e_{4} \otimes e_{1} e_{3}
$$

and the canonical morphism $\Theta_{2}: \operatorname{Sym}^{2} \mathcal{E} \otimes \mathcal{E} \rightarrow \operatorname{Sym}^{3} \mathcal{E}$. Given any pair $(\Phi, \Psi) \in$ $\operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{3} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right)$, we have an induced morphism

$$
\begin{aligned}
\mathcal{L} \otimes\left(\Lambda^{2} \mathcal{E}\right)^{\otimes 2} \otimes \mathcal{E} \xrightarrow{1 \otimes \Theta_{1} \otimes 1} & \mathcal{L} \otimes\left(S y m^{2} \mathcal{E}\right)^{\otimes 2} \otimes \mathcal{E} \\
& \xrightarrow{1 \otimes 1 \otimes \Theta_{2}} \mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E} \otimes \operatorname{Sym}^{3} \mathcal{E} \xrightarrow{\Phi \otimes \Psi}\left(\bigwedge^{2} \mathcal{E}\right)^{\otimes 2}
\end{aligned}
$$

Let $\mathbf{C}_{1}(\Phi, \Psi)$ denote this morphism. If (Φ, Ψ) are locally of the form described above, then this morphism is locally given by

$$
\begin{aligned}
t \otimes\left(v_{1} \wedge v_{2}\right) \otimes\left(v_{1} \wedge v_{2}\right) \otimes v_{1} & \longmapsto t \otimes\left(v_{1}^{2} \otimes v_{2}^{2}-2\left(v_{1} v_{2} \otimes v_{1} v_{2}\right)+v_{2}^{2} \otimes v_{1}^{2}\right) \otimes v_{1} \\
& \longmapsto t \otimes\left(v_{1}^{2} \otimes v_{1} v_{2}^{2}-2\left(v_{1} v_{2} \otimes v_{1}^{2} v_{2}\right)+v_{2}^{2} \otimes v_{1}^{3}\right) \\
& \longmapsto(A F-2 B E+C D)\left(v_{1} \wedge v_{2}\right)^{\otimes 2} \\
t \otimes\left(v_{1} \wedge v_{2}\right) \otimes\left(v_{1} \wedge v_{2}\right) \otimes v_{2} & \longmapsto t \otimes\left(v_{1}^{2} \otimes v_{2}^{2}-2\left(v_{1} v_{2} \otimes v_{1} v_{2}\right)+v_{2}^{2} \otimes v_{1}^{2}\right) \otimes v_{2} \\
& \longmapsto t \otimes\left(v_{1}^{2} \otimes v_{2}^{3}-2\left(v_{1} v_{2} \otimes v_{1} v_{2}^{2}\right)+v_{2}^{2} \otimes v_{1}^{2} v_{2}\right) \\
& \longmapsto(A G-2 B F+C E)\left(v_{1} \wedge v_{2}\right)^{\otimes 2}
\end{aligned}
$$

Thus, conditions (i) ${ }^{\prime}$ and (ii) ${ }^{\prime}$ together are equivalent to the morphism $\mathbf{C}_{1}(\Phi, \Psi)$ being the zero map. (Extend \mathbf{C}_{1} to all of $\operatorname{Build}_{X}(\mathcal{A})$ in the trivial way.)

Lemma 4.7 There exists an R-module morphism

$$
\mathrm{C}_{2}: \operatorname{Build}_{X}(\mathcal{A}) \rightarrow \operatorname{Hom}_{X}\left(\bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right), \bigwedge^{2} \mathcal{E}\right)
$$

whose kernel consists of precisely those elements satisfying conditions (iii)' $-(\mathrm{v})^{\prime}$.
Proof Define a morphism $\Theta: \bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right) \rightarrow \bigwedge^{2} \mathcal{E} \otimes \operatorname{Sym}^{2} \mathcal{E}$ locally by
$e_{1} e_{2} \wedge e_{3} e_{4} \longmapsto \frac{1}{2}\left(\left(e_{1} \wedge e_{2}\right) \otimes e_{2} e_{4}+\left(e_{1} \wedge e_{4}\right) \otimes e_{2} e_{3}+\left(e_{2} \wedge e_{3}\right) \otimes e_{1} e_{4}+\left(e_{2} \wedge e_{4}\right) \otimes e_{1} e_{3}\right)$.

With respect to our usual basis, this morphism is locally given by

$$
\begin{aligned}
v_{1}^{2} \wedge v_{1} v_{2} & \longmapsto\left(v_{1} \wedge v_{2}\right) \otimes v_{1}^{2} \\
v_{1}^{2} \wedge v_{2}^{2} & \longmapsto 2\left(v_{1} \wedge v_{2}\right) \otimes v_{1} v_{2} \\
v_{1} v_{2} \wedge v_{2}^{2} & \longmapsto\left(v_{1} \wedge v_{2}\right) \otimes v_{2}^{2} .
\end{aligned}
$$

The composition $\bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right) \xrightarrow{\Theta} \bigwedge^{2} \mathcal{E} \otimes \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{\Xi \otimes 1} \mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{\Phi} \bigwedge^{2} \mathcal{E}$ is then locally given by

$$
\begin{aligned}
v_{1}^{2} \wedge v_{1} v_{2} & \longmapsto A h\left(v_{1} \wedge v_{2}\right) \\
v_{1}^{2} \wedge v_{2}^{2} & \longmapsto 2 B h\left(v_{1} \wedge v_{2}\right) \\
v_{1} v_{2} \wedge v_{2}^{2} & \longmapsto C h\left(v_{1} \wedge v_{2}\right)
\end{aligned}
$$

Letting $\psi=\mathbf{G}_{2}(\Psi)$, we also have the map $\bigwedge^{2}(\psi)$, locally given by

$$
\begin{aligned}
v_{1}^{2} \wedge v_{1} v_{2} & \longmapsto\left(D F-E^{2}\right)\left(v_{1} \wedge v_{2}\right) \\
v_{1}^{2} \wedge v_{2}^{2} & \longmapsto(D G-E F)\left(v_{1} \wedge v_{2}\right) \\
v_{1} v_{2} \wedge v_{2}^{2} & \longmapsto\left(E G-F^{2}\right)\left(v_{1} \wedge v_{2}\right)
\end{aligned}
$$

So, define $\mathbf{C}_{2}(\Phi, \Psi, \Xi)=(\Phi \circ(\Xi \otimes 1) \circ \Theta)+3 \bigwedge^{2} \circ \mathbf{G}_{2}(\Psi)$. Then conditions (iii) ${ }^{\prime}-(\mathrm{v})^{\prime}$ are equivalent to the morphism $\mathbf{C}_{2}(\Phi, \Psi, \Xi)$ being the zero map.

Definition 4.8 Define
$\operatorname{Compat}_{X}(\mathcal{A})=\operatorname{Hom}_{X}\left(\mathcal{L} \otimes\left(\bigwedge^{2} \mathcal{E}\right)^{\otimes 2} \otimes \mathcal{E},\left(\bigwedge^{2} \mathcal{E}\right)^{\otimes 2}\right) \oplus \operatorname{Hom}_{X}\left(\bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right), \bigwedge^{2} \mathcal{E}\right)$.
Corollary 4.9 There exists an R-module morphism

$$
\text { C: } \operatorname{Build}_{X}(\mathcal{A}) \rightarrow \operatorname{Compat}_{X}(\mathcal{A})
$$

with $\mathbf{P}\left(S_{3} \operatorname{Cov}_{X}(\mathcal{A})^{0}\right) \subseteq \operatorname{ker} \mathbf{C}$.
Proof Take $\mathbf{C}=\mathbf{C}_{1} \oplus \mathbf{C}_{2}$, and apply Proposition 3.3, Remark 3.5, and Lemmas 4.6 and 4.7.

By construction, the morphism \mathbf{C} tests building data for the compatibility conditions necessary for the data to induce an S_{3}-cover.

Lastly, we construct from any building data the element of $\operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus$ $\operatorname{Hom}_{X}(\mathcal{L} \otimes \tilde{\mathcal{E}}, \tilde{\mathcal{E}}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\mathcal{E}}, \mathcal{A}\right)$ that defines the corresponding algebra structure.

Lemma 4.10 There exists an R-module morphism

$$
\mathbf{B}_{1}: \operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \rightarrow \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right)
$$

taking an element Φ locally of the form

$$
\begin{aligned}
\Phi_{U}\left(t \otimes v_{1}^{2}\right) & =A\left(v_{1} \wedge v_{2}\right) \\
\Phi_{U}\left(t \otimes v_{1} v_{2}\right) & =B\left(v_{1} \wedge v_{2}\right) \\
\Phi_{U}\left(t \otimes v_{2}^{2}\right) & =C\left(v_{1} \wedge v_{2}\right)
\end{aligned}
$$

to an element α locally of the form

$$
\alpha_{U}\left(t^{2}\right)=-3\left(B^{2}-A C\right)
$$

Proof Observe that we have isomorphisms

$$
\begin{aligned}
& \operatorname{Hom}_{R}\left(\operatorname{Hom}_{X}\left(\bigwedge^{2}(\mathcal{L} \otimes \mathcal{E}), \bigwedge^{2} \mathcal{E}\right), \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right)\right) \\
& \quad \cong \operatorname{Hom}_{X}\left(\left(\bigwedge^{2}(\mathcal{L} \otimes \mathcal{E})\right)^{*} \otimes \bigwedge^{2} \mathcal{E},\left(\operatorname{Sym}^{2} \mathcal{L}\right)^{*}\right) \\
& \quad \cong \operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E} \otimes \operatorname{Sym}^{2} \mathcal{L}, \bigwedge^{2}(\mathcal{L} \otimes \mathcal{E})\right)
\end{aligned}
$$

An element of this last group is the morphism $\tilde{\mathbf{B}}_{1}$ locally defined by

$$
\left(e_{1} \wedge e_{2}\right) \otimes l_{1} l_{2} \longmapsto \frac{3}{2}\left(\left(l_{1} \otimes e_{1}\right) \wedge\left(l_{2} \otimes e_{2}\right)-\left(l_{1} \otimes e_{2}\right) \wedge\left(l_{2} \otimes e_{1}\right)\right)
$$

In terms of our usual basis, this morphism is locally given by
$\left(v_{1} \wedge v_{2}\right) \otimes t^{2} \longmapsto \frac{3}{2}\left(\left(t \otimes v_{1}\right) \wedge\left(t \otimes v_{2}\right)-\left(t \otimes v_{2}\right) \wedge\left(t \otimes v_{1}\right)\right)=3\left(t \otimes v_{1}\right) \wedge\left(t \otimes v_{2}\right)$.
This morphism, considered as an element of

$$
\operatorname{Hom}_{X}\left(\left(\bigwedge^{2}(\mathcal{L} \otimes \mathcal{E})\right)^{*} \otimes \bigwedge^{2} \mathcal{E},\left(\operatorname{Sym}^{2} \mathcal{L}\right)^{*}\right)
$$

is locally given by

$$
\left(\left(t \otimes v_{1}\right) \wedge\left(t \otimes v_{2}\right)\right)^{*} \otimes\left(v_{1} \wedge v_{2}\right) \longmapsto 3\left(t^{2}\right)^{*}
$$

Letting $\psi=\mathbf{G}_{2}(\Psi)$, the morphism $\bigwedge^{2}(\phi)$, when considered as a section of $\left(\bigwedge^{2}(\mathcal{L} \otimes \mathcal{E})\right)^{*} \otimes \bigwedge^{2} \mathcal{E}$, is locally

$$
-\left(B^{2}-A C\right)\left(\left(t \otimes v_{1}\right) \wedge\left(t \otimes v_{2}\right)\right)^{*} \otimes\left(v_{1} \wedge v_{2}\right)
$$

Thus, $\tilde{\mathbf{B}}_{1}$ maps $\bigwedge^{2}(\phi)$ to the section locally given by

$$
-3\left(B^{2}-A C\right)\left(t^{2}\right)^{*}
$$

which corresponds to the map

$$
t^{2} \longmapsto-3\left(B^{2}-A C\right)
$$

The composition $\mathbf{B}_{1}=\tilde{\mathbf{B}}_{1} \circ \bigwedge^{2} \circ \mathbf{G}_{1}$ is therefore the desired morphism.

Lemma 4.11 There exists an R-module morphism

$$
\mathbf{B}_{2}: \operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \rightarrow \operatorname{Hom}_{X}(\mathcal{L} \otimes \tilde{\varepsilon}, \tilde{\varepsilon})
$$

taking an element Φ locally of the form

$$
\begin{aligned}
\Phi_{U}\left(t \otimes v_{1}^{2}\right) & =A\left(v_{1} \wedge v_{2}\right) \\
\Phi_{U}\left(t \otimes v_{1} v_{2}\right) & =B\left(v_{1} \wedge v_{2}\right) \\
\Phi_{U}\left(t \otimes v_{2}^{2}\right) & =C\left(v_{1} \wedge v_{2}\right)
\end{aligned}
$$

to an element β locally of the form

$$
\begin{aligned}
\beta_{U}\left(t \otimes v_{1}\right) & =B v_{1}-A v_{2}-2 B \tau v_{1}+2 A \tau v_{2} \\
\beta_{U}\left(t \otimes v_{2}\right) & =C v_{1}-B v_{2}-2 C \tau v_{1}+2 B \tau v_{2} \\
\beta_{U}\left(t \otimes \tau v_{1}\right) & =2 B v_{1}-2 A v_{2}-B \tau v_{1}+A \tau v_{2} \\
\beta_{U}\left(t \otimes \tau v_{2}\right) & =2 C v_{1}-2 B v_{2}-C \tau v_{1}+B \tau v_{2}
\end{aligned}
$$

Proof Observe that $\phi=\mathbf{G}_{1}(\Phi)$ induces a morphism $\mathcal{L} \otimes \mathcal{E} \xrightarrow{\phi} \mathcal{E} \xrightarrow{\tau} \tau \mathcal{E} \subset \tilde{\mathcal{E}}$, and hence two morphisms:

$$
\beta_{1}: \mathcal{L} \otimes \mathcal{E} \xrightarrow{(\phi,-2(\tau \circ \phi))} \mathcal{E} \oplus \tau \mathcal{E}=\tilde{\mathcal{E}}
$$

and

$$
\beta_{2}: \mathcal{L} \otimes \tau \mathcal{E} \xrightarrow{\tau \otimes \tau} \mathcal{L} \otimes \mathcal{E} \xrightarrow{(\phi,-2(\tau \circ \phi))} \mathcal{E} \oplus \tau \mathcal{E}=\tilde{\mathcal{E}} \xrightarrow{\tau} \tilde{\mathcal{E}}
$$

Let $\mathbf{B}_{2}(\Phi)=\left\langle\beta_{1}, \beta_{2}\right\rangle: \mathcal{L} \otimes \tilde{\mathcal{E}} \cong(\mathcal{L} \otimes \mathcal{E}) \oplus(\mathcal{L} \otimes \tau \mathcal{E}) \rightarrow \tilde{\mathcal{E}}$. In terms of our usual basis, this morphism is locally given by

$$
\begin{aligned}
& t \otimes v_{1} \longmapsto B v_{1}-A v_{2}-2 B \tau v_{1}+2 A \tau v_{2} \\
& t \otimes v_{2} \longmapsto C v_{1}-B v_{2}-2 C \tau v_{1}+2 B \tau v_{2} \\
& t \otimes \tau v_{1} \longmapsto 2 B v_{1}-2 A v_{2}-B \tau v_{1}+A \tau v_{2} \\
& t \otimes \tau v_{2} \longmapsto 2 C v_{1}-2 B v_{2}-C \tau v_{1}+B \tau v_{2}
\end{aligned}
$$

Lemma 4.12 There exists an R-module morphism

$$
\mathbf{B}_{3}: \operatorname{Hom}_{X}\left(\operatorname{Sym}^{3} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \oplus \operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E}, \mathcal{L}\right) \rightarrow \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\varepsilon}, \mathcal{A}\right)
$$

taking a pair (Ψ, Ξ) locally of the form

$$
\begin{aligned}
\Psi_{U}\left(v_{1}^{3}\right) & =D\left(v_{1} \wedge v_{2}\right) \\
\Psi_{U}\left(v_{1}^{2} v_{2}\right) & =E\left(v_{1} \wedge v_{2}\right) \\
\Psi_{U}\left(v_{1} v_{2}^{2}\right) & =F\left(v_{1} \wedge v_{2}\right) \\
\Psi_{U}\left(v_{2}^{3}\right) & =G\left(v_{1} \wedge v_{2}\right) \\
\Xi_{U}\left(v_{1} \wedge v_{2}\right) & =h t
\end{aligned}
$$

to an element γ locally of the form

$$
\begin{aligned}
\gamma_{U}\left(v_{1}^{2}\right) & =6\left(E^{2}-D F\right)+E v_{1}-D v_{2}-2 E \tau v_{1}+2 D \tau v_{2} \\
\gamma_{U}\left(v_{1} v_{2}\right) & =3(E F-D G)+F v_{1}-E v_{2}-2 F \tau v_{1}+2 E \tau v_{2} \\
\gamma_{U}\left(v_{2}^{2}\right) & =6\left(F^{2}-E G\right)+G v_{1}-F v_{2}-2 G \tau v_{1}+2 F \tau v_{2} \\
\gamma_{U}\left(v_{1} \cdot \tau v_{1}\right) & =3\left(E^{2}-D F\right)-E v_{1}+D v_{2}-E \tau v_{1}+D \tau v_{2} \\
\gamma_{U}\left(v_{1} \cdot \tau v_{2}\right) & =\frac{3}{2}(E F-D G)+h t-F v_{1}+E v_{2}-F \tau v_{1}+E \tau v_{2} \\
\gamma_{U}\left(v_{2} \cdot \tau v_{1}\right) & =\frac{3}{2}(E F-D G)-h t-F v_{1}+E v_{2}-F \tau v_{1}+E \tau v_{2} \\
\gamma_{U}\left(v_{2} \cdot \tau v_{2}\right) & =3\left(F^{2}-E G\right)-G v_{1}+F v_{2}-G \tau v_{1}+F \tau v_{2} \\
\gamma_{U}\left(\left(\tau v_{1}\right)^{2}\right) & =6\left(E^{2}-D F\right)-2 E v_{1}+2 D v_{2}+E \tau v_{1}-D \tau v_{2} \\
\gamma_{U}\left(\left(\tau v_{1}\right)\left(\tau v_{2}\right)\right) & =3(E F-D G)-2 F v_{1}+2 E v_{2}+F \tau v_{1}-E \tau v_{2} \\
\gamma_{U}\left(\left(\tau v_{2}\right)^{2}\right) & =6\left(F^{2}-E G\right)-2 G v_{1}+2 F v_{2}+G \tau v_{1}-F \tau v_{2} .
\end{aligned}
$$

Proof Observe that we have isomorphisms

$$
\begin{aligned}
& \operatorname{Hom}_{R}\left(\operatorname{Hom}_{X}\left(\bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right), \Lambda^{2} \mathcal{E}\right), \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{O}_{X}\right)\right) \\
& \quad \cong \operatorname{Hom}_{X}\left(\left(\bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right)\right)^{*} \otimes \Lambda^{2} \mathcal{E},\left(\operatorname{Sym}^{2} \mathcal{E}\right)^{*}\right) \\
& \quad \cong \operatorname{Hom}_{X}\left(\left(\bigwedge^{2} \mathcal{E}\right) \otimes \operatorname{Sym}^{2} \mathcal{E}, \Lambda^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right)\right)
\end{aligned}
$$

An element of this last group is the morphism $\tilde{\mathbf{B}}_{3,1}$ defined locally by

$$
\left(e_{1} \wedge e_{2}\right) \otimes e_{3} e_{4} \longmapsto-3\left(e_{1} e_{3} \wedge e_{2} e_{4}+e_{1} e_{4} \wedge e_{2} e_{3}\right)
$$

In terms of our usual basis, this morphism is locally given by

$$
\begin{aligned}
\left(v_{1} \wedge v_{2}\right) \otimes v_{1}^{2} \longmapsto-3\left(v_{1}^{2} \wedge v_{1} v_{2}+v_{1}^{2} \wedge v_{1} v_{2}\right) & =-6\left(v_{1}^{2} \wedge v_{1} v_{2}\right) \\
\left(v_{1} \wedge v_{2}\right) \otimes v_{1} v_{2} & \longmapsto-3\left(v_{1}^{2} \wedge v_{2}^{2}+v_{1} v_{2} \wedge v_{1} v_{2}\right)
\end{aligned}=-3\left(v_{1}^{2} \wedge v_{2}^{2}\right) .
$$

As an element of $\operatorname{Hom}_{X}\left(\left(\bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right)\right)^{*} \otimes \bigwedge^{2} \mathcal{E},\left(\operatorname{Sym}^{2} \mathcal{E}\right)^{*}\right)$, this corresponds locally to the map

$$
\begin{gathered}
\left(v_{1}^{2} \wedge v_{1} v_{2}\right)^{*} \otimes\left(v_{1} \wedge v_{2}\right) \longmapsto-6\left(v_{1}^{2}\right)^{*} \\
\left(v_{1}^{2} \wedge v_{2}^{2}\right)^{*} \otimes\left(v_{1} \wedge v_{2}\right) \longmapsto-3\left(v_{1} v_{2}\right)^{*} \\
\left(v_{1} v_{2} \wedge v_{2}^{2}\right)^{*} \otimes\left(v_{1} \wedge v_{2}\right) \longmapsto-6\left(v_{2}^{2}\right)^{*}
\end{gathered}
$$

Taking $\psi=\mathbf{G}_{2}(\Psi)$, the morphism $\bigwedge^{2}(\psi)$, as a section of $\left(\bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right)\right)^{*} \otimes \bigwedge^{2} \mathcal{E}$, is locally given by

$$
\begin{aligned}
\left(D F-E^{2}\right)\left(v_{1}^{2} \wedge v_{1} v_{2}\right)^{*} & \otimes\left(v_{1} \wedge v_{2}\right)+(D G-E F)\left(v_{1}^{2} \wedge v_{2}^{2}\right)^{*} \\
& \otimes\left(v_{1} \wedge v_{2}\right)+\left(E G-F^{2}\right)\left(v_{1} v_{2} \wedge v_{2}^{2}\right)^{*} \otimes\left(v_{1} \wedge v_{2}\right)
\end{aligned}
$$

Thus, $\tilde{\mathbf{B}}_{3,1}$ maps $\bigwedge^{2}(\psi)$ to the section locally given by

$$
6\left(E^{2}-D F\right)\left(v_{1}^{2}\right)^{*}+3(E F-D G)\left(v_{1} v_{2}\right)^{*}+6\left(F^{2}-E G\right)\left(v_{2}^{2}\right)^{*}
$$

which corresponds to the morphism $\tilde{\gamma}_{1}$ locally defined by

$$
\begin{aligned}
v_{1}^{2} & \longmapsto 6\left(E^{2}-D F\right) \\
v_{1} v_{2} & \longmapsto 3(E F-D G) \\
v_{2}^{2} & \longmapsto 6\left(F^{2}-E G\right) .
\end{aligned}
$$

This induces morphisms

$$
\begin{gathered}
\gamma_{1,1}^{\prime}: \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{\tilde{\gamma}_{1}} \mathcal{O}_{X} \\
\gamma_{1,2}^{\prime}: \mathcal{E} \otimes \tau \mathcal{E} \xrightarrow{1 \otimes \tau} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{\frac{1}{2} \tilde{\gamma}_{1}} \mathcal{O}_{X} \\
\gamma_{1,3}^{\prime}: \tau \mathcal{E} \otimes \mathcal{E} \xrightarrow{\tau \otimes 1} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{\frac{1}{2} \tilde{\gamma}_{1}} \mathcal{O}_{X} \\
\gamma_{1,4}^{\prime}: \tau \mathcal{E} \otimes \tau \mathcal{E} \xrightarrow{\tau \otimes \tau} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{\tilde{\gamma}_{1}} \mathcal{O}_{X},
\end{gathered}
$$

which together define a morphism

$$
\gamma_{1}^{\prime}: \tilde{\mathcal{E}} \otimes \tilde{\mathcal{E}} \cong(\mathcal{E} \otimes \mathcal{E}) \oplus(\mathcal{E} \otimes \tau \mathcal{E}) \oplus(\tau \mathcal{E} \otimes \mathcal{E}) \oplus(\tau \mathcal{E} \otimes \tau \mathcal{E}) \rightarrow \mathcal{O}_{X}
$$

By construction, this morphism factors through the canonical morphism $\tilde{\mathcal{E}} \otimes \tilde{\mathcal{E}} \rightarrow$ $\operatorname{Sym}^{2} \tilde{\mathcal{E}}$, and gives the first-coordinate morphism $\gamma_{1}: \operatorname{Sym}^{2} \tilde{\mathcal{E}} \rightarrow \mathcal{O}_{X}$. Let $\mathbf{B}_{3,1}(\Psi, \Xi)$ $=\gamma_{1}$.

Next, observe that $\xi=\mathbf{G}_{3}(\Xi)$ induces a morphism $\xi^{\prime}: \tau \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \mathcal{E} \otimes \tau \mathcal{E} \xrightarrow{\xi} \mathcal{L}$. Define $\gamma_{2}^{\prime}: \tilde{\mathcal{E}} \otimes \tilde{\mathcal{E}} \rightarrow \mathcal{L}$ by $\gamma_{2}^{\prime}=\left\langle 0, \xi, \xi^{\prime}, 0\right\rangle$. By construction, this morphism factors through the canonical morphism $\tilde{\mathcal{E}} \otimes \tilde{\mathcal{E}} \rightarrow \operatorname{Sym}^{2} \tilde{\mathcal{E}}$, and gives the second-coordinate morphism $\gamma_{2}: \operatorname{Sym}^{2} \tilde{\varepsilon} \rightarrow \mathcal{L}$. Let $\mathbf{B}_{3,2}(\Psi, \Xi)=\gamma_{2}$.

Lastly, observe that the morphism $\psi=\mathbf{G}_{2}(\Psi)$ induces morphisms

$$
\begin{gathered}
\gamma_{3,1}^{\prime}: \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{\psi-2(\tau \circ \psi)} \mathcal{E} \oplus \tau \mathcal{E} \\
\gamma_{3,2}^{\prime}: \mathcal{E} \otimes \tau \mathcal{E} \xrightarrow{1 \otimes \tau} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{-\psi-(\tau \circ \psi)} \mathcal{E} \oplus \tau \mathcal{E} \\
\gamma_{3,3}^{\prime}: \tau \mathcal{E} \otimes \mathcal{E} \xrightarrow{\tau \otimes 1} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{-\psi-(\tau \circ \psi)} \mathcal{E} \oplus \tau \mathcal{E} \\
\gamma_{3,4}^{\prime}: \tau \mathcal{E} \otimes \tau \mathcal{E} \xrightarrow{\tau \otimes \tau} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\text { can }} \operatorname{Sym}^{2} \mathcal{E} \xrightarrow{-2 \psi+(\tau \circ \psi)} \mathcal{E} \oplus \tau \mathcal{E} .
\end{gathered}
$$

These together define a morphism $\gamma_{3}^{\prime}: \tilde{\mathcal{E}} \otimes \tilde{\mathcal{E}} \rightarrow \tilde{\mathcal{E}}$ by $\gamma_{3}^{\prime}=\left\langle\gamma_{3,1}^{\prime}, \gamma_{3,2}^{\prime}, \gamma_{3,3}^{\prime}, \gamma_{3,4}^{\prime}\right\rangle$. By construction, this factors through the canonical morphism $\tilde{\mathcal{E}} \otimes \tilde{\mathcal{E}} \rightarrow \operatorname{Sym}^{2} \tilde{\mathcal{E}}$, and gives the third-coordinate morphism $\gamma_{3}: \operatorname{Sym}^{2} \tilde{\varepsilon} \rightarrow \mathcal{L}$. Let $\mathbf{B}_{3,3}(\Psi, \Xi)=\gamma_{3}$.

The desired morphism is then given by $\mathbf{B}_{3}=\mathbf{B}_{3,1} \oplus \mathbf{B}_{3,2} \oplus \mathbf{B}_{3,3}$.
Corollary 4.13 There is an R-module morphism
B: $\operatorname{Build}_{X}(\mathcal{A}) \rightarrow \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus \operatorname{Hom}_{X}(\mathcal{L} \otimes \tilde{\varepsilon}, \tilde{\varepsilon}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\varepsilon}, \mathcal{A}\right)$
with $\mathbf{B}(\operatorname{ker} \mathbf{C}) \leq S_{3} \operatorname{Cov}_{X}(\mathcal{A})$.
Proof Take $\mathbf{B}=\mathbf{B}_{1} \oplus \mathbf{B}_{2} \oplus \mathbf{B}_{3}$, and apply Proposition 3.3, Remark 3.5, Corollary 4.9, and Lemmas 4.10, 4.11, and 4.12.

4.14 Summary

We fixed an integral, Noetherian scheme X over a domain R in which 6 was invertible, together with locally free sheaves \mathcal{L} and \mathcal{E} of ranks one and two, respectively. We let S_{3} act on \mathcal{L} by the sign character and on $\tilde{\mathcal{E}}=\mathcal{E} \oplus \tau \mathcal{E}$ by its twodimensional representation. Letting $\mathcal{A}=\mathcal{O}_{X} \oplus \mathcal{L} \oplus \tilde{\mathcal{E}}$, our goal was to understand $S_{3} \operatorname{Cov}_{X}(\mathcal{A}) \leq \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{A}, \mathcal{A}\right)$, the R-submodule of elements defining commutative, associative $\mathcal{O}_{X}\left[S_{3}\right]$-algebra structures on \mathcal{A} (and hence inducing S_{3}-covers of the form $\operatorname{Spec}_{X} \mathcal{A} \rightarrow X$). After identifying $S_{3} \operatorname{Cov}_{X}(\mathcal{A})$ with an R-submodule of $\operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus \operatorname{Hom}_{X}\left(\mathcal{L} \otimes_{\mathcal{O}_{X}} \tilde{\varepsilon}, \tilde{\varepsilon}\right) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\varepsilon}, \mathcal{A}\right)$, a local analysis led us to define R-modules

$$
\begin{gathered}
\operatorname{Build}_{X}(\mathcal{A})=\operatorname{Hom}_{X}\left(\mathcal{L} \otimes \operatorname{Sym}^{2} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{3} \mathcal{E}, \bigwedge^{2} \mathcal{E}\right) \\
\oplus \operatorname{Hom}_{X}\left(\bigwedge^{2} \mathcal{E}, \mathcal{L}\right) \\
\operatorname{Compat}_{X}(\mathcal{A})=\operatorname{Hom}_{X}\left(\mathcal{L} \otimes\left(\bigwedge^{2} \mathcal{E}\right)^{\otimes 2} \otimes \mathcal{E},\left(\bigwedge^{2} \mathcal{E}\right)^{\otimes 2}\right) \\
\oplus \operatorname{Hom}_{X}\left(\bigwedge^{2}\left(\operatorname{Sym}^{2} \mathcal{E}\right), \Lambda^{2} \mathcal{E}\right)
\end{gathered}
$$

parameterizing the data required to build S_{3}-covers and the compatibility conditions on such data. After identifying $\operatorname{Build}_{X}(\mathcal{A})$ with an R-submodule of $\operatorname{Hom}_{X}(\mathcal{L} \otimes \mathcal{E}, \mathcal{E}) \oplus$ $\operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{E}\right) \oplus \operatorname{Hom}_{X}(\mathcal{E} \otimes \tau \mathcal{E}, \mathcal{L})$, we constructed R-module morphisms

$$
\begin{aligned}
& \text { P: } S_{3} \operatorname{Cov}_{X}(\mathcal{A}) \rightarrow \operatorname{Hom}_{X}(\mathcal{L} \otimes \mathcal{E}, \mathcal{E}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{E}, \mathcal{E}\right) \oplus \operatorname{Hom}_{X}(\mathcal{E} \otimes \tau \mathcal{E}, \mathcal{L}), \\
& \text { C: } \operatorname{Build}_{X}(\mathcal{A}) \rightarrow \operatorname{Compat}_{X}(\mathcal{A}) \\
& \text { B: } \operatorname{Build}_{X}(\mathcal{A}) \rightarrow \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \mathcal{L}, \mathcal{O}_{X}\right) \oplus \operatorname{Hom}_{X}(\mathcal{L} \otimes \tilde{\varepsilon}, \tilde{\varepsilon}) \oplus \operatorname{Hom}_{X}\left(\operatorname{Sym}^{2} \tilde{\mathcal{E}}, \mathcal{A}\right)
\end{aligned}
$$

such that $\mathbf{P}\left(S_{3} \operatorname{Cov}_{X}(\mathcal{A})^{0}\right) \subseteq \operatorname{ker} \mathbf{C}$ and $\mathbf{B}(\operatorname{ker} \mathbf{C}) \leq S_{3} \operatorname{Cov}_{X}(\mathcal{A})$, where $S_{3} \operatorname{Cov}_{X}(\mathcal{A})^{0}$ denoted the subset of elements defining algebras that were domains. In other words, \mathbf{P} extracted from those S_{3}-covers whose covering schemes were integral the building data of the covers, and such data lay in the kernel of \mathbf{C}; and conversely, given building data in the kernel of C, the morphism B built an S_{3}-cover (whose covering scheme might not be integral).

4.15 Closing Remarks

In analogy with the abelian case, it would be useful to know when building data uniquely determine a cover, as well as find a global description of the branch locus, the location and nature of singularities of the covering scheme, and the relationship between the (cohomological) invariants of the base scheme and those of the covering scheme.

Acknowledgments This work grew out of [7], after simplifying the local analysis and extending the analysis to the global situation. I am indebted to R. Vakil for his constant guidance and advice, both on the former project and in the present one, and to R. Pardini for bringing to light H. Tokunaga's related work on the subject. Finally, I thank the referee for many helpful suggestions.

References

[1] H. Abelson, Topologically distinct conjugate varieties with finite fundamental group. Topology 13(1974), 161-176. doi:10.1016/0040-9383(74)90006-8
[2] F. A. Bogomolov, Holomorphic tensors and vector bundles on projective varieties. Math. USSR-Izv. 13(1979), 499-555.
[3] M. Bolognesi and A. Vistoli, Stacks of trigonal curves. Preprint (Mar. 2009), arxiv:0903.0965
[4] F. Catanese, On the moduli space of surfaces of general type. J. Differential Geom. 19(1984), 483-515.
[5] , Connected components of moduli spaces. J. Differential Geom. 24(1986), 395-399.
[6] R. Easton, Surfaces violating Bogomolov-Miyaoka-Yau in positive characteristic. Proc. Amer. Math. Soc. 136(2008), 2271-2278. doi:10.1090/S0002-9939-08-09466-5
[7] R. Easton, S_{3}-covers of schemes. PhD thesis, Stanford University, 2007.
[8] R. Easton and R. Vakil, Absolute Galois acts faithfully on the components of the moduli space of surfaces: A Belyi-type theorem in higher dimension. Int. Math. Res. Not. 2007(2007). Article ID rnm080, 10 pages, doi:10.1093/imrn/rnm080.
[9] D. Eisenbud, Commutative algebra with a view towards algebraic geometry. Springer-Verlag, New York, 1995.
[10] D. Hahn and R. Miranda, Quadruple covers in algebraic geometry. J. Algebraic Geom. 8(1999), 1-30.
[11] R. Hartshorne, Algebraic geometry. Springer, 1977.
[12] F. Hirzebruch, Arrangements of lines and algebraic surfaces. In: Arithmetic and Geometry, Vol. II, Progr. Math. 36(1983), 113-140.
[13] N. Jacobson, Basic Algebra I. W. H. Freeman and Co., San Francisco, CA, 1974.
[14] W. E. Lang, Examples of surfaces of general type with vector fields. In: Arithmetic and Geometry, Vol. II, Progr. Math. 36(1983), 167-173.
[15] H. Matsumura, Commutative algebra. Second edition, Mathematics Lecture Note Series 56, Benjamin-Cummings Pub. Co., 1980.
[16] R. Miranda, Triple covers in algebraic geometry. Amer. J. Math. 107(1985), 1123-1158. doi:10.2307/2374349
[17] Y. Miyaoka, On the Chern numbers of surfaces of general type. Invent. Math. 42(1977), 225-237. doi:10.1007/BF01389789
[18] D. Mumford, Geometric invariant theory. Third edition, Springer-Verlag, Berlin, 1994.
[19] R. Pardini, Abelian covers of algebraic varieties. J. Reine Angew. Math. 417(1991), 191-213. doi:10.1515/crll.1991.417.191
[20] R. Pardini, Triple covers in positive characteristic. Ark. Mat. 27(1989), 319-341. doi:10.1007/BF02386379
[21] J. Rotman, Advanced Modern Algebra. Pearson Education, Inc., 2002.
[22] H. Tokunaga, On dihedral Galois coverings. Canad. J. Math. 46(1994), 1299-1317. doi:10.4153/CJM-1994-074-4
23] , Dihedral coverings of algebraic surfaces and their applications. Trans. Amer. Math. Soc. 352(2000), 4007-4017. doi:10.1090/S0002-9947-00-02524-1
[24] , Galois covers of S_{4} and A_{4} and their applications. Osaka J. Math. 39(2002), 621-645.
[25] , Triple coverings of algebraic surfaces according to the Cardano formula. J. Math. Kyoto Univ. 31(1991), 359-375.
[26] S.-T. Yau, The Calabi conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74(1977), 1798-1799. doi:10.1073/pnas.74.5.1798
[27] O. Zariski, On the purity of the branch locus of algebraic functions. Proc. Natl. Acad. Sci. USA 44(1958), 791-796. doi:10.1073/pnas.44.8.791

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
e-mail: easton@math.utah.edu

[^0]: Received by the editors October 12, 2009; revised February 10, 2010.
 Published electronically June 20, 2011.
 AMS subject classification: 14L30.
 Keywords: nonabelian groups, permutation group, group covers, schemes.

