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INVARIANT SUBGROUPS IN RINGS WITH INVOLUTION 

SUSAN MONTGOMERY 

Let R be a ring with involution*. In this paper, we study additive subgroups 
A of R which are invariant under all mappings of the form <j>x : a —> xax*. That 
is, xAx* C A, for all x £ R. Obvious examples of such subgroups A are ideals 
of R, the set of symmetric elements, and the set of skew-symmetric elements. 
We will prove that when R is *-prime, these examples are essentially the only 
ones. 

This result gives some insight into a recent theorem of I. N. Herstein [4]. He 
proved that if A is a subring of a semi-prime ring R, such that xAx* C A for 
all x £ R, then either A contains a non-zero ideal of R or A is contained in the 
center of R. In the *-prime case, his result is a consequence of ours. Thus it 
would seem that the additive structure of A plays a more important role than 
its multiplicative structure in considerations of this type. 

In work to appear, done independently, W. E. Baxter [2] has also generalized 
Herstein's result by assuming that A is merely a Jordan subring, rather than a 
subring. Specifically, he has proved that if R is a semi-prime ring which is 
2-torsion free, and A is a Jordan subring of R such that xAx* C A for all x £ R, 
then either A contains a non-zero ideal of R, or A consists of symmetric 
elements and contains all the symmetric elements in some non-zero ideal of R. 
Baxter's result, in the *-prime case, is also a consequence of ours; moreover, we 
prove an analogous result for the case when 2R = 0. 

We note that the xAx* C A condition has appeared in several other places. 
P. H. Lee used the notion of a symmetric subring in [6] to study the subring 
generated by the symmetric elements: a symmetric subring A of R satisfies 
xAx* Ç A, but in addition is generated by symmetric elements and contains 
all norms and traces. Also K. McCrimmon in [8] defines the kernel K{B) of an 
ideal B of R with B* Q B: 

K{B) = \b + b* + £ bj>t* + Z bjSjb*\b, bt, bs G B, an;y Sj = s,*f . 

K(B) is a Jordan ideal of the symmetric elements of R and satisfies xK(B)x* C 
K(B), for every x G R. Finally, our condition appears in the definition of a 
unitary ring (due to A. Bak). A unitary ring is a triple (R, a, A), where R is a 
ring with *, a is an element of the center Z of R, and A is an additive subgroup 
of R satisfying several conditions (which will be given in detail later), one of 

Received December 7, 1976 and in revised form, April 25, 1977 and August 16, 1977. This 
research was supported by NSF Grant MCS 76-07240. 

350 

https://doi.org/10.4153/CJM-1978-031-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-031-x


INVARIANT SUBGROUPS 351 

which being that xAx* Ç A, for all x G R. The notion of a unitary ring was 
used by H. Bass [1] in his exposition of unitary algebraic 7£-theory. In this 
paper, we will show that when R is *-simple, any additive subgroup A of R 
satisfying xAx* Ç A, for all x G R, is either an ideal of R or determines a 
scalar a G Z such that (i?, a, -4) is a unitary ring. 

We will say that an ideal I of Ris SL *-ideal if I* Q I. R is ^-simple if it con­
tains no proper *-ideals, and R is *-prime if the product of any two non-zero 
*-ideals is non-zero. We let S = {x G R\x* = x\ denote the symmetric ele­
ments, K — {x G R\x* = —x] denote the skew symmetric elements, and 
T = {x + x*\x G R} denote the traces in R. We let R' denote the ring obtained 
by adjoining a formal unit element to R. 

When R is prime, the central closure and extended centroid of R were 
defined by Martindale in [7] ; here we shall need the extension of these ideas to 
*-prime rings which was done by Rowen in [9]. The difference is that for *-prime 
rings, the ring of quotients Q is obtained from right i^-module homomorphisms 
of *-ideals into R, rather than ideals as in the prime case. Let C be the center 
of Q. We say that C is the extended centroid of R. This terminology differs from 
that of Rowen; for, since * induces an automorphism of C, one can consider the 
fixed ring C of * on C, and it is C which Rowen calls the extended centroid. 
However, in this work we shall need all of C. As in the prime case, RC is called 
the central closure of R in Q. We shall need the following result of Rowen 
[9, Theorem 1] : C is a field and RC is *-prime. 

Throughout, A will denote a non-zero additive subgroup of R satisfying 
xAx* C Ay for all x G R. An immediate consequence of this, obtained by 
linearizing on x} is that xay* + yax* G A, for all a G A and x, y G R. 

The first lemma does not require that R be *-prime. 

LEMMA 1. Let R be semi-prime, and assume that A does not contain a non-zero 
ideal of R. Then 

1) axb* = a*xb, all a, b G A, all x G Rf; 
2) for some a G A, a*a 9e 0; and 
3) for some a G A, a2 ^ 0. 

Proof. Say that axb* 9e a*xb, for some a, x, b, and let / = R(axb* — a*xb)R, 
a non-zero ideal of R. We claim that I CI A. For, say y, z G R. Then 

y (axb* — a*xb)z = yaxb*z + z*bx*ay — z*bx*ay* — ya*xbz 

= ya(xb*z) + (xb*z)*ay* — ((ya*x)bz + z*b(ya*x)*) G A 

Thus I Q A and 1) is proved. 
For 2), assume on the contrary that a*a = 0, for all a G A. Then, for 

x, y G R, we have 

xa2y — xa2y + y*a*ax* 

= xa(ay) + (ay)*ax* G A. 
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Thus I = Ra2R C A, a contradiction unless a2 = 0, all a G A Thus 2) will 
follow from 3). 

To prove 3), assume that a2 = 0, for all a G 4 . Then, by linearizing on a, we 
get ab + ba = 0, for a,b £ A. Choose x G i? and let & = xax* G A Thus 
axax* + xax*a = 0. Multiplying by a, axax*a = 0, all x G R. Linearizing on x, 
then multiplying on the right by xa, we obtain axayaxa = 0, all #, y G R. Since 
R is semi-prime, this yields a = 0. That is, 4̂ = (0), a contradiction. Thus 3) is 
proved. 

LEMMA 2. Let R be a *-prime ring, with b, c G R such that c + c* ^ 0 and 
frxc* = b*xc, all x G R. Then for some X G C, the extended centroid of R, 
b = X(b + b*). 

Proof. Consider the *-ideal I = R'(b + b*)Rf of R, and define X : I -> R as 
follows: 

x ( Z ) x^(6 + 6*)^^) = X) xJ>yt> iorXi,yieR'. 

We claim that X is well-defined. For, say that X) t x%{° + b*)yt = 0. Choose any 
r G i?, and multiply on the right by re. Thus, using the fact that b*(ytr)c = 
&(3><r)c*, 

0 = ( YJ xibyijrc+ ( V x^yArc 

= Z) xj?ytrc + X Xibytrc* 
i i 

= ( E *<&:V<)'(c + c*)f for all r G # . 

Since R is *-prime and c + c* 9e 0 is symmetric, it follows that £ , x{byi = 0; 
that is, X is well-defined. 

Now X G C since X is a bimodule homomorphism, and clearly \(b + 6*) = ft. 

LEMMA 3. Let R be *-prime, and assume that A does not contain a non-zero 
ideal of R. Then if c + c* ^ 0, for some c G A, there exists an invertible element 
X G C such that b = \(b + b*),for all b G A. 

Proof. By Lemma 1, axb* = a*xb for all a, b G A, and thus we may apply 
Lemma 2 to see that for each b G A, there exists X& G C such that 6 = X& (6 + 6*). 
We claim that \b is independent of b. 

From Lemma 1, choose a G A such that <z*a ^ 0. We will show that \b = Xa, 
for all b G A. Now 

\&(6 + b*)xa* = 6xa* = 6*xa = b*x\a(a + a*), 

and thus 

\b(bxa* + fr*xa*) = Xa(6*xa + b*xa*). 
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Using b*xa = bxa*, this becomes (X6 — \a)(bxa* + b*xa*) = 0, or 
(b + b*)x(\b - Xa)a* = 0, for all x G R (and so for all x G RC). Now if 
b 9e 0, b + b* 9e 0 also since b = \b(b + 6*), and thus since RC is *-prime and 
b + b* is symmetric, (X& — Xa)a* = 0. It then follows that (X6 — \a)RCa*a = 0, 
and so since a*a ^ 0 we have X6 — Xa = 0. That is, X6 = Xa = X. 

We now claim that X is invertible. First, XX* ^ 0. For if XX* = 0, then 
\*a = X*X(a + a*) = 0. But then a*a = X*(a* + a)a = (a* + a)\*a = 0, a 
contradiction. But XX* G C, which is a field, and so XX* is invertible. Thus X is 
also invertible. 

Now let R be any *-prime ring, / a subset of R, and X an element of C, the 
extended centroid of R. The following definition is inspired by [1, p. 75]. 

Definition. SX(I) = {x G I\x = Xx*} and S\(I) = {x + Xx*|x G / } . 

We can now prove our main theorem. 

THEOREM. Let R be a * -prime ring, and A a non-zero additive subgroup of R 
such that xAx* C A, for all x G R. Assume that A does not contain a non-zero 
ideal of R, and let I — RAR. Then I C\ I* 9e (0) and there exists an invertible 
X G C, the extended centroid of R, such that 

SHR) ^A 2 5x(/). 

In particular, A satisfies one of the following; 
i) K DA D {x - x*\x G 1} 

ii) SDAD{x + x*|x £ 1} = Tf 

iii) S D I3A D T0Ij for some 0 G C with 0* ^ ± 0. 

Proof. If c + c* = 0 for all c G A, then clearly 4̂ C S \ where X = — l.Thus, 
assume c + c* 9e 0, for c f i . By Lemma 3, there exists a G C such that 
b = a(6 + 6*), for all & 6 A Thus & = a ( l - a)"1*** = (a"1 - l)"1^*, and so 
A C 5X by letting X = (or1 - l ) - 1 . 

The ideal / is spanned by elements of the form x = yaz, where a G A. Now 
x + Xx* = yaz + \(z*a*y*) = yaz + z*ay* G -4. Thus x + Xx* G ^4, for all 
x £ I, and Sx (/) C 4 . 

Cases i) and ii) are simply the cases when X = — 1 or X = + 1 . Case iii) 
follows by using 0 = a -1 , where b = a (b + b*) for all b G ̂ 4 as above. f3* 9^ ± 0, 
for if 0* = 0 we have X = 1, and if 0* = —fi we have X = — 1. 

It remains to check that I C\ I* ?£ (0). Let B be the additive subgroup 
generated by all xax*, x (z R, a £ A. Then B satisfies the same hypotheses as A, 
and since B Ç. A, B does not contain an ideal of R. Thus by Lemma 1, there 
exists b G B with b*b 9* 0. Clearly b G I; thus I*I 9* (0), and so I H /* 5* (0). 

When 7? is simple, the theorem takes a particularly nice form, and so we state 
it separately. Recall that for a simple ring, the centroid and the extended 
centroid coincide. 
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COROLLARY 1. Let R be a simple ring with * of characteristic not 2, and let A be 
a non-zero additive subgroup of R such that xAx* C A. Then A = R, A=S, 
A = K, or A = aS, for some a in the centroid of R. 

Proof. Since \ Ç C, the centroid of R, we have K = {x — x*\x £ R] and 
S = T. Since R is simple, I = R = pi. Thus, from the Theorem, case i) gives 
A = K, case ii) gives A = S, and case iii) gives S = f3A. Let a = /3_1, and the 
corollary is proved. 

The next corollary concerns unitary rings, which were mentioned in the 
introduction. Using I = R and X = —a, we have that S~a(R) = {x Ç R\x = 
—ax*} and S-a(R) = {x — ax*|x £ R}. We can now give the définition of a 
unitary ring [1, p. 75]: 

Definition. A unitary ring is a triple (7£, a, A), where R is a ring with involu­
tion, a G Z, the center of R, such that aa* = 1, and A is an additive subgroup 
of R satisfying S~a(R) 3 i 2 £_«(£) and x,4x* Ç 4 , for all x e R. 

We note that when R is *-simple with a non-trivial center Z, then Z = C, the 
(extended) centroid. The next corollary shows that for *-simple rings, much of 
the definition of a unitary ring is superfluous. 

COROLLARY 2. Let Rbe a *-simple ring with 1, and let A be an additive subgroup 
of R such that xAx* Ç A, for alt x £ R. Then either A is an ideal of R, or there 
exists a Ç Z such that (R} a, A) is a unitary ring. 

Proof. First assume that A contains an ideal of R. If R is simple, then A = R 
and we are done. Otherwise, R = Q 0 Q°, where Q is a simple ring, Q° the 
opposite ring, and * interchanges the two components. In this case, Q and Q° 
are the only proper ideals. Say that A 2 Q but i ^ Ç. Since (1,0) £ i?, it is 
easy to see that i H Ç V (0). Now, using x = (xi, x2) G 7£, x^4x* C 4̂ im­
plies that x2(,4 H Q°)xi Ç A P> Ç0. That is, A Pi <2° is an ideal of Ç0, so must 
equal Q°. Then 4̂ = Q ® Q° = R, and we are done. 

We may therefore assume that A does not contain a non-zero ideal. By the 
theorem, there exists X Ç Z such that S*(R) ~^_ A 3 5X(I). Since 7 H 7* ^ (0) 
and i? is *-simple, I C\ I* = R = I. Now let a = — X. Since x = Xx* = X(X*x) 
for all x Ç ^4, and since X is invertible, XX* = 1. It follows that «a* = 1, and the 
result is proved. 

We now turn to the situation when A is also a Jordan subring of R. That is, in 
addition to being an additive subgroup, A is closed under the two (quadratic) 
operations a2 and aba, for a, b £ A. We actually do not need the full assumption 
that A is a Jordan subring, but only that A is closed under squares. For any 
subset U Q R, we let Nv = {xx*|x Ç U], the norms of U. As in the statement 
of the theorem, Tu denotes the traces of U. When 2R ^ (0), as was mentioned 
at the beginning of the paper, the following result is due to Baxter [2]. 
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COROLLARY 3. Let R be *-prime, and lei A be an additive subgroup of R such 
that a2 G A, for all a G A, and such that xAx* C A, for all x G R. Then either A 
contains a non-zero ideal of R, or for some non-zero *-ideal I, 

SDA D NTVJ Tj. 

In particular, when 2R p^ (0), A contains the symmetric elements in some non­
zero *-ideal. 

Proof. If A does not contain a non-zero ideal of R, then by our main theorem 
A C SX(R), for some invertible X G C. Choose any a G A. Then a = \a*, and 
since a2 G A, a2 = \(a*)2. Subst i tut ing, X2(o*)2 = X(a*)2. Now by Lemma 1, 
pa r t 3), a2 ^ 0 for some a £ A. Thus (a*)2 ^ 0, and since X is invertible it 
follows tha t X = 1. This gives us case ii) ; S D A D TJ} where J = RAR. 

Now if 2R 9e (0), then R is 2-torsion free since R is *-prime. Thus 2 J 9e (0). 
Clearly 2J is a *-ideal and it is trivial t ha t Tj D S C\ (2J) D N2J U T2J. 

We may therefore assume tha t 2R = (0). We first claim tha t NÂ Q A, where 
Â denotes the subring generated by A. For, say tha t a and b are monomials in 
Â, and write a = a\a2 • • • an, b = b\b2 • • • bm, where au b{ G A. Then 
aa* = (<2ia2 • • • an-i)an

2(aia2 • • • a n - i )* € A since an
2 G -4, and ab* + fra* = 

(ai#2 • • • an-i)anb* + ban(aia2 • • • &w_i)* G ^4. Thus if x G ^4, write x = ]£<&*, 
where each &t- is a monomial in Â Then xx* = J^ibfi* + J^i<jbib* + 
&,-&<* G ,4. T h u s A ^ Ç A 

If Tj is not commutat ive , then the subring generated by Tj will contain the 
non-zero ideal I = R[Tj, Tj]R by [5, Theorem 2.1.2, p. 57]. I is clearly a 
*-ideal and I CZ J- Since / Ç Tj Ç Â NT Ç^ A by the previous paragraph. 
Also r 7 Ç Tj- Ç 4̂ ; thus i 2 iV7 U T7 and we would be done. We may there­
fore assume tha t Tj is commutat ive . In this situation, we will show tha t 
A C\ Z ?± (0), where Z is the center of R. 

If R is not prime, then for some non-zero prime ideal P of R, P Pi P* = (0). 
Now J £ P, since 7* Ç 7, and thus in R = R/P, the image J of J is non-zero. 
Also P * = P * + P / P 5* (0); thus J H P * ^ (0) since P is prime. Choose 
x G / H P* . Then x* G P , and so x = x + x* (mod P ) . But x + x* G P / , and 
s o J H P * Ç Tj, which is commutat ive . A prime ring containing a non-zero 
commutat ive ideal is commuta t ive ; thus R is commutat ive . Similarly R/P* is 
commutat ive , and it follows tha t R is commutat ive . Certainly in this case 

A r\z * (o). 
We may now assume tha t R is prime. Now since Tj is commutat ive , by 

Amitsur 's Theorem [5, Theorem 5.1.2] / satisfies the s tandard identi ty of 
degree 4. Moreover, R must satisfy the same identi ty. Thus Z ^ 0, and the 
localization of R a t Z is a four-dimensional simple algebra over its center F, 
which is the quotient field of Z [5, Theorems 1.3.4 and 1.4.3]. 

If * is of the second kind on Z, choose a G Z with a ^ a*. Now for any 
s £ S C) J, as -\- (as)* = (a + a*)s G Tj C A. Thus all symmetric elements 
in the ideal (a + a*) J commute. I t follows by [5, Theorem 2.1.5] tha t either 
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(a + a*)5 C\ J C Z or that R contains a commutative ideal, in which case R 
is commutat ive . In either case, A (~\ Z 7^ (0). 

We may therefore assume tha t * fixes Z, and thus also F. Let B be the locali­
zation of A a t Z ; B C (?. If B C\ F ^ (0), then i H Z ^ ( O ) ; moreover J5 
satisfies xi?x* C £ . Now let .F denote the algebraic closure of F, and consider 
B (x)F F Ç Q (x)F F. Using the linearizations of a2 G 4̂ and x^4x* C A, we see 
t ha t 5 (x)F F = 51 also satisfies x^ ix* Ç i ^ for all # g Q (x)F ^ = Qi and tha t 
i3i is closed under squares. In addit ion, since the center of Qi is Z(Qi) = F ®F F, 
Bx C\ Z(Qi) j* (0) implies B C\ F 5* (0), and we would be done. We may 
therefore wx>rk in Qi- Since F is algebraically closed, Qi == M2(F), the 2 X 2 
matrices over F. Since * is of the first kind, * mus t either be the symplectic 
involution or the ordinary transpose. If * is symplectic, TQl Ç Z(Qi), and if * is 
transpose and x Ç TQl, then x2 Ç Z(Qi). Since B\ Z) TQl, in either case 
Bi C\ Z(Qi) 9e (0). We have proved tha t whenever Tj is commuta t ive , 
AC\Z^ (0). 

The result will now follow. For, choose a £ A C\ Z, a ^ 0. Since A Q S, 
a £ S r^\ Z and so a2 9e 0. Let I = Ra. Then for any x Ç / , write x = ra. Then 
xx* = ra(ra)* = ra2r* Ç A. Thus , Nr Q A. T o finish the theorem, use the 
ideal I\ — I C\ J. Ii is a *-ideal, as both / and / are, and I\ 9^ (0) since R is 
*-prime. Then Nlx U Tlx Ç A. 

We note tha t when 2R = (0), one could not hope to prove tha t A contained 
all symmetr ic elements in some ideal. For, if R = M2(F), where F is a field of 
characterist ic 2 and R has the symplectic involution, let A = F • 1, the scalars. 
Then N U T ç A, xAx* Q A, bu t S £ A. 

As our final corollary, we obtain (in the *-prime case) the theorem of Herstein 
[4] discussed earlier. 

COROLLARY 4. Let R be a *-prime ring, and let A be a subring of R such that 
xAx* Ç A, for all x (E R. Then either A contains a non-zero ideal of R, or A Ç Z, 
the center of R. 

Proof. By Corollary 3, if A does not contain a non-zero ideal of R, then 
S 3 A 3 Tj. Since A is a subring, A mus t then be commuta t ive (for 
ab = (ab)* = b*a* = ba, for all a, b Ç ^4). Consequent ly Tr is commuta t ive . 

If 2R 9+ (0), then 5*2/ commutes , so by [5, Theorem 2.1.5], either S21 C Z or 
R contains a commuta t ive *-ideal. I t follows tha t either 5 C Z or R is commu­
ta t ive ; in either case A C Z. Also if R is not pr ime, the same argument as in 
Corollary 3 shows tha t R is commuta t ive , so A C Z. W e may therefore assume 
tha t R is prime and 2R = (0). 

As in Corollary 3, since Tr is commuta t ive , we mus t have Z 9^ (0) and the 
localization Q of R a t Z is a simple 4-dimensional algebra. If * is of the second 
kind, it again follows t ha t either 5 C Z or R is commuta t ive (using Theorem 
2.1.5 of [5]) and so again A C Z. Continuing the a rgument in Corollary 3, we 
may reduce to the case of a simple ring Q, four-dimensional over its center F, 
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an algebraically closed field. T h a t is, Q ~ M2(F). We now finish by using 
Herstein 's own argument in this case: by a direct matrix computat ion, he 
proves tha t * can not be the transpose, and tha t in the symplectic case the 
commuta t iv i ty of A forces A C Z [5, p. 226]. The result is proved. 

We give an example to show tha t case iii) of the theorem can actual ly occur, 
and with a (3 £ C such tha t /3R $£ R. Let R be the set of countable by count­
able matrices, with entries in the complex numbers C, of the following form: 

a 

L 0 ' ' • • ] 
where M is an n X n matr ix with entries in C, for any n, and a £ R, the reals. 
Then R is a prime ring, and has an involution * given by the usual Hermit ian 
adjoint (transpose conjugate). Note the the extended centroid C of R is iso­
morphic to C. Let / be the ideal of all finite rank matrices in R. Now choose 
peC such tha t /5 ^ db/3 (for example, 0 = 1 + i), and let A = / ^ ( S n I). 
Then xAx* C A, A H 5 = (0) = A H K, and &A = S n I. However, /3R g R. 
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