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Cavitation inception in the turbulent shear layer developing behind a backward-facing step
occurs at multiple points along quasi-streamwise vortices (QSVs), at a rate that increases
with the Reynolds number (Re). This study investigates the evolution of the unsteady
pressure field and the distribution of nuclei within and around the QSVs. The time-resolved
volumetric velocity in the non-cavitating flow is measured using tomographic particle
tracking, and the pressure is determined by spatial integration of the material acceleration.
Analysis in Eulerian and Lagrangian reference frames reveals that the pressure is lower,
and its minima last longer within the QSVs compared with the surrounding flow. The
intermittent low pressure regions, whose sizes and shapes are consistent with those of the
cavities, are likely to be preceded by axial vortex stretching and followed by contraction.
Such phenomena have been observed before in simulations of stretched vortex elements.
For the same axial straining, the pressure minima last longer with increasing Re, a trend
elucidated in terms of viscous diffusion of the stretched vortex core. The impact of nuclei
availability is studied under ‘natural’ and controlled seeding. Owing to differences in the
saturation level of non-condensable gas, the microbubble concentration in the shear layer
decreases with increasing Re, in contrast to the rate of cavitation events. Minor differences
in entrainment rate into the shear layer also do not explain the substantial Re effects on
cavitation inception. Hence, the Re scaling of inception appears to be dominated by trends
of the pressure field.
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1. Introduction

The term cavitation refers to the rapid phase change of liquid when the pressure is
decreased below a critical level. It has been of interest in great part because of the noise
that it generates as well as the destructive effect that it has on the performance and life
of turbomachines and hydraulic structures (Arndt 1981; Brennen 2014). Hydrodynamic
cavitation can appear as attached cavitation on curved surfaces (Arakeri & Acosta 1973;
De Chizelle, Ceccio & Brennen 1995) or in the core vortices within e.g. jets, separated
flows and wakes (Arndt 2002). Cavitation is often parameterized using the cavitation
index, σ = 2(P − Pv)/ρU2, where P is a reference pressure, Pv the vapor pressure of
water, ρ the water density and U a reference velocity. The index corresponding to the
pressure at cavitation inception is referred to as σ i. Prediction of cavitation inception in
turbulent flows has remained a challenge since the process involves interactions of the
unsteady pressure fields with nucleation sites, both of which are stochastic in nature.
Hence, while there have been many attempts to develop semi-empirical relations for
cavitation inception in vortices, e.g. by McCormick (1962) for tip vortices, subsequent
studies have shown substantial differences from measured data (Arndt & Keller 1992;
Shen, Gowing & Jessup 2009). In general, the cavitation inception index in turbulent
flows varies with the geometry involved, Reynolds numbers, turbulence level, dissolved
gas content and free-stream nuclei distribution. In some cases, σ i is sensitive to subtle
changes to the flow structure. For example, in the near field of jets σ i generally increases
with scale (Ooi 1985; Gopalan, Katz & Knio 1999), but tripping of the boundary
layer upstream in the nozzle lowers σ i significantly as the preferred sites of cavitation
inception changes from secondary vortices to the primary vortex rings. In shear layers,
compilation of data from several measurements shows that the cavitation inception index
increases with Reynolds numbers (Katz & O’Hern 1986; O’Hern 1990). The reasons for
this trend have not been explained, and are in contrast with scaling of flow structures
associated with Kelvin–Helmholtz instabilities (Brown & Roshko 2012). For tip vortices,
the observed Reynolds number effects on σ i appear to become more pronounced with
decreasing non-condensable dissolved gas content, therefore Arndt, Arakeri & Higuchi
(1991) attribute it to effects of nuclei, whose characteristics do not scale with the velocity
squared.

In the near field of a turbulent shear layer, cavities appear first in the core of
quasi-streamwise vortices (QSVs) developing between the primary spanwise structures
with their lengths being over five times larger than their diameters (Katz & O’Hern 1986).
Numerous studies have described the formation and strength of these quasi-streamwise
structures (e.g. Jimenez 1983; Bernal & Roshko 1986; Lasheras & Choi 1988; Bell &
Mehta 1992). They are intermittent, often occurring as counter-rotating pairs, and have
a strength that is 10 %–40 % of those of the primary spanwise vortices. However, there
is no information about the pressure in their cores and their relation to the primary flow
parameters, which is essential for understanding cavitation inception. In various settings,
cavitation in secondary vortices appear as elongated strings, with their lengths being
over five times larger than their diameters (Katz & O’Hern 1986; Gopalan et al. 1999;
Moisy, Voth & Bodenschatz 2000; Chang et al. 2012; Barbaca et al. 2020). It has been
argued (Gopalan et al. 1999; Chang et al. 2012) that the low pressure inside the secondary
vortices develops owing to their stretching by the primary structures. In the near field of
jets, Gopalan et al. (1999) show that the estimate rates of cavitation events based on the
measured nuclei distribution and statistics of straining of vortices are consistent with the
observed rates, i.e. they have the same order of magnitude. However, their calculated trends
with cavitation number differ from the observed ones. For a pair of parallel tip vortices
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Cavitation inception in a turbulent shear layer

with different strength, Chang et al. (2012) estimate the pressure minima in the vortex core
based on the measured nuclei sizes, cavitation inception indices, initial cross-sectional
velocity distribution and estimated straining history. They conclude that reduction in the
vortex core diameter owing to axial straining alone is not sufficient for explaining the
measured cavitation inception indices, and attribute the discrepancy to the axial velocity
and acceleration in the vortex core. They also argue that observed asymmetry in the growth
rate of the cavity along the vortex core is indicative of axial variations in velocity and
acceleration.

Several studies have discussed the axial variations along cavitating tip vortices (e.g.
Arndt et al. 1991; Green & Acosta 1991). Arndt et al. (1991) state that the inherent
axial pressure gradients in tip vortices (Batchelor 1964) results in localized inception of
cavitation in the vortex core. Barbaca et al. (2020) note that, as the cavitating strings
collapse, they leave behind several remnants along the vortex axis. Moisy et al. (2000)
observe that cavitation inception in vortex filaments located in a turbulent flow between
two counter-rotating disks can occur in multiple discrete points along the vortex axis. They
refer to this phenomenon as ‘necklace’ cavitation. With further decrease in pressure, as the
cavitating structures become continuous long strings, they develop helical undulations,
which have been studied in the context of tip vortices e.g. by Crow (1970) and Widnall
(1975). Based on numerical simulations (Lundgren & Ashurst 1989; Melander & Hussain
1994; Verzicco, Jiménez & Orlandi 1995), these undulations have been attributed to the
dynamics of axially strained vortices. The resulting axial pressure gradients generate
waves along the vortex axis, a topic discussed extensively in the literature starting with
the inviscid analysis by Kelvin (1880). Based on the direct numerical simulations (DNS)
by Verzicco et al. (1995), the time evolution of the vortex structure and its stability
depend on the strain rate, viscosity (Reynolds number) and vortex strength. Depending
on their relative contributions, the axial waves can stabilize the vortex, homogenizing its
core size, or sustain the core radius oscillations, or promote the vortex diffusion owing
to viscous effects. Hence, the stability of the vortex depends on the Reynolds number.
For time-dependent strain fields, Verzicco & Jimenez (1999) show that if the period
of oscillatory straining is smaller than the time required for the vortex to balance the
axial strain by pressure gradients, the strength of this vortex decays. For longer periods,
the vortex may maintain its strength for a long time. To the best of our knowledge,
experimental data on axial pressure gradients in stretched vortices are not available from
any source.

Cavitation inception occurs when nuclei, mostly microbubbles, are exposed to a pressure
falling below a bubble size-dependent critical level. The pressure gradient field also affects
the entrainment of bubbles into vortices (Sene, Hunt & Thomas 1994; Sridhar & Katz
1995; Spelt & Biesheuvel 1997). Nuclei availability, dynamics and effects on cavitation
inception have been investigated extensively (e.g. Billet 1985; Arndt & Keller 1992; Khoo
et al. 2020). Most water tunnels and environmental water contain microbubbles typically
ranging in size from microns to millimetres. The nuclei content depends on the tunnel
operating conditions, including dissolved gas content, pressure time history and circulation
time (Liu, Sato & Brennen 1993). Studies of cavitation inception require control and
characterization of the nuclei content, as recent studies have begun to achieve (Khoo
et al. 2020). Since this task is often quite difficult, many prior studies have used instead
means of assessing the susceptibility of the water to cavitation inception (Oldenziel 1982;
d’Agostino & Acosta 1991). Once cavitation starts, remnants of collapsing cavities become
nucleation sites for new cavitation events (Barbaca et al. 2020; Ram, Agarwal & Katz
2020), increasing their frequency. The lifetime of cavitating structures is typically a few
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milliseconds, i.e. comparable to the time scales of the larger flow structures like that of
the disk motion for Moisy et al. (2000) or of the vortex motion in a shear layer in Barbaca
et al. (2020). This lifetime is substantially longer than the duration of the initial explosive
growth or the final collapse, which typically take place in less than a millisecond (Ran &
Katz 1994; Choi et al. 2009).

Inherently, the number, spatial distribution and duration of pressure minima in turbulent
flows affect the likelihood or rate of cavitation inception events. While considerable
effort has already been invested in attempts to characterize the interactions of nuclei with
the pressure field (Brennen 2014), until recently, the research community have not had
the means of determining the pressure field in turbulent flows away from boundaries.
Hence, numerical simulations have been the primary source of information on the pressure
in the core of eddies, although limited in Reynolds numbers. Recent studies aimed at
understanding inception using Lagrangian pressure statistics following fluid elements
or micro-bubbles have been performed for isotropic turbulence based on DNS data
(Bappy, Carrica & Buscaglia 2019; Bappy et al. 2020). They show that pressure minima
appear more frequently and have increasing durations with increasing Reynolds number.
Furthermore, Bappy et al. (2020) also show that the trapping of bubbles by vortices, hence
exposure to low pressure events, increases with nucleus size. Their pressure probability
density functions (PDFs) have significant negative tails, that increase with Reynolds
number. This is not always the case for turbulent shear layers. Wall pressure fluctuation
measurements by Lee & Sung (2001) behind a backward-facing step exhibit a nearly
Gaussian behaviour, in agreement with recent results of large eddy simulations by Brandao
& Mahesh (2022), at least for non-cavitating flows. However, negative tails appear once
cavitation starts.

Turbulent pressure fluctuations away from boundaries have been challenging to
measure. Experiments involving transducers inserted in the flow field have a broad
frequency range but have a limited spatial resolution and are inherently intrusive (George,
Beuther & Arndt 1984; Tsuji & Ishihara 2003). To alleviate the issue of intrusion,
Ooi & Acosta (1984) introduce the use of microbubbles as pressure sensors. Following
calibrations tests (Ran & Katz 1991), Ran & Katz (1994) have used this method the
characterize the pressure in the near field of a jet. Since then, there have been significant
advances in calculating the pressure from time-resolved particle image velocimetry (PIV)
data, too many to summarize in a short introduction. To obtain the pressure, most
applications either use integration of material acceleration (Liu & Katz 2006, 2013;
Dabiri et al. 2014; Wang, Zhang & Katz 2019) or solve the pressure Poisson equation
(van Oudheusden et al. 2007; Ghaemi, Ragni & Scarano 2012; Villegas & Diez 2014),
as summarized in several recent comparative papers (Charonko et al. 2010; van Gent
et al. 2017; Liu & Moreto 2020). Early applications have been based on planar data
assuming two-dimensional (2-D) flows, but in recent years, with the introduction of
3-D tomographic PIV (Elsinga et al. 2006; Schanz, Gesemann & Schröder 2016), the
measurements are based on 3-D integrations. Several techniques have been developed to
improve the uncertainty in pressure. For example, uniformly distributed omni-directional
integration of pressure gradients has been introduced to minimize the adverse effects
of error propagation (Liu & Katz 2006; Wang et al. 2019; Liu & Moreto 2020).
Data assimilation techniques that utilize known physics to augment the measured data
have also been developed. Among them, the vortex-in-cell method, minimizes the
difference between the measured velocity and material acceleration from predictions
based on the vorticity transport equation (Schneiders & Scarano 2016). Another approach
involves a constraint cost minimization procedure that forces the velocity field to
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be divergence free and the material acceleration curl free (Agarwal et al. 2021).
Effects of other contributors, e.g. viscous diffusion especially near boundaries, data
resolution and experimental errors, have also been evaluated (Azijli et al. 2016; Jeon et al.
2018; Agarwal et al. 2021). These techniques have recently been implemented to measure
the pressure in a variety of turbulent flows, such as a boundary layer by Ghaemi & Scarano
(2013), boundary layer over compliant surface by Zhang et al. (2017) and flow over a
serrated trailing edge by Lima Pereira et al. (2020). In the present paper, we use these
techniques for understanding the impact of the pressure field on the cavitation inception in
a turbulent shear layer developing behind a backward-facing step.

The flow and turbulence behind a downstream-facing step has been studied extensively,
starting from the experimental work by Eaton & Johnston (1982) and the DNS by Le, Moin
& Kim (1997). In addition to the free shear layer, this flow includes a recirculation region
under the shear layer and a reattachment zone where the shear layer attaches to the wall.
Fluctuations in the size of the separated bubble cause low-frequency flapping of the shear
layer and location of the reattachment point (Driver, Seegmiller & Marvin 1987; Wee
et al. 2004). Most of the pressure measurements for the flow behind a backward-facing
step have been performed using sensors attached to the wall, e.g. Lee & Sung (2001).
Considering that cavitation inception occurs in the secondary structures away from the
boundary, these measurements have limited relevance to cavitation inception. Yet, they
show that the wall pressure fluctuations rise rapidly at 50 % of flow reattachment length,
owing to the influence of the primary spanwise vortices. These vortices are convected
at two different velocities, the first larger than 60 % of the free-stream velocity (U) and
the second ranging between 0.2U and 0.4U. The former speed corresponds to a ‘shear
layer’ mode, where the vortices grow as they are advected downstream, and the latter to
a ‘wake’ mode, where the shear layer and vortices expand suddenly while lingering, and
then accelerate. The presence of these modes has been deduced based on wall pressure
measurement for non-cavitating flows by Hudy, Naguib & Humphreys (2007) as well as
for developed cavitating flows by Maurice et al. (2021). For the latter case, transition to
the wake mode is favoured. The structure of developed cavitation and compressible flow
phenomena are investigated based on wall pressure measurements and X-ray densitometry
by Bhatt, Ganesh & Ceccio (2021).

Understanding the causes for trends with Reynolds numbers as well as appearance of
inception requires characterization of both the pressure field generated by the secondary
QSVs, and the entrainment of nuclei into them. To determine the effects of strain field
on the pressure, simultaneous 3-D flow and pressure measurements as well as statistical
analyses in Eulerian and Lagrangian reference frame are necessary. These analyses
elucidate the mechanisms affecting the time evolution of pressure and the observed
occurrence of multiple cavitation inception events along the same QSV. Trends are
explained in the context of a stretched vortex dynamics. The effect of nuclei on cavitation
inception is studied based on the trajectories, spatial distribution and concentration of
bubbles within and outside of the shear layer under controlled and ‘natural’ nuclei seeding.
The set-up and techniques are described in the next section. They are followed by the
results, statistical analysis and discussion in § 3, and by conclusions in § 4.

2. Methods

2.1. Experimental set-up
Facility: the experiments have been performed in a small water tunnel powered by
two centrifugal pumps located 5 m below the test section, as described in Gopalan &
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Katz (2000) and Ling et al. (2016). This tunnel is equipped with a 1000 litre buffer tank
located between the pumps and the test section in order to remove free-stream bubbles,
followed by a settling chamber containing a honeycomb and meshes and a smooth 9:1
area contraction leading to the test section. The 405 × 63 × 51 mm3 test section is fitted
with a backward-facing step to generate a free shear layer, as illustrated in figure 1(a). The
step height h is 10 mm, resulting in an expansion ratio, namely height of the test section
after the step relative to that before the step, of 1.19. The shape of the curved surface
upstream of the step is a fifth-order polynomial to ensure that the curvature is nearly
zero at both ends to prevent undesirable pressure gradients there. The curved surface is
followed by a 25 mm long flat horizontal section that terminates at the step. To trip the
boundary layer, V-shaped grooves are machined in the bottom wall near the entrance to
the test section, 159 mm upstream of the step (figure 1b). These grooves are similar to
those described in Ling et al. (2017), where it is shown that the mean velocity profile
230 mm downstream of the grooves is consistent with that of a fully developed turbulent
boundary layers, with viscous, buffer, log and outer layers. Taps located at the inlet to
the test section are used for measurements of the reference pressure and dissolved gas
content, and for injection of controlled free-stream nuclei. The pressure is measured using
a Setra model 230 differential pressure transducer, and the dissolved oxygen content is
measured using an optical fibre sensor, FireStingO2 manufactured by PyroScience. The
mean pressure above the step, used to calculate the cavitation indices, is inferred from the
measured pressure using Bernoulli’s equation.

Measuring the mean flow profiles: several experiments have been performed to
characterize the non-cavitating flow as well as the conditions for cavitation inception
within the fields of views marked in figure 1(a). Two-dimensional PIV has been used
for characterizing the mean flow and Reynolds stresses for mean free-stream velocities
above the step of U = 1.45, 5.3, 10.5 and 16 m s−1 in an area extending from the separating
boundary layer all the way to the reattachment region. To cover this area while maintaining
an acceptable resolution, the 2-D PIV images are recorded in a pair of slightly overlapping
36.3 × 24.2 mm (x × y) sample areas using a 6600 × 4400 pixel interline transfer CCD
camera, Imperx Model BB640. The thin light sheet that illuminates the spanwise-centred
plane is generated using a Quantel Evergreen Nd:YAG laser, and the flow is seeded
with 2 μm silver-coated glass particles (Conduct-o-Fil SG02S40, specific gravity of
3.5). The time delay between image pairs is adjusted to maintain a 90 μm displacement
between exposures in the free stream. Cross-correlation analysis is performed using the
LaVision DaVis® 10 software package. Using multi-pass correlations with the final
interrogation area being 32 × 32 pixels, and 75 % overlap between windows, the resulting
velocity vectors spacing is 43 μm. Approximately 2000 realizations are used to obtain
the mean flow and the Reynolds stress statistics for each speed. The typical uncertainty in
instantaneous velocity, corresponding to 0.1–0.2 pixels, is 1 %. Ensemble averaging should
reduce this uncertainty by more than an order of magnitude.

Locating cavitation inception: in experiments without seeding of the flow with bubbles
(and particles), which are referred to as ‘natural’ nuclei, the appearance including the
size, location and durations of the cavitation events have been characterized at U = 10.5
and 16 m s−1 using two synchronized orthogonal views. For the range of pressures that
could be maintained steadily in the tunnel, we cannot examine cavitation below 7 m s−1.
The side and top views are recorded for 2.55 s at 3932 Hz at the resolution of 30 μm
with PCO.dimax S4 high speed digital cameras. The 52 × 21 mm field of view is marked
in figure 1(a) in blue. Two halogen lamps are used for back lighting the test section,
enabling an exposure time of 4 μs. During image acquisition, the pressure in the tunnel
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Figure 1. The experimental set-up: (a) a spanwise view of the test section with a backward-facing step. The
two fields of view (FOVs) of the two-dimensional PIV measurements are marked in green (solid and dot-dash);
the FOV for backlit cavitation imaging is marked in blue; and the tomographic PIV and holographic cavitation
imaging areas are marked in red. (b) A magnified view of the inlet to the test-section with a tap for bubble
injection and the V-shaped tripping grooves. (c) The bubble injector showing a couple of 60 μm diameter
bubbles. A magnified view of a train of injected microbubbles along the bottom wall can also be seen in (a).

is maintained at a constant level corresponding to σ varying between 0.45 and 0.55.
The water is de-aerated by running the facility at a low pressure before the experiment.
The pressure is then raised to well above the desired conditions, and then lowered just
before the experiment to minimize the concentration of free-stream bubbles. In this way,
the dissolved oxygen content in the water is kept close to 70 % of the saturation level based
on the pressure at the inlet to the test section. The concentration and size distribution
of free-stream bubbles are monitored throughout the experiments using the procedures
described below.

Generation of bubbles: the entrainment of nuclei and their effects on cavitation inception
are studied under controlled injection of microbubbles. In this case, the water is de-aerated
to less than 50 % of the saturation levels of dissolved oxygen at an inlet pressure of 1.1 bar.
The flow is then seeded with a train of 60 μm diameter bubbles using a bubble generator
designed based on the procedures described by Toshiyuki Matsumi et al. (2018) and shown
in figure 1(c). It consists of a 3D printed T-junction with an ORIGIO MIC-SLM-30
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micropipette with an exit diameter of 4.3–4.9 μm connected to a compressed source of
nitrogen. The injected air is sheared by a parallel stream of water introduced through the
second inlet to generate a monodisperse bubble train with size and injection frequency
that vary with the pressures of the two fluids. The 60 μm diameter bubble train is
generated using gas pressure varying between 2 and 3 bar and water pressure of 1.2 bar.
Pressure controllers and transducers with accuracy of 0.001 bar are installed to maintain
the pressure in the incoming water and air streams. The gas pressure is adjusted to maintain
a distance of 0.3–0.4 mm between bubbles as they are introduced into the water tunnel,
namely the separation between bubbles is approximately 5 to 7 times the diameter. Hence,
the bubble generation rate increases with velocity. As a reference, the rate is 3000 Hz at
U = 1 m s−1. This procedure has resulted in bubble concentration of about 0.06 mm−3

in the free stream above the shear layer for all speeds, as described in § 3.4. The speed
of the liquid jet injected into the tunnel is 0.35 m s−1, and the site of injection from the
wall is located near the inlet, just upstream of the tripping elements (figure 1b). Given
this low speed of injection and its location upstream of the trips, we presume that the
injection has little effect on the flow. Furthermore, owing to the small bubble size, and
consistent with images recorded at the exit from the injector, the bubbles do not deform
noticeably. Finally, the buoyant rise velocity of these bubbles assuming Stokes flow, 1.8
mm s−1 (Clift, Grace & Weber 2005), is three orders of magnitude lower than the free
stream. Assuming that the bubbles are advected at the free-stream velocity, the buoyant rise
of these bubbles between the injection point and the step is 0.2 mm at 1.45 m s−1, and even
lower at the higher speeds. Between different experiments, the tunnel is pressurized for a
few minutes to minimize the concentration of bubbles not originating from the injection
system in the free stream, the shear layer and the recirculation zone. Yet, reference data for
the free-stream bubble distribution away from the shear layer are also quantified.

Detecting cavitation inception: focusing on regions of high cavitation, microscopic
cinematic inline holography (Sheng, Malkiel & Katz 2006; Katz & Sheng 2010) has been
used to capture the growth and collapse of cavitation events. This method can be used for
determining the size, shape and 3-D location of bubbles, albeit at a coarser resolution in
the axial direction of the illuminating laser beam. To resolve the bubble growth during
cavitation inception, the camera should have an acquisition rate exceeding 100 000 frames
per second. Hence, a Kirana model 5M camera, with image size of 924 × 768 pixels and
maximum frame rate of 5 × 106 s−1 is used for recording spanwise-aligned holograms.
However, since this camera can only record 180 frames, it must be triggered by a fast event
detector. We opt to use the image of the perpendicular top-view camera, a Phantom model
v2640 CMOS camera, which operates at 50 kHz, for triggering the Kirana. This triggering
is based on detection of intensity changes in a selected part (200 × 100 pixels) of the
hologram captured by the Phantom camera. The Kirana’s resolution is 7 μm pixel−1,
and the images are recorded at 200–300 kHz, while the Phantom camera operates at
a magnification of 12.5 μm per pixel. As illustrated in figure 2(b), the perpendicular
holography systems use the same light source, a collimated beam generated by a pulsed
Katana-05-HP green (532 nm) laser manufactured by NKT Photonics that has a pulse
duration of 0.8 ns and generates 4 μJ pulse−1. This laser operates continuously at 1 MHz,
and both cameras use their internal electronic shutter system to acquire single exposures
in each frame. For the experiments, the pressure in the tunnel is lowered until an event is
detected by the Phantom camera. This also triggers recording of the tunnel inlet pressure,
which results in σ ranging from 0.45 to 0.55.

Tracking of bubbles: the perpendicular hologram set-up has also been used to record the
bubble population over the entire shear layer span and in the free stream above the shear

966 A31-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.368


Cavitation inception in a turbulent shear layer

Step

z

x
Pco.Dimax

cameras
Collimated

laser beam

Mirror

Trigger

Phantom

camera

(50 kHz)
y

z

Kirana

camera

(50/200 kHz)

15° and 40°

prisms

(b)(a)

Figure 2. Optical set-up: (a) top view of the tomographic PIV system consisting of four cameras with lenses
aligned perpendicularly to acrylic prisms. The sample area illuminated by a thick laser sheet is shown in green.
(b) A downstream view showing the two-view holography set-up.

layer under non-cavitating conditions. In this case, the holograms are acquired at nearly
the same resolution of 12.5 μm per pixel, which allows characterization of bubble size
and concentration when their size exceeds 50 μm. For tracking of bubbles, both cameras
acquire images at 8, 50 and 62 kHz for free-stream velocities of 1.45, 10.5 and 16 m s−1,
respectively. Data have been acquired while keeping the facility at a constant pressure of
1.1 bar, which results in σ of 106, 1.75 and 0.6 at 1.45, 10.5 and 16 m s−1, respectively.

Three-dimensional velocity and pressure measurements: time-resolved tomographic
PIV (figure 2a) measurements have been performed to study the structure of secondary
vortices (QSVs) and the pressure within them. Unfortunately, our tomographic PIV system
can acquire data at a maximum framerate of 15 kHz, hence the 3-D time-resolved
measurements needed for pressure calculations could only be performed at U = 1.45 and
5.3 m s−1. At 15 kHz, the displacement between exposures at 10.5 and 16 m s−1 are 0.7 and
1.07 mm, respectively, too large for resolving secondary vortices with characteristic size
of ∼1 mm. Therefore, at 5.3 m s−1 the data are recorded at 14 925 Hz with an image
size of 624 × 380 pixels (maximum possible), resulting in a displacement of 355 μm
between exposures. At 1.45 m s−1, the 1008 × 596 pixel images are recorded at 7407 Hz,
giving a displacement of 196 μm. Thus, the normalized temporal resolution is almost
twice at the lower speed, being 0.02h/U at 1.45 m s−1 and 0.035h/U at 5.3 m s−1. In
both frame rates, the image sizes correspond to the maximum capabilities of the cameras.
The 12.5 × 7.5 × 4.5 mm3 field of view extends horizontally from x = 0.5xr to 0.7xr, from
y = −0.6h to 0.1h and from z = −0.2h to 0.2h (z = 0 is the spanwise centreline). The
optical set-up involves four PCO.dimax S4 CMOS cameras with Nikon 105 mm lens
arranged in the same plane (figure 2a), that is they are rotated only along the wall-normal
axis at angles of ±15° and ±40° with the spanwise direction. Acrylic prisms are placed
in front of each lens to reduce the effect of mis-matched refractive index at the walls and
Scheimpflug adapters are used to rotate the cameras relative to the lens to keep the sample
volume in focus. The light source is Photonics DM60-527 Nd:YLF laser whose beam is
allowed to expand and then masked to generate a 4.5 mm wide slab in the sample area.
The flow is seeded with 13 μm diameter silver-coated hollow glass spheres (Conduct-o-Fil
SH400S20) that have a specific gravity of 1.6, leading to a characteristic time for the
particles of 14 μs. The entire recording time is 2 s, i.e. 300h/U for 1.45 m s−1 and 1020h/U
for 5.3 m s−1, during which the pressure at the entrance to the test section is held constant.
The raw data that have been analysed consist of 28 000 and 15 000 realizations at 5.3 and
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1.45 m s−1, respectively. This large database allows for evaluating the time evolution of
different flow quantities, such as pressure, vorticity, etc.

2.2. Data analysis
Analysis of cavitation images and nuclei distribution: the data recorded using ‘natural’
seeding have been used for determining the location of cavitation inception, the void
fraction, as well as the spatial and size distribution of bubbles in various locations within
and outside of the shear layer during the early phase of cavitation. Cavitation events are
defined by first segmenting the images using Otsu’s method, which allows for adaptive
thresholds (Otsu 1979). The resulting structures are described using an ellipse that has
the same second central moments. Then, the diameter of the structure is the minor axis
length of the ellipse and the length is the major axis length. Structures with eccentricity
over 0.866, that is length over twice the diameter, and equivalent diameter (geometric
mean of length and diameter) over 0.3 mm, whose centroid move with speeds between
10 % and 90 % of the free-stream velocity are selected as cavitation events. The thresholds
for size and aspect ratio have been selected based on visual inspection. Selecting a
fraction of the data, the analysis has been performed using eccentricity thresholds 0.866,
0.85, which is close to the chosen level, and 0.916, which is far from it. The results
show that the F1 scores, which are the harmonic mean of the precision and recall of a
classifier (Van Rijsbergen 1979), are 0.89, 0.9 and 0.71 for thresholds of 0.85, 0.866 and
0.91, respectively. Restricting the speed range helps in cavity tracking, and reduces the
likelihood of identifying noise as cavities. The analysis is performed using a single side
view over the entire shear layer over nearly the entire span. The void fraction at each pixel
is calculated based on the sum of diameters of the structures at the time when cavitation
is detected normalized by the depth of the volume and the time of recording. The results
have subsequently been used for selecting the location of pressure measurements. Using
both side and top views, orientation of the cavities in x–y and x–z planes are detected.
The orientation is the direction of the eigenvector associated with the largest eigenvalue
of the second central moments. Then, the 3-D orientation of the cavity is calculated by
matching the two projections. The distributions of smaller bubbles in the cavitating shear
layer, free stream and recirculation region are also determined using the data recorded in
the two perpendicular directions. For each, the sample volume size is 2 × 2 × 20 mm3,
and their locations are marked in figure 28(a). These bubbles are also constrained to have
an eccentricity of less than 0.86 and equivalent diameters between 0.1 and 1.3 mm to
eliminate detection of cavitating structures. The analysis is based on the side view, and the
top view is used for determining the spanwise locations of nuclei. Only bubbles detected
by both cameras are counted.

Holograms with controlled seeding of microbubbles are recorded at fine spatial and
temporal resolution, thus allowing for characterizing the size and growth rate of cavitation
inception events as well as the distances between neighbouring events. For this analysis,
95 sets of 1200 time-resolved top-view holograms are reconstructed in planes separated by
150 μm in depth (Katz & Sheng 2010). The reconstructed planes are then added together
to obtain a ‘compressed’ image of all the objects in the sample volume. The location of the
cavities and their size are determined by thresholding this image, and finding contiguous
objects using the MATLAB® functions bwconncomp and regionprops. Structures with a
minimum size of 0.15 mm are selected as cavitation events but only if they are detected in
several frames, and the velocity of their centroid is lower than the free-stream velocity.
The location of these structures in the y direction is determined from the original
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reconstructed holograms by finding the focus depth using the minimum intensity and
edge sharpness based on Tenengrad maps, following Gao et al. (2013). Based on
manual evaluation of samples, using the perpendicular-view data, the depth uncertainty
is approximately 180 μm. This procedure provides the 3-D location of the centroids of the
cavities, their size (cross-section) and the rate at which this size changes in time. For both
speeds, around 5200 cavities are tracked in time. To determine the orientation of vortices in
which the cavities are located, especially when the cavities are nearly spherical, we rely on
the fact that multiple cavities form along the same vortex. To define the vortex orientation,
the detected cavities are expanded in all directions by 0.25 mm while retaining their shape.
Linked blobs are considered to be parts of the same vortex if they are aligned in the same
direction (within 15°). For original cavities with spherical shape, the vortex alignment is
defined by linking it to its nearest blob and finding the orientation of the joined blob.

The concentrations and evolution of nuclei in the case of bubble injection are also
quantified in the shear layer and in the free stream. The free-stream data are obtained by
analysing the holograms recorded by Phantom camera, focusing on a volume extending
from 2 to 20 mm above the step. The shear layer nuclei distributions are obtained
by analysing the holograms recorded by the Kirana camera, focusing on an 18 mm
deep sample volume located offset 3 mm from the spanwise centre of the test section
(−0.6 < z/h < 1.2). First the holograms are spatially band-pass filtered in the frequency
domain at wavenumbers corresponding to wavelengths of 30 μm (2.5 pixels) and 400 μm
to remove undesired noise. The filtered holograms are reconstructed in planes separated
by 25 μm in depth. The depth of the nuclei, that is the location along the wall-normal
direction, is calculated based on the procedure involving Tenengrad maps described above
and in Gao et al. (2013). The minimum intensities over slabs with 0.75 mm depth are then
compressed to planar images, reducing the 3-D data to 12 slabs. The location and size of
bubbles in each slab are determined using a random forest algorithm (Ho 1995). The pixel
classification module in ilastik, an interactive machine learning software (Berg et al. 2019),
is used to train a model that distinguishes between in focus bubbles and background. Lu
et al. (2021) describe a similar procedure to find size distributions of free-stream bubbles
in a water tunnel. Since some of the images still give false positives (noise detected as
bubbles), the probability maps subsequently are compressed over the entire depth to a
single plane, and sequences of 20 successive time steps are used for training a second
model. This model detects bubbles that appear in more than a single frame and move in
at least some of the images, i.e. they are not stationary. The resulting probability maps
are then binarized and tracks are built based on displacements of the resulting sparse
bubbles in successive frames. To validate the measurements and assure that perpendicular
views give compatible results, a set of 40 top-view holograms are processed at depths
corresponding to the shear layer. Results are then compared with those observed in the
perpendicular view, showing that 92 % of the detected bubbles appear in both views, and
that their sizes differ by 0.5 %, representing our uncertainty in bubble size. Data derived
from over 3000 holograms in the free stream and 2700 in the shear layer, resulting in
40 000–90 000 nuclei for U = 1.45, 10.5 and 16 m s−1 each, are presented in this paper.

Velocity and pressure calculations: the shake-the-box method available in DaVis® 10
is used for processing the tomographic PIV data to obtain the unstructured velocity and
material acceleration (Schanz et al. 2016). The images are pre-processed by removing
the sliding minimum intensity, normalizing the intensity distribution to that of the first
frame and applying a Gaussian sharpening filter. Coarse calibration images are obtained
by sliding a target in the depth direction in steps of 1 mm, followed by refinement
using self-calibration. A total of 3500–5000 tracks are resolved in each instantaneous
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realization, with a typical distance between particles of 275 μm. The unstructured velocity
and material acceleration data are interpolated using a constrained cost minimization
(CCM) technique developed in our laboratory (Agarwal et al. 2021) to obtain structured
data on velocity, material acceleration and their spatial gradients, at a grid resolution of
200 μm. This method forces the structured velocity distribution to be divergence
free and the material acceleration curl free. A detailed description of the procedures
and uncertainties involved for several flow fields are provided in Agarwal et al.
(2021). The corresponding pressure distribution is obtained by spatially integrating the
material acceleration using the 3-D parallel line omni-directional method described
in Wang et al. (2019) using codes developed in our laboratory. The integration
provides the variations of the instantaneous pressure from the spatially averaged
value, which is arbitrarily set to zero. For the present dataset, the viscous terms
calculated based on the velocity gradients from CCM are four orders of magnitude
smaller than material acceleration, and the divergence of sub-grid scale stresses
calculated by spatial filtering using a 5 × 5 × 5 grid point box filter are two orders
of magnitude smaller than the material acceleration. Therefore, these terms are
neglected in both forcing the curl-free conditions and the calculations of pressure. The
self-calibration of the tomographic images results in disparities of 0.01 pixel mean
and 0.3 pixel standard deviation, when the mean displacement between exposures is
8 pixel and maximum displacement is 20 pixels. The average particle spacing of
275 μm normalized by the size of the secondary vortices is ∼20 %. The results for
synthetic unsteady 2-D vortices have shown that the minimum resolution required for
determining the core pressure with an uncertainty of 10 % is five acceleration vectors
per diameter, that is, the present resolution. Uncertainty analysis of an axially stretched,
noisy synthetic Burgers vortices, with characteristics of the present experiments including
diameter (0.1h), grid spacing (0.02h), strength (0.2Uh) and axial strain rate (U/h) has been
performed. The resulting instantaneous error in velocity and pressure due to the limited
spatial resolution and noise are 3 % and 7 %, respectively. The methods used for detecting
and tracking of QSVs are described after presenting the relevant data in § 3.

3. Results

3.1. Mean velocities and turbulence
The 2-D PIV measurements are used to characterize the ensemble averaged and root
mean square (r.m.s.) values of the axial and vertical velocity components in the shear
layer. Figure 3 summarizes the mean flow structure, including profiles of the boundary
layer just upstream of the step (figure 3a), contours of ensemble-averaged streamwise
velocity ux (figure 3b) and profiles in selected locations (figure 3c). The boundary layer
profiles, which resolve the log layer but not the viscous sublayer, confirm that the incoming
boundary layer is turbulent. The wall shear velocity uτ (

√
τw/ρ, where τw is the wall

shear stress) is estimated by least square fitting to the log layer profile (Smits, McKeon
& Marusic 2011) and the boundary layer height δ is determined based on the elevation
of 99 % of the peak velocity. As summarized in table 1, the boundary layer thickness
does not change significantly with velocity, in contrast to typical naturally developing
boundary layers, presumably owing to the effect of tripping and acceleration of the flow
upstream of the step. The tripping causes an increase in δ with increasing velocity (Ling
et al. 2017), and the corresponding decrease in acceleration parameter (ν/U2 dU/dx) is
expected to decrease it. The resulting shear Reynolds numbers, Reτ = uτ δ/ν, where ν

is the viscosity of water, are 305, 807, 1504 and 2345 for free-stream velocities of 1.45,
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Figure 3. Mean flow structure: (a) a scaled velocity profile of the turbulent boundary layer upstream of
the step, showing the log and outer layers. (b) Contours of the ensemble-average streamwise velocity at
U = 16 m s−1. (c) Wall-normal profiles of ensemble average streamwise velocity at three streamwise locations
at the indicated different speeds and corresponding Reτ .

Free-stream velocity U (m s−1) 1.45 5.3 10.5 16
Reattachment length xr (mm) 56.8 61.9 55.3 53.1
Boundary layer thickness δ (mm) 3.84 3.68 3.64 3.84
Wall shear velocity uτ (m s−1) 0.09 0.24 0.45 0.67
Wall unit δν (μm) 12.6 4.6 2.4 1.6
Reynolds number Reτ 305 807 1504 2345

Table 1. The reattachment length of the shear layer and the properties of the separating boundary layer for
the indicated speeds.

5.3, 10.5 and 16 m s−1, respectively. The reattachment length xr is determined based on
the streamwise location where the averaged zero velocity line reaches the bottom wall. Its
magnitude varies between 5.3 and 6.2 times the step height, consistent with previously
published values, e.g. 6h in Jovic & Driver (1995) and 6.5h in Spazzini et al. (2001). As is
evident from figure 3(c), the mean velocity profiles in the shear layer nearly collapse after
normalizing the horizontal axis by xr, the vertical axis by h and the velocity by U, with the
results at 1.45 m s−1 slightly deviating from the others.

Figure 4 presents ensemble-averaged statistics of velocity fluctuations (ui) in the shear
layer, including contour plots for U = 16 m s−1 (figure 4a–c) and profiles for all velocities
in selected location (figure 4d). For the most part, the normalized profiles collapse in the
shear layer and in the recirculation zone under it, but there is some deviation at 1.45 m s−1

in the free stream. The peaks in the normalized Reynolds stress components shift
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Figure 4. Reynolds stress statistics in the shear layer. Contours of: (a)
√

uxux/U, (b) √uyuy/U and
(c)

√−uxuy/U at U = 16 m s−1. (d) Wall-normal profiles at the indicated streamwise locations, and at four
different speeds.

downwards and increase in magnitude as the shear layer expands, with the streamwise
component being the highest. In each plane, the highest turbulence level is measured
slightly below the elevation of maximum velocity gradients. The maximum streamwise
turbulence intensity is measured around x/xr = 0.94 and y/h =−0.5, with values reaching
20 % of the free-stream velocity, and then starts decaying further downstream. In the
free-stream velocity fluctuations (both components) fall in the 1 %–2 % of the free-stream
velocity, and the Reynolds shear stress vanishes. In general, the Reynolds stress profiles
and magnitudes are consistent with previously published data (Kostas, Soria & Chong
2002; Nadge & Govardhan 2014). The scaling of the ensembled flow quantities with
free-stream velocity is also consistent with the seminal experiments by Eaton (1980).

3.2. Early cavitation events
The cavitation events appear as one or more elongated structures aligned along curved
lines that are largely oriented perpendicularly to the spanwise direction (figure 5a). These
observations suggest, consistent with prior observations (Katz & O’Hern 1986), that
cavitation inception occurs preferentially inside the QSVs. The initial growth from a
nucleus of size less than 100 μm to a few mm long structure is shorter than 0.25 ms and
the sequence lasts for 1–2 ms until desinence. Figure 5(b) shows the spatial distribution of
the void fraction of cavitation events, as defined based on the size and shape thresholding
criteria, for the two higher speeds, ‘natural’ seeding and cavitation indices ranging between
0.45 and 0.55, i.e. when cavitation is still intermittent. The most likely site is scattered
between 0.5 and 0.7xr, but the peak seems to move slightly upstream with increasing
velocity. Furthermore, the cavitation activity increases with decreasing σ (as expected),
and for the same σ , with increasing velocity. The latter trend is consistent with the
previous observations by Barbaca et al. (2020) as well as the increase in inception index
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Figure 5. (a) Sample perpendicular images for U = 10.5 m s−1 showing the evolution of a cavitation
event starting from the nucleus marked by the dashed circle at t = 0 ms. (b) The spatial distributions of
ensemble-averaged void fraction for the indicated speed and cavitation indices. (c) The PDFs of length,
diameter and aspect ratio of the cavities.

with Reynolds number (Katz & O’Hern 1986). As σ decreases from 0.55 to 0.45 at
U = 10.5 m s−1, there is a sevenfold increase in the void fraction of cavitation events.
As the velocity is increased from 10.5 to 16 m s−1, at the same σ , the peak void fraction
jumps up over four times. Incidentally, accounting for the non-cavitating bubbles, which
includes nuclei and remnants of previous cavitation events, would increase the peak void
fractions by 201 % and 16 % at 10.5 m s−1 and 16 m s−1, respectively, both for σ = 0.5.
The cavitation void fraction increase is not due to differences in size of cavities alone. The
count of cavities detected are 1680, 383, 165 at 10.5 m s−1 with increasing σ and 9393,
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Figure 6. Sample snapshot top views of cavitation inception at U = 16 m s−1 at the indicated times. Data are
recorded at 50 kHz. The flow is from left to right.

2840 and 716 at 16 m s−1. Statistics on the length, diameter and aspect ratios of cavitation
events are provided in figure 5(c). In general, the dimensions of cavities do not change
substantially with U and σ , with the most likely diameters being approximately 0.5 mm,
and lengths, 1.5 mm. The aspect ratios, that is, the length relative to the diameter, of the
structure peak at around 3 for all cases. However, at 16 m s−1, there are significantly more
cavities with aspect ratios exceeding 6 compared with those observed at 10.5 m s−1.

Cavitation inception often occurs at multiple points along a QSV with different events
not necessarily occurring at the same time. Figure 6 is a partial series of sample
top-view images recorded at 50 kHz for U = 16 m s−1 and σ = 0.452, demonstrating this
phenomenon. The entire process consists of multiple growth and collapse events occurring
in multiple places and at different times. In some cases, as they grow, the cavities merge
forming larger ones. For example, cavity 2 starts growing after cavity 1. They nearly
merge at 0.1 ms, and then cavity 1 collapses, while no. 2 lingers. Additional cavities,
numbers 5 and 7, originate from fragments of no. 2. However, the nucleus of numbers 3,
6 and 8 does not seem to originate from residual bubbles of no. 2. Note that we are not
showing all the images, only selected samples. Each rapid growth or collapse event occurs
in approximately 100 μs, while the whole sequence lasts for 1–2 ms. While events may
occur along the same tilted vortex, e.g. up to approximately 0.8 ms, at other times they
occur in multiple structures, e.g. at t > 0.9 ms.
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Figure 7. (a) Joint PDFs of cavity diameters and length at U = 10.5 and 16 m s−1 presented using a logarithmic
scale. The black and red lines mark aspect ratios (AR = length/diameter) of 2 and 5, respectively. (b) Sample
evolution of cavity lengths with time along with their images at selected instances. (c) The PDFs of the axial
collapse and growth rates of cavities for the indicated lengths and aspect ratios.

Figure 7(a) provides the joint PDFs of cavity length and diameter at 10.5 and
16 m s−1. In the following discussion we divide the cavities to three groups, similar to those
discussed in Barbaca et al. (2020). The first contains ‘small spherical’ cavities referring
to those smaller than 0.5 mm with aspect ratio lower than 2.0; the second group includes
‘large spherical’ bubbles, i.e. larger than 0.5 mm and aspect ratio of less than 2.0; and
the third has ‘elongated structures’, corresponding to cavities with a larger aspect ratio.
For convenience, figure 7(a) also shows two lines representing aspect ratios of 2 and 5.
For both speeds, the most likely cavities are nearly spherical with diameter of 0.2 mm,
which mostly correspond to early phases of growth. With increasing size, the most likely
aspect ratio deviates slightly from 1 at 10.5 m s−1, and exceeds 2 at 16 m s−1 with a
substantial fraction falling around and even exceeding 5. The next discussion focuses on
the growth rate of bubbles. Figure 7(b) shows several samples of the evolution of the
cavity length at 16 m s−1. As is demonstrated, the typical initial growth lasts less than
0.1 ms and, after growing at a slower pace for another 0.1–0.2 ms, the cavities either
collapse or plateau in size, followed by a second growth and collapse. Figure 7(c)
presents PDFs of the normalized collapse and growth rates along the cavity major axis
for both speeds, focusing on events with normalized growth rates |dL/dt|>0.2U, i.e.
not including cases where the size does not change significantly. For small spherical
bubbles, the normalized growth rates at both speeds are faster than the collapse rates.
This trend is reversed for the elongated cavities. There is a difference between speeds in
the collapse rates for large spherical bubbles, with those at 16 m s−1 being significantly
faster. The elongated structures are also more likely to grow at intermediate rates at
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10.5 m s−1 compared with those at 16 m s−1 or the spherical structures at the same speed.
However, in general, for each of the three groups, once normalized by U the growth (and
collapse) rates at the same σ (∼0.5) do not seem to vary substantially with velocity.
This trend is consistent with that predicted based on an energy balance for nearly spherical
bubbles located in a tip vortex by Arndt & Maines (2000). They conclude that the axial
growth (or collapse) rate of the cavity is proportional to (2(pC − pV)/ρ)0.5, where pC is
the pressure in the vortex core. Their experimentally determined proportionality factor is
approximately 2. For a steady tip vortex Choi & Ceccio (2007) show proportionality ratios
ranging from zero to 1.5, with the values generally increasing with the aspect ratio at the
same cavitation index. As will be shown in the next section, where we show and discuss
the PDFs the pressure, the characteristic pressure in the QSVs generally scales with U2.
Hence, for the same σ and aspect ratio the normalized growth rate should not be dependent
on the free-stream velocity, consistent with the present findings.

3.3. Pressure fluctuations
To focus the pressure statistics obtained from the time-resolved tomographic
measurements on the QSVs, the structures must be detected and tracked. We have
tried various forms of conditional sampling, e.g. thresholding based on λ2 (the second
eigen value of the sum of squares of the symmetric and anti-symmetric parts of the
velocity gradient tensor (Jeong & Hussain 1995)), with unsatisfactory level of success.
Consequently, a multi-dimensional detection method using k-means clustering (Lloyd
1982) has been adopted. The clustering is based on quantities derived from the velocity
gradients experienced by 95 000 synthetic particles placed in the measured flow field
and advected in five consecutive time steps. This pseudo-Lagrangian method has been
chosen to insure the spatial and temporal continuity of the detected structures. The particle
motions are tracked using a fourth-order Runge–Kutta method, with cubic interpolations
for the spatial distribution of velocity. The 3-D velocity gradients, obtained via CCM, are
used for calculating the vorticity ωi, λ2 and vortex stretching terms (ωi∂ iuj). The QSV
axis n is identified as being perpendicular to the direction of spatial gradients of the
vector sum of ωx and ωy. The 3-D position and the following six variables are recorded
for each particle at all five times: (i) spanwise vorticity ωz, (ii) vorticity perpendicular
to spanwise-direction, ωxy, (iii) λ2, (iv) projection of the vortex stretching term along
the QSV axis (Φ = ωi∂ iujnj), (v) projection of the strain rate tensor on the axis of the
vortex (ni∂ iujnj) and (vi) the strain state parameter s* (Lund & Rogers 1994), defined
as s∗ = −3

√
6s1s2s3/(s1

2 + s2
2 + s3

2)3/2, where si are the eigenvalues of the strain rate.
Here, s1 > s2 > s3 (note that s1 + s2 + s3 = 0), i.e. s1 is the most extensive component, s2
the intermediate one and s3 the most compressive strain rate eigenvalue. Both forward
and backward time steps (±2dt) are used, with dt corresponding to the delay between
exposures. For particles that are advected out of the volume, about 10 % of the total,
only unidirectional time steps of 4dt are considered. The resulting 45-dimensional dataset
(9 variables at 5 times) is divided into 10 clusters using the correlations-based k-means
method. This number of clusters has been selected based on silhouette analysis of the
data, which minimizes the in-class variance while maximizing the separation between
clusters (Rousseeuw 1987). This selection results in clusters with centres that are well
separated from each other, and therefore are not sensitive to the selected threshold levels.
Before clustering, the mean of each variable is removed and the quantities are normalized
by their variance. The clusters with centres that have λ2 lower than the mean, as well
as ωxy and vortex stretching magnitude higher than the mean at all 5 times are chosen
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Figure 8. (a–c) Several t-SNE 2-D representations of the 45-dimensional matrix used for detecting QSVs.
The colours indicate the mean-centred and variance-normalized values of the specified quantities (ωxy, λ2
and pressure). (d) The corresponding locations selected as QSV indicated as 1.0, and non-QSV as 0.0. (e) A
comparison of correlations of negative pressure with λ2 and ωxy inside QSVs detected by the k means clustering
and conditional sampling based on the magnitudes of λ2 and ωxy.

as QSV candidates. The detected QSV field is projected back to the grid using cubic
interpolation. The grid points that have fewer than half of their neighbours classified as
QSVs are re-labelled as not being part of a QSV.

To visualize a sample high-dimensional dataset, t-distributed stochastic neighbour
embedding (t-SNE) is employed (van der Maaten & Hinton 2008). This procedure reduces
the distribution of data to two dimensions while preserving the probability of inter-particle
similarity in the 45-dimensional space. Sample distributions corresponding to one instance
(along with ±2dt) are presented in figure 8(a). They show maps of all the same points
colour coded by ωxy, λ2, pressure and the points denoted as QSVs (1-QSV, and 0-non
QSV) based on the criteria listed above. As can be noted, the regions selected as QSVs
are organized in clusters that typically have high ωxy, low λ2 and low pressure. To assess
the validity of the detection procedures, results have been compared with identification
based on threshold values of λ2 and ωxy. Figure 8(b) compares PDFs of the correlations of
the pressure with λ2 and ωxy for the detected QSVs with those obtained by conditional
sampling involving two conditions, namely that λ2 < −1.7(U/h)2 and ωxy > 3.5U/h,
which correspond to the highest 20 % of the measured values. Conditional correlations
between variables f and g for conditions F and G are defined as

R( f , g) = 〈( f |F − 〈 f |F〉)(g|G − 〈g|g〉)〉/ςf |Fςg|G, (3.1)

where 〈 〉 denote spatial averaging for Eulerian statistics and averaging over instances of
particles for Lagrangian statistics and ς denote standard deviations. For both correlations,
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Figure 9. A sample sequence showing the evolution of detected QSVs at the indicated times colour coded by
their pressure (a–c) and their streamwise vorticity (d–f ).

the results of k-means-based detection have higher tails, implying that more events with
high correlations are captured. Furthermore, examination of time series of structures
(e.g. figure 9) indicates that results of the k-means-based detection appear to be more
continuous in time and space as well as better correlated. For example, the correlations of
λ2 with pressure are 72 % correlated in successive time steps for clustering-based results,
compared with 67 % for the conditionally sampled data. Figure 9 shows three samples of
the evolution of detected QSVs colour coded by their pressure (upper row) and streamwise
vorticity (lower row). As expected, the QSVs mostly appear as inclined structures that have
a negative pressure, i.e. lower than the spatially averaged value in each realization (zero).
Some of the structures have positive and others negative streamwise vorticity, that is, they
form counterrotating vortices, consistent with the description by Bernal & Roshko (1986).

Since the measurement resolution is limited to 200 μm, the Kolmogorov length scales
are estimated based on the dissipation rate ε calculated from fitting a −5/3 slope to the
inertial range of the measured temporal spectra of u2 (Liu, Meneveau & Katz 1994;
Pope 2000). Figure 10 provides samples of these spectra for the two speeds averaged
over points located in the middle of the shear layer and across the span. The estimated
Kolmogorov scales (η = (ν3/ε)1/4) are found to be 62 μm for 1.45 m s−1 and 17 μm for
5.3 m s−1, at least an order of magnitude smaller than the characteristic size of the cavities,
and two orders of magnitudes smaller than the vertical extent of the shear layer. The

Taylor microscales, estimated as
√

15ν(u2
i )/3ε (Pope 2000), are 2.1 mm at 1.45 m s−1 and

0.6 mm at 5.3 m s−1. Statistics on the size, strength and orientation of the QSVs are
presented in figures 11 and 12. To calculate these geometric scales, one must separate
structures that are connected by ‘weak’ links, defined as cases with relatively large
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Figure 10. Frequency ( f ) spectral density of the streamwise velocity fluctuations at y/h =−0.17, averaged over
the entire span and axial extent of the tomographic PIV sample volume. Dashed line is a −5/3 slope fit used
for estimating η.

cumulative distances from nearby non-zero voxels in all directions. Using a Matlab-based
watershed transformation (Meyer 1994), the structures are ‘broken’ at the ridge lines,
where the distributions of distance have local maxima. The length of vortices is determined
based on the largest eigenvalue of the ωxy-weighted second central moments of the volume,
namely the tensor Mij = ∫∫

(xi − x̄i)
2(xj − x̄j)

2ωxy(xi, xj) dxi dxj/
∫∫

ωxy(xi, xj) dxi dxj.
The other two eigenvalues define the cross-section and an equivalent diameter is obtained
from their norm. The characteristic strength is estimated by multiplying the spatially
averaged ωxy within the vortex with the cross-sectional area. The lengths and diameters of
the contiguous regions of low pressures inside the QSVs are also determined by retaining
regions where the pressure p falls below specified thresholds, namely Cp = p/0.5ρU2 < 0,
Cp <−0.1, and Cp < −0.2 and recalculating the eigenvalues of the second central moment
of this volume. The 3-D orientations of the structures are based on the eigenvectors
associated with the largest eigenvalues.

The most likely diameter of the ωxy weighted QSV is 1.25 mm and its length is 2 mm
for both speeds (figure 11a,d). However, a significant fraction of the data has aspect ratio
falling between 2 and 5, with diameters extending to 4 mm, albeit with low probability.
With increasing speed, the fraction of structures with diameters exceeding 2 mm and
lengths over 10 mm increases. As expected, the regions with Cp < 0 (figure 11b,e) and
Cp <−0.1 inside the QSVs (figure 11c, f ) are smaller than the entire QSVs. For both
thresholds, the most probable low pressure zones have a diameter of approximately
0.2 mm, and an aspect ratio of around 2, but values extend to 5 at both speeds. However,
at the higher speed there are more QSVs with diameters exceeding 2 mm and aspect
ratios larger than 2 (figure 11a,d) as well as structures of the same size with negative
pressures (figure 11c, f ). These trends are consistent with those shown by the cavities in
figure 7(a). Also like the cavities, the largest aspect ratio (∼5) occurs for structures with
diameters up to about half of the maximum. However, the different trends with velocity
vanish in the Cp < −0.1 plots (figure 11c, f ). The PDFs comparing the diameters and
aspect ratios of cavities with those of the QSVs and the low pressure regions within them
are presented in figures 11(g) and 11(h), respectively. The cavity diameters are smaller
than those of the QSVs, as one would expect, consistent with trends observed previously
for tip vortices (Choi & Ceccio 2007; Pennings, Westerweel & van Terwisga 2015).
As the pressure thresholds are lowered, the most probable diameters of low pressure
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Figure 11. Joint probability densities in a logarithmic scale of the QSV length and diameter at 1.45 m s−1

(a–c), and 5.3 m s−1 (d–f ) for: (a,d) QSVs, (b,e) negative pressure (Cp < 0) regions within the QSVs and
(c, f ) low pressure (Cp < −0.1) regions within the QSVs. Black and red lines indicate aspect ratios of 2 and
5, respectively. (g,h) Conditional PDFs, at the velocities indicated in the legend, of the: (g) diameters, and
(h) aspect ratios of the QSVs, low pressure regions in them and the cavities.

zones shift from 1.2 mm, the characteristic size of the entire QSVs, to 0.2 mm, matching
the characteristic diameters of the cavities at both velocities. The low-probability largest
diameters also approach those of the cavities with decreasing pressure threshold, matching
them for Cp =−0.2. The most probable aspect ratios of the cavities are smaller than those
of the QSVs (figure 11g) owing to the presence of the ‘small spherical’ cavities during
the initial growth phase. On the high end, the aspect ratios of the cavities are larger than
those of the QSVs. However, as the pressure threshold is lowered, the aspect ratios of
the low pressure regions extend to higher values, nearly matching those of the cavities
at 16 m s−1, and exceeding those at 10.5 m s−1. Furthermore, statistics of the distance
between pressure minima along the QSV, conditioned on Cp <−0.1, are compared with
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U = 1.45 and 5.3 m s−1; and (c) PDFs of the corresponding angles of the cavities.

the distance between cavitation events along the vortex in figure 12. The most likely
separation between events is around 0.2h of either the pressure minima or the cavities,
consistent with the sample visualizations in figures 6 and 9, although the pressure-based
modes are slightly smaller. The peaks are broad, and a significant fraction of the data
extend to 0.6h, where both PDFs increase with velocity. In summary, the dimensions of
the cavities and the distance between them match those of the low pressure regions within
the QSVs. These agreements provide strong evidence that the spatial distribution of the
early cavitation events is influenced significantly by the pressure field.

Figure 13(a) presents the normalized strength of the vortices. The most probable
structures have a strength of 0.06Uh at both speeds. While most of the PDFs for the two
speeds collapse, they diverge at strengths exceeding 0.4Uh, where the probability increases
with velocity. The characteristic strength of spanwise vortices can be estimated as Uδw,
where δw is the vorticity thickness (Brown & Roshko 1974), defined as U/(∂u/∂y)max.
Based on the mean velocity distributions, at the present site δw = 0.65h and 0.7h for
U = 1.45 and 5.3 m s−1, respectively. Hence, the most probable strength of the QSVs is
approximately 10 % of those of the spanwise vortices, consistent with previously reported
levels (Bell & Mehta 1992). However, the extreme values, representing e.g. less than
0.1 % of the structures, have strengths (0.65Uh at 1.45 and 0.74Uh at 5.3 m s−1) that
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Figure 14. (a) The PDFs of the pressure inside and outside the QSVs. Black curves are Gaussian distributions
with the same mean and standard deviation as those of the pressure at U = 5.3 m s−1. (b) Pressure spectra
averaged over the spanwise and streamwise directions at y/h = −0.17.

are comparable to those of the spanwise structures. As noted above, this is the range
where the probabilities are velocity dependent (figure 13a). Statistics on the orientation
of the QSVs with aspect ratios over 2 are presented in figure 13(b) as the angle with
the laboratory coordinate system. Results for the two velocities appear to be remarkably
similar. The angles with respect to the x directions are preferentially small and most likely
to be 15°–30°. The structures are likely to be perpendicular to the spanwise directions,
and to a lesser extent to wall-normal directions as well. Applying pressure thresholds does
not change the trends and are, therefore, not presented. The corresponding statistics of
the orientation of the cavities in the region of tomographic PIV data are presented in
figure 13(c). Their preferred orientations include small angles to the streamwise directions
with a peak around 30°. Like the QSVs, close to perpendicular directions to the spanwise
are preferred. However, the cavities have with almost zero probability of being vertical or
<30° with preference for angles of 60–70°, remaining significant up to 90°.

The statistics of pressure in the shear layer are provided in figure 14. Figure 14(a)
compares the PDFs of pressure inside and outside the QSVs, with the latter representing
about 83 % of the entire data. All the PDFs are nearly symmetric, with the tails being more
intense than Gaussian distributions with same mean and standard deviation (also shown).
These trends are consistent with previously published data on pressure fluctuations in
turbulent shear flows (Brandao & Mahesh 2022). In contrast, for isotropic turbulence,
the PDFs are non-symmetric with longer negative tails, which increase with Reynolds
number (Bappy et al. 2019). The pressures are lower inside the QSVs, with similar shifts
for both velocities, generally scaling with U2. Consequently, a pressure coefficient of
−0.2 is over 7 times more likely to appear inside the QSV than outside of this vortex.
The tails of the pressure fluctuations both inside and outside of the QSVs are larger at
1.45 m s−1 than those at 5.3 m s−1. Based on the trends of inception indices in shear layers
reported in Katz & O’Hern (1986), the inception indices at the current Reynolds numbers
of velocity measurements are expected to fall in the 0.2 to 0.4 range, in agreement with
the magnitudes of the present pressure minima. Recall that the present cavitation inception
tests with indices in the 0.5 to 0.6 range are performed at higher Reynolds numbers. These
values are also in agreement with the trends reported in Katz & O’Hern (1986). Moreover,
the magnitudes of pressure minima are consistent with those of Rankine vortices with the
same size and strength as those of the QSVs. For example, a Rankine vortex consisting of a
solid body rotation core with diameter D of 1.2 mm and strength Γ = 0.06Uh surrounded
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by an irrotational flow, has a core pressure coefficient (pressure drop = ρ(Γ/πD)2) of
−0.17. Furthermore, using Cp =−0.3 to represents the pressure minimum in the core of
QSVs at 5.3 m s−1, following Choi & Ceccio (2007), the expected growth rate of cavities
along the QSV axis should be 1.65U. This value agrees with the presently measured rates
at 10.5 and 16 m s−1 (figure 7c). Figure 14(b) provides the temporal pressure spectra at
y/h = −0.17, averaged over the streamwise and spanwise directions. At both speeds, the
spectra peak at Strouhal numbers of 0.2–0.3, as discussed in several previous studies,
including Driver et al. (1987), which relate it to flapping of the shear layer. In the inertial
region beyond this peak, the spectral decay has a slope of −1.6, consistent with that of
a turbulent boundary layer (Tsuji et al. 2007). Additionally, at 5.3 m s−1, there are a few
low-frequency peaks, which Rockwell & Naudascher (1979) have attributed to intermittent
switching of oscillatory modes based on kinetic energy spectra.

To evaluate the effect of vortex stretching on the pressure, the statistics of the stretching
term along the vortex axis are presented in figure 15. Vortex stretching has been associated
with the energy cascade and intermittent formation of regions with high velocity gradients
(Taylor 1938; Buaria, Bodenschatz & Pumir 2020) and formation of pressure minima
in vortices (Chang et al. 2012). Figure 15(a) presents PDFs of Φ inside and outside of
the QSVs. Stretching (and contraction) inside the QSVs are much higher compared with
those in the surrounding at both speeds, and once scaled with (U/h)2, results collapse.
Stretching events (Φ > 0) are more frequent than contractions everywhere, a typical feature
of turbulent flows owing to buckling of vortices during contraction (Rogers & Moin 1987).
Nonetheless, the QSV contains regions of both significant compression and stretching,
consistent with Verzicco & Jimenez (1999). Figure 15(b) presents PDFs of the correlations
between pressure and the stretching term at the same time and location, with the pressure
conditioned on being negative and the stretching on being positive (stretching). Clearly,
the PDFs corresponding to the interior of the QSVs are substantially broader than those
of the surrounding flow, indicating that in some cases, pressure minima co-occur with
high stretching, as one would expect, yet in other cases, they are not. These findings
have led to a detailed analysis of the evolution of pressure and stretching inside the QSVs
and the relations between them based on Lagrangian statistics. Figure 15(c) shows PDFs
of the axial strain rate magnitude inside the QSVs. Similar to other ensemble-averaged
turbulence statistics, the vortex axial straining magnitudes scale with U/h, with the most
probable values fall in the U/h to 2U/h range. These magnitudes are consistent with the
shear strain along the periphery of spanwise vortices with strength of 0.65Uh, and radius
of 0.32h, hence core azimuthal velocity of 0.32U and strain rate of U/h.

Statistics on the instantaneous alignment of the vorticity relative to the principal strain
rate directions are presented in figure 16(a,b). As shown in previous studies (Ashurst
et al. 1987; Tsinober, Kit & Dracos 1992), the vorticity is preferentially aligned with
the intermediate strain rate. This phenomenon is slightly more pronounced inside the
QSVs, consistent with the previously observed increase in alignment with the intermediate
strain, as the vorticity magnitude increases (Huang 1996; Buaria et al. 2020). There is
no significant alignment preference with the most extensive strain, and the vorticity is
preferentially perpendicular to the most compressive eigendirection with a slight increase
inside the QSVs. Next, we examine the alignment of the QSV structure relative to the
principal strain rate directions (figure 16c) and the vorticity (figure 16d). Since the QSV
structure is often curved, its alignment is defined based on the direction of the largest
eigenvector of Mij introduced previously. Figure 16(c) shows that the QSVs are more
likely to be aligned with the most extensive strain rates eigenvector and less likely to
be aligned with the intermediate strain direction in comparison with the trends of the
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Figure 15. (a,b) The PDFs of the: (a) vortex stretching term, and (b) correlations between negative pressure
and positive stretching; (c) PDFs of the axial strain rate in the QSVs.
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Figure 16. The PDFs of the cosines of the angles between the: (a) vorticity and the principal strain rates
outside, and (b) inside the QSVs; (c) the QSV axes and the local principal strain rates, and (d) the QSV axes
and the local vorticity. Here, s1, s2 and s3 are the most extensive, intermediate and most compressive strain rate
eigenvectors, respectively.

vorticity (figure 16a,b). Yet, overall, the QSVs are still preferentially aligned with the
vorticity (figure 16d), with the distribution being quite broad. In terms of structure, the
PDFs of the strain state parameter (figure 17) confirm the previously published preference
for axisymmetric extension (Lund & Rogers 1994), i.e. a pancake shape. However, this
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Figure 17. The PDFs of the strain state parameter (Lund & Rogers 1994). As illustrated, 1 indicates a
‘pancake’ structure, and −1, a stretched vortex.
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Figure 18. The PDFs of the ratio of the: (a) radial viscous vorticity diffusion in the QSVs to the axial
stretching, and (b) the diameter at the axial stretching limit to the measured QSV diameter.

preference is lower inside the QSVs, implying that they contain more axisymmetric
contraction events, as one would expect for stretched vortices. All the alignment and
configuration trends at the two velocities are remarkably similar. The evolution of s* with
time in the same vortex is discussed later based on Lagrangian statistics.

Next, we examine the impact of viscous diffusion in a direction perpendicular to the
vortex axis on the evolution of the QSVs. The ratio of viscous diffusion (ν∇2ω) to
axial vortex stretching terms, which are presented in figure 18(a), is typically smaller
than one. For the majority of the cases, as long as one does not consider the temporal
variations in the strain field (discussion follows), the impact of viscous diffusion is
significantly smaller than that of the vortex stretching, especially at 5.3 m s−1. However,
in a few cases, the two terms become comparable, much more so at 1.45 m s−1.
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Figure 19. The time fraction of the indicated low pressure events and their durations: (a) inside and outside of
the QSVs at 5.3 m s−1, and (b) inside the QSVs for the two speeds. The dotted vertical lines indicate the scaled
initial growth times of the cavities.

Furthermore, the present structures are very rarely stretched to the viscous diffusion limit,
referring to a situation where the viscous diffusion is equal to the stretching, hence the
vortex core cannot shrink owing to stretching. For an axisymmetric vortex, such situation
occurs when 4νU/hD2

μ = Φ, where Dμ is the minimum diameter. Figure 18(b) provides
the PDF of the instantaneous ratio of Dμ to the actual vortex diameter for the entire QSV
data. As is evident, the stretching limit is rarely reached. Note, however, that the relative
significance of viscous effects increases with decreasing Reynolds number.

Lagrangian statistics: the analysis in a Lagrangian framework examines the durations
and sequence of events underlying the development of pressure minima. With this aim,
105 synthetic, neutrally buoyant, initially randomly distributed particles are tracked in time
for the entire 2 s duration of data acquisition. Their trajectories are determined by using a
fourth-order Runge–Kutta integration of the local velocity. Particles that leave the field of
view are re-seeded at the upstream boundary of the sample volume, while ensuring there
is no bias in their spatial distributions by diluting regions with increased concentration of
particles. To investigate how long the low pressure events last, figure 19 shows the fraction
of time all the particles experience pressures below the specified threshold levels plotted
versus their dimensionless durations. This procedure is similar to the analysis reported
in Bappy et al. (2019) based on DNS data of isotropic turbulence. The experimental
durations are truncated by the residence time of particles being translated through the
sample area at the free-stream velocity, namely 1.2h/U. In figure 19(a) the results inside
and outside of the QSVs for the higher velocity are compared, and figure 19(b) shows the
effect of velocity for the interior of QSVs. The dotted vertical lines mark the measured
initial cavitation growth time, ∼0.2h/U, samples of which are presented in figure 7(b).
As expected, the time fractions decrease with decreasing pressure threshold. For the same
speed, the low pressure events inside the QSVs last significantly longer than those outside
of them (figure 19a). Some of the durations are longer than the initial growth time, but
most of them (∼80 %) are not. Trends in the effect of velocity appear to depend on the
threshold level. For a mild pressure threshold (−0.05 and −0.1), the time fractions are
higher at 5.3 m s−1 than those at 1.45 m s−1. However, as the threshold is reduced to –0.15
the difference between them diminishes. For all thresholds, the slopes are persistently
milder at the higher velocity, implying that the long duration events are more likely
to occur at 5.3 m s−1. Bappy et al. (2019) also show that trends of the frequency of
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Figure 20. Lagrangian pressure–pressure correlations inside and outside the QSVs at the indicated speeds
for: (a) the entire data, and (b) conditioned on Cp <−0.05.

low pressure events with Reynolds number reverse with increasing duration for isotropic
turbulence. They decrease with Re for short durations, consistent with the present findings,
but they increase for long durations. Unfortunately, we cannot increase the present range
of durations without increasing the field of view, hence compromising spatial resolution.

The Lagrangian correlation of pressure at time t with various quantities at time
t + �t for both speeds, inside and outside of QSVs, are provided in figures 20 and 21.
Figure 20(a) shows that the unconditioned pressure–pressure correlations remain above
0.4 for 1.45 m s−1 and 0.5 for 5.3 m s−1, for durations up to 0.8h/U. However, the slopes
of all the correlations indicate a more rapid decay for durations of less than 0.2h/U.
At longer times, the correlations inside and outside the QSVs start to deviate, with those
outside of the QSVs decreasing at a faster rate compared with those inside. Figure 20(b)
provides the pressure–pressure correlations conditioned on Cp < −0.05 at both times.
These correlations decay at faster rates than the unconditioned results, and the differences
between the interior and exterior of the QSVs start at �t = 0. These trends are consistent
with the longer durations of low pressure events inside the QSVs (figure 19a). Here again,
the decay rates of the correlations become distinctly slower at �t > 0.2h/U. For the most
part, the correlations increase with velocity, especially at short times. At �t<0.2h/U, the
differences are significant, but they diminish at �t > 0.8h/U. The differences inside the
QSVs are smaller in the conditional statistics (figure 20b), also consistent with the trends
depicted in figure 19(b). In summary, the pressure–pressure correlations decrease at a
faster rate for short durations, during which the correlation increase with velocity. The
variations with velocity diminish for longer times.

Figure 21(a) provides the pressure–ωxy correlations conditioned on Cp < −0.05 and
ωxy > 5U/h for positive and negative �t. The correlation magnitudes are generally low
(<0.2), but are higher inside the QSVs. As expected, they peak at �t = 0, indicating
that low pressure events preferentially co-occur with elevated ωxy only inside the QSVs.
While the peak value at 5.3 m s−1 is lower than that at 1.45 m s−1, the correlations at
5.3 m s−1 remain elevated for a longer duration, implying that the pressure minimum and
(presumably associated) vorticity maximum last for a longer time. The correlations of low
pressures with axial vorticity stretching and contraction events are shown in figures 21(b)
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Figure 21. Lagrangian correlations of pressure at time t (conditioned on Cp <−0.05 and ωxy > 5U/h) with the
following quantities at time t +�t: (a) ωxy (b) axial vorticity stretching and (c) contraction inside and outside
of QSVs. (d) The average strain state parameter at time t +�t.

and 21(c), respectively. Outside the QSVs, the correlations remain low irrespective of
time. However, inside the QSVs the correlations with contraction peak at �t = 0.2h/U
and those with stretching between −0.2h/U and −0.8h/U. These trends suggest that low
pressure events in the QSVs preferentially involve a dynamic process consisting of a period
of stretching with duration of about 0.6h/U, followed by a period of low pressure, ending
with a contraction event. Conditional sampling based on the evolution of straining (not
shown) confirms that the pressure decreases during the period of peak straining, reaching
minimum when as the straining diminishes.

The Lagrangian evolution of average (over all particles) strain state parameter when
the pressure coefficient at time t is lower than −0.05 are presented in figure 21(d).
As shown earlier, the QSVs have lower values of s* compared with the surrounding
flow, corresponding to a reduced tendency for axisymmetric extension. Starting from
�t ∼ −0.6h/U, around the time where the vortex stretching starts (figure 21b), s*
decreases, reaching a minimum at �t ∼ 0.2h/U, at the time of peak contraction.
These observations suggest causal relationships between vortex stretching and increased
tendency towards axisymmetric contraction inside the QSVs. The same trends, but with
persistent higher s*, are observed in the surrounding flow. Before concluding this section,
one should note that in contrast to the pressure–pressure correlation, all the Lagrangian
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Figure 22. Lagrangian correlations of pressure at time t (conditioned on Cp <−0.05 and ωxy > 5U/h) within
the QSVs with the following spatially filtered quantities at time t +�t: (a) axial vorticity stretching, (b) ωxy
and (c) axial contraction. The spatial filter involves a 3-D Gaussian filter with standard deviation of 0.2 mm.
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Figure 23. Lagrangian evolution of: (a) pressure change, (b) stretching and (c) vorticity when Cp is minimal at
�t = 0 (conditioned on Cp <−0.05 and ωxy > 5U/h) at U = 1.45 and 5.3 m s−1. The error is determined from
a bootstrap analysis involving 5 different subsets.

correlations presented in figure 21(a–c) are more prominent at 1.45 m s−1 compared
with those at 5.3 m s−1. The primary cause involves local fluctuations in the magnitudes
of vorticity and stretching, which are larger at the high velocity, presumably owing to
the higher turbulence level. When the vorticity and stretching term are spatially filtered
using e.g. a 3-D Gaussian filter with standard deviation of 0.2 mm, the correlation
magnitudes increase, and the differences in correlation between the two speeds diminish,
as illustrated in figure 22. The time delay of the peaks in the stretching–pressure and
contraction–pressure correlations are longer at 5.3 m s−1, consistent with the longer
durations of the vorticity–pressure correlations (figure 22b).

The time scales of minimum pressure and associated stretching and peak vorticity
events are examined next. Figure 23 provides the changes to the magnitude of the average
pressure over time, �Cp = Cp(t +�t) − Cp(t), as well as the corresponding average
stretching term Φ (positive or negative) and vorticity ωxy for the same particle group
within the QSV. Errors estimated based on bootstrapping by dividing the data into 5
sets are also presented. Similar to the correlations, the data are provided for when
a pressure minimum for each particle trajectory occurs at �t = 0. Only cases where
minimum pressure coefficient is below −0.05 and instantaneous ωxy exceeds 5U/h are
considered. The average pressure minimum at 1.45 m s−1 is deeper compared with that at
5.3 m s−1, but this minimum develops and decays at a significantly faster rate. The time
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scale of the exponential decay rate is 0.11h/U at 1.45 m s−1 vs. 0.28h/U at 5.3 m s−1.
These trends with velocity, and the magnitudes of time scales, are consistent with those
of the initial decrease in pressure–pressure Lagrangian correlations (figure 20b), i.e.
0.2h/U. While the pressure-conditioned average stretching is always positive, it peaks
at �t ∼ −0.5h/U, and then decreases monotonically until �t ∼ +0.3h/U, the timing of
peak conditional contraction. The duration of transition is clearly longer than that of
the change in pressure. Another result of note is the time delay between two stretching
peaks, ∼1.5h/U (figure 23b), which appears also in the Lagrangian pressure–stretching and
pressure–contraction correlations (figure 22a,c, respectively). The average vorticity peaks
when the pressure is minimum and the trends of vorticity are nearly identical for the two
speeds. In summary, it appears that the dynamic changes to the vortex pressure and strain
fields involve two time scales, a shorter time over which the pressure decays, and a longer
time consistent with the stretching–contraction cycle. While the latter is independent of
the Reynolds number (figure 23b), the shorter time scales of pressure decay increase with
velocity.

The next discussion describes our attempt to understand the flow mechanisms affecting
the spatio-temporal evolution of pressure and straining in the QSVs. The following
analysis, therefore, describes the length scale of events along the QSV axis. To find the
QSV axis, after applying the watershed transformation as described before, the vortex is
skeletonized (Lee, Kashyap & Chu 1994), i.e. reduced to a line or line segments defining its
centre, which is not necessarily the centre of vorticity. This step is only used for identifying
the ends of the vortex segment, and for determining whether the vortex contains multiple
branches. Then, starting from the detected ends in the case of multiple branches or the
centroid in the case of a single branch, the ‘vortex axis’ is built by marching by a distance
of 100 μm along the local (total) vorticity vector until a boundary of the structure is
reached. This process is repeated for each vortex segment. This axis is evolved in time by
displacing synthetic particles located less than 50 μm away from the axis according to the
local velocity to determine its next location. The result is compared with the location of the
detected QSV axis in the next frame. Due to limitations in spatial resolution, the displaced
axis based on particle motion and that determined based on the vorticity distribution could
be different by up to the grid size of 200 μm. Only particles located less than 100 μm from
the detected axis in the next frame (overwhelming majority of them) are used for defining
the location of the QSV in the next time step. In cases of discontinuities, the vortex axis
in the next frame is used for filling missing segments. Vortex axis locations that do not
correspond to segments detected in previous times are treated as new structures, which
are then allowed to evolve in time. Figure 24 shows several sample QSV along with their
detected centres. The pressure, strain rate, axial velocity, vorticity and vorticity stretching
terms along the axes are recorded. Approximately one half of the approximately 60 000
detected QSVs for each velocity are rotating along the flow direction, i.e. ωx is positive,
and the other half are opposite to it.

Figure 25 shows the conditionally averaged evolution of pressure and vortex stretching
along the same QSV axis at five time steps around a pressure minimum detected at
dt = 0. For each time (two with dt < 0 and two with dt > 0, and for dt = 0), we provide
the distribution of average pressure and stretching along the axis of the same (displaced)
vortex. That means that for all the curves dl defines the distance from the same segment
along the vortex axis where the pressure minimum is located at dt = 0. Hence, the
displacement of the entire curve represents e.g. propagation of a pressure wave along
the vortex axis. The data are conditioned on pressure minima with Cp < −0.05 as well as
ωxy > 5U/h at dt = 0 and ds = 0. Results for the two velocities are presented separately and,
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Figure 24. Samples of QSV segments as determined by the k-means clustering (in red) along with their
detected axes.
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(a,b) U = 1.45 m s−1 and (c,d) U = 5.3 m s−1.
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Figure 26. A schematic showing the evolution of a vortex segment subjected to local stretching: (a) prior to
stretching, (b) formation of secondary azimuthal rings that oppose the stretching and cause contraction and
(c) formation of rings that oppose the contraction and cause extension.

owing to the differences in dimensionless time resolutions of data acquisition, the time
steps, i.e. values of dtU/h, are different. Both clearly show evidence of a standing wave
of vortex stretching. The evolutions of the stretching terms (figure 25b,d) indicate higher
than the conditionally average values at dt < 0 (the average is 2.2U2/h2 at 1.45 m s−1 and
2U2/h2 at 5.3 m s−1), and lower values at dt > 0. These trends are consistent with the
results of Lagrangian correlations in figures 21 and 22, which show that the pressure
minimum is preceded by a stretching event and followed by a contraction. Based on
figure 25, the characteristic wavelength λ of the stretched vortex segment is approximately
2.4 mm at both speeds, approximately twice the most probable diameters of the QSVs
(figure 11). Recall that the typical aspect ratio of the QSVs is also approximately 2
(figure 11) In comparison, the Taylor microscales at 1.45 and 5.3 m s−1 are 2.1 and
0.6 mm, respectively. Therefore, the size of the stretched vortex sections is closer to the
dissipation scales at 1.45 m s−1. This observation introduces the possibility that differences
in viscous effects influence the time scales of low pressure events, as elaborated upon in
the discussion that follows. The time variations of pressure decay are the same as observed
in figure 23(a).

Elucidating scale effects in QSV dynamics based on the data: in an attempt to elucidate
the mechanisms affecting the observed time evolution of low pressure events within
the QSVs, we rely on previously published data on the dynamics of deformed vortices
(Verzicco & Jimenez 1999; Pradeep & Hussain 2001; Abid et al. 2002; Moet et al.
2005). Conceptual schematic descriptions of the processes occurring when a segment of
a vortex undergoes local stretching are illustrated in figure 26. When the core size and
pressure decrease locally (figure 26b), a part of the initially axial vorticity realigns in
the azimuthal direction (Abid et al. 2002). In a cylindrical coordinate system depicted in
figure 26, this realignment corresponds to the ∂ωθ/∂t = ωz∂vθ/∂z term in the vorticity
transport equation. This process in effect generates two vortical rings on both sides of
the stretched area, or what has been referred to as coiling of vortex lines. Flow induced
by the azimuthal rings opposes the initial stretching, eventually causing a contraction
(figure 26c). In extreme cases, collision between these opposite sign vortex rings can cause
vortex bursting (Verzicco & Jimenez 1999). Once contracted, a new set of rings forms,
which reverses the axial contraction, resulting in an oscillatory motion of stretching and
contraction, hence periodic formation of low pressure regions. According to simulations by
Abid et al. (2002), the older rings do not decay, but new successive ones with alternating
signs form inward of the previous rings. Therefore, the new rings have a stronger effect
on the stretching or compression of the axial vortex than the previous generations.
Multiple sites of local stretching–contraction cycles could presumably create intermittent
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Figure 27. A comparison of the Lagrangian evolution of the QSV radius based on the measured evolution of
pressure when Cp is minimal at �t = 0 ((3.2), dashed lines) with that of a viscous vortex subjected to stretching
followed by contraction, both with a magnitude of |s| = U/h (3.3).

islands of low pressure along the vortex, a scenario consistent with the multi-point
cavitation events shown in figure 6. The vortex also diffuses, and consequently both the
amplitude of its oscillations and its overall strength decay under the influence of viscosity,
with the rate of diffusion decreasing with increasing Reynolds number (Verzicco &
Jimenez 1999; Abid et al., 2002). Abid et al. (2002) also show that the vortex response
to axial straining is primarily an inertial process, with the frequency of oscillations f,
being dependent only on the initial vortex radius R0, vorticity ω0 and the wavelength of
the stretching events λ, namely f = 2.4ω0R0/λ. For the present conditions, using a vortex
radius of 0.06h (figure 11g) to represent the vortex prior to local stretching, a strength of
0.06Uh (figure 13a), and length of stretching event of λ= 0.24h (figure 25), the predicted
frequency is 3.7U/h, i.e. a period of 1.7h/U. This value is consistent with the presently
measured period of stretching–contraction events presented in figure 23(b), suggesting that
the observed processes are indeed a result of oscillatory vortex reaction to local stretching
events.

The next discussion attempts to estimate the changes to the vortex radius as the
pressure evolves around the time of minimum pressure. Unfortunately, the present spatial
resolution, 0.2 mm, is not sufficient for resolving the time evolution of the vortex radius R
during the stretching-contraction events. However, the evolution can be deduced from the
pressure measurements. For example, in a Rankine vortex consisting of a rotational core
with radius R and a uniform vorticity, the pressure in the centre is p = p∞ − 5ρΓ 2/8π2R2.
Hence,

ΔCp/Cp0 + Cp min/Cp0 = (R0/R)2, (3.2)

where Cp0 is the conditionally averaged pressure coefficient before the stretching starts,
R0 is the corresponding initial radius, assumed to be 0.6 mm for the two speeds,
Cp min is the minimum conditionally averaged pressure coefficient and values of �Cp
are provided in figure 23(a). The present values are: Cp0 = −0.04 and −0.02, and
Cp min = −0.16 and −0.11 at 1.45 and 5.3 m s−1, respectively. Equation (3.2) allows us
to estimate the time evolution of R/R0 using the measured pressure. The results for both
velocities, assuming that stretching begins at �t =−1.3h/U, are presented in figure 27.
It shows that the core radius is almost halved during stretching, decreasing to a size
consistent with the core diameter during low pressure events (0.4 mm, see figure 11g).
The evolution of the radius can also be evaluated for a vortex subjected to straining and
viscous diffusion. The viscosity-induced time evolution of circulation in a Lamb–Oseen
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vortex is Γ = Γ0(1 − e−r2/4νt), where Γ 0 is the vortex strength far from the core
(Batchelor 1967). For this vortex, the radius of maximum tangential velocity is R(t) =
2.24

√
νt, i.e. R2(Δt + 1.3h/U) = R2

0 + 5.02ν(Δt + 1.3h/U). The viscous terms are
significant, e.g. the viscous growth during a period of h/U is 31 % and 16 % of R0 for
1.45 and 5.3 m s−1, respectively. In addition to the viscous effects, the radius also changes
due to vortex stretching and contraction. For a cylindrical vortex element with a constant
volume of πR2λ, dR/dt = −sR/2, where s = 1/λ dλ/dt is the axial strain rate. Thus, the
axial strain causes an exponential rise or decay of the vortex core radius. Accounting for
both straining and viscous diffusion, an approximation for the growth rate of the radius is

dR/dt = −sR/2 + 2.5ν/R, (3.3)

which, for a fixed s over time would yield,

(R/R0)
2 = (1 − 5.02ν/sR2

0) e−s(Δt+1.3h/U) + 5.02ν/sR2
0. (3.4)

The time evolutions of R/R0 for characteristic stretching with a strain rate of s = U/h
(figure 15c) for a duration of 1.3h/U at both speeds, followed by contraction with the same
magnitude and duration, are also plotted in figure 27. As time increases, the changes to
the radius at the two speeds diverge owing to differences in viscous effects. The viscosity
slows down the reduction in radius during stretching, and enhances its growth rate during
contraction. The magnitude and trends with velocity of the pressure-based estimates, and
those calculated for the strained viscous vortex, are similar. Differences can be attributed
e.g. to our use of a fixed strain rate magnitude throughout the vortex evolution, as opposed
to the time-varying s, uncertainty in R0 and pressure and much higher complexity in
the actual system. Results obtained when the viscous term in (3.4) is removed, i.e. for
(R/R0)

2 = e−sΔt, also shown in figure 27, are identical for the two speeds. As expected,
the inviscid vortex has a smaller radius than the viscous ones. Note that the modelled trends
of the QSV radius with Reynolds number are consistent with those of the measured values
(figure 11g). While the unconditioned diameters at the two speeds are similar, those of low
pressure events decrease with increasing velocity. In summary, this analysis suggests that,
despite the nearly identical (scaled) straining and initial QSV diameter, viscous diffusion
causes significant differences in the evolution of vortex radius at the two speeds. To
understand this trend, note that while the overall Reynolds number of the current shear
layer is high, at the scales of the QSVs, the Reynolds numbers are significantly lower, e.g.
Γ /ν is 870 and 3180 at 1.45 and 5.3 m s−1, respectively.

The minimum pressure in the modelled stretched vortex decreases with increasing
Reynolds number. For example, for the same initial pressure coefficient of −0.03 (mode
of the PDF in figure 14a), the modelled minimum pressure coefficient for s = U/h for
a duration of 1.3h/U is −0.09 and −0.1 at 1.45 and 5.3 m s−1, respectively. Since the
turbulence, strength of vortices and strain rate scale with U (figures 4, 13a and 15c), it
is reasonable to assume that the same trends hold for higher speeds. Accordingly, the
characteristic minimum pressure coefficient in the stretched vortices is −0.121 and −0.122
at 10.5 and 16 m s−1, respectively, i.e. the Reynolds number effects diminish under these
conditions. To reach the state of early cavitation events at 10.5 and 16 m s−1, e.g. σ = 0.5
(figure 5b), which would require Cp min ≤ −0.5, a vortex with the same size and initial
pressure has to be subjected to a stretching strain rate of s = 2.2U/h. Based on figure 15(c),
such straining is ubiquitous, hence stretching to the cavitation inception levels is consistent
with the present data. The modelled time scales associated with low pressure events can
also be estimated by relating the radius to Cp (3.2), and using (3.4) for calculating the
time required for the (negative) core pressure coefficient to increase from its minimum
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value to half that minimum during contraction. For the conditions presented in figure 27,
this time is 0.34h/U and 0.52h/U at 1.45 and 5.3 m s−1, respectively. These values are
of the same order of magnitude but larger than the corresponding experimental ones,
0.12h/U and 0.3h/U, based on the data in figure 23(a). Furthermore, the predicted and
measured time scales are consistent with the conditional statistics of durations presented
in figure 19. For a threshold Cp of −0.05, similar to the data in figure 23(a), for the same
fraction of time (e.g. 2 × 10−4), the duration at 5.3 m s−1, 0.52h/U, is longer than that
at 1.45 m s−1, 0.34h/U (figure 19b). The longer durations with increasing Re are also a
likely contributor to the higher Lagrangian pressure–pressure correlations at 5.3 m s−1

(figure 20). Finally, extrapolating the modelled trends to the cavitation speeds, the time
scales of low pressure events at 10.5 and 16 m s−1 are 0.56h/U and 0.58h/U, respectively,
i.e. they are much closer than those of the pressure measurements. If we extrapolate the
experimental durations instead, but still maintain the logarithmic trend predicted by the
model, the gap would be significantly bigger, 0.48h/U and 0.62h/U, respectively. In both
cases, these time scales are longer than those of the duration of cavitation events, ∼0.2h/U
(figure 19). With increasing durations of low pressure events, one would expect an increase
in the likelihood of cavitation events (figure 5b), and once they occur, longer cavities,
consistent with figure 11(h).

3.4. Nuclei dynamics
This section examines how the nuclei spatial distributions with respect to the low pressure
regions affect cavitation inception. Figure 28(b–d) provides the number density of bubbles
for ‘natural’ seeding for the locations indicated in figure 28(a) at various cavitation
indices. The free-stream distributions are quite similar at all speeds and σ , except one
case, for U = 16 m s−1 and σ = 0.45, which has a similar distribution, but slightly higher
concentrations. These size distributions are also similar in magnitude and slope (−4) to
those compiled from prior laboratory and oceanic observations (e.g. Khoo et al. 2020).
There are many possible reasons for the slight increase in the highest speed and lowest
cavitation index, such as some minor cavitation elsewhere in the test facility. In the
recirculation zone, for each velocity, the number density increases with decreasing σ ,
and the slopes are steeper, indicating higher fractions of small bubbles compared with
large ones. Most notable, the concentrations at 10.5 m s−1 are significantly higher than
those at 16 m s−1 for all σ , in contrast to the trends of void fractions in the shear layer,
which are ∼4 times higher at 16 m s−1. This trend is likely related to differences in the
absolute mean pressure in the facility, keeping in mind that for the same σ , e.g. σ = 0.5, the
pressure at 10.5 m s−1 is 0.46 bar, and that at 16 m s−1 is 1.04 bar. Consequently, while the
dissolved oxygen level is nearly the same in both cases (5.5 ppm), the saturation levels of
non-condensable gases are different, 130 % at 10.5 m s−1, and 75 % at 16 m s−1. Hence, the
water in the test section is supersaturated at 10.5 m s−1 and undersaturated at 16 m s−1. As
a result, in the relatively quiescent region in the recirculating zone (0.1U), mass diffusion
is expected to increase the number density of detected bubbles at 10.5 m s−1 and decrease
it at 16 m s−1. Since some of these bubbles are likely to be entrained into the shear layer,
becoming nucleation sites there, one should not be surprised to find higher concentration
of small nuclei (<200 μm) at the lower velocity in the shear layer as well. Conversely, the
concentration of large bubble at 16 m s−1 exceeds that at 10.5 m s−1, presumably owing
to differences in generation by local cavitation events (figure 5b). Indeed, at the high end,
the size of these bubbles is comparable to that of the cavities. The slopes of the number
density distributions also increase from −5 to −2 with decreasing cavitation index.
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Figure 28. (a) The location of ‘natural’ bubble distribution measurements shown on the spatial distribution of
cavities at 16 m s−1 and σ = 0.55. (b–d) The nuclei number densities for the indicated velocities and cavitation
indices, all slightly below cavitation inception levels, in the: (b) free stream, (c) recirculation region under the
shear layer and (d) shear layer. Dotted lines show the indicated slopes.

In summary, the small nuclei concentration in the shear layer is higher at 10.5 m s−1

than that at 16 m s−1, in clear contrast to the void fraction of cavitation events. Hence,
availability of nuclei is not the reason for the increase in the number of cavitation events
with increasing velocity. These observations support the arguments made in the previous
section that the spatial distribution of cavitation events is dominated by the structure of the
pressure field, namely the size, shape, location and duration of low pressure events inside
the QSVs.

To determine how the nuclei distributions are affected by entrainment of free-stream
bubbles into the low pressure regions of the shear layer, we compare the spatial and size
distributions of bubbles under controlled seeding at a pressure high enough to prevent
cavitation behind the step. We intentionally perform experiments at the same pressure
to minimize bias caused by mass diffusion, as discussed above. The nuclei number
densities at three different speeds (1.45, 10.5 and 16 m s−1) are shown in figure 29(a).
Here, the free-stream and shear layer data are presented in the same plot to allow direct
comparisons. Note that the size range is quite limited and does not differ significantly from
the injection diameter of 60 μm. In general, there are small difference in the free-stream
(FS) size distributions with the bubbles at 10.5 m s−1 being slightly larger than those of
the other speeds, yet the overall concentrations differ by less than 11 %. The free-stream
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Figure 29. Data for controlled bubble injection at a mean tunnel pressure of 1.1 bar: (a) nuclei number
densities in the free stream, denoted as FS, and in the shear layer (SL) for the indicated velocities. The sample
areas are marked in the inset. (b) The corresponding vertical profiles of microbubble concentration.

concentrations do not vary significantly with axial and spanwise location (not shown).
Within the shear layer there is minimal difference between the number densities at 10.5
and 16 m s−1, but the concentration at 1.45 m s−1 is smaller in the 50–70 μm size range,
presumably owing to weaker entrainment into low pressure regions within eddies.

Vertical profiles of bubble concentrations in the shear layer and the free stream are
provided in figure 29(b), this time using a linear scale to highlight differences. The error
bars are based on a bootstrap analysis of 5 subsamples. In all cases, the profiles have two
maxima, with the larger one located at approximately y/h = 1.2, well above the shear layer.
The free-stream concentration is consistent with the bubble injection rate, and by design,
the magnitude and location of the bubble concentration peak show minimal effects of
velocity. It appears that significant fractions of the injected bubbles end up in the free
stream, and do not play any role in cavitation inception. The combined effects of buoyant
rise (1.8 mm s−1 for a 60 μm bubble) and vertical pressure gradients, which oppose each
other, are not significant to be observed in the free-stream profile. The second and slightly
lower peak is located inside the shear layer, in the region of high mean velocity gradients
(figure 3), peak Reynolds shear stresses (figure 4) and the same area where cavitation
inception is most prevalent. All the concentrations are lower in the shear layer, 35 % of the
free-stream values at 1.45 m s−1 and 75 % at the higher speeds, but the characteristic sizes
of bubbles are slightly larger. Identification of possible reasons for this trend, e.g. selective
entrainment of large bubbles, turbulence-induced rectified diffusion and even residence
time in the recirculating region below the shear layer, is beyond the present scope. Note
that, for a flow field with similar characteristics, i.e. the same scaled velocity and pressure
fields, the actual pressure gradients induced by the shear layer eddies and, therefore, the
associated entrainment rates, increase with velocity. At the higher velocities, the maximum
concentrations do not differ significantly from each other, and they are both approximately
75 % of the free-stream values. Hence, they do not exhibit trends that would explain the
differences in the number of cavitation events. Between the two peaks, especially in the
upper edge of the shear layer at this axial location, 0.0 < y/h < 0.5 (figure 4d), the bubble
concentration is very low, suggesting that they might have been depleted by entrainment
into the middle of the shear layer. It should be noted that Allan et al. (2022) also report an
inward entrainment of bubbles, which are injected into the boundary layer upstream of a
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Figure 30. (a) Sample trajectories at U = 16 m s−1 containing ‘trapped’ bubbles highlighted in red; and
(b) a comparison of the vertical profiles of bubble mean streamwise velocity with that of the liquid. Error
bars indicate the standard deviation.

downstream-facing step, at x/h > 3. They also observe that the nuclei concentration, above
a certain threshold, does not seem to have a major effect on the rate of cavitation events.

Other effects can be inferred from the statistics of nuclei distributions and motions,
as summarized in figure 30. First, figure 30(a) shows several sample bubble trajectories
at 16 m s−1. Close to the free stream, at the upper edge of the shear layer, the bubble
trajectories are more likely to be nearly straight. In contrast, deeper in the shear layer,
the bubble trajectories become complex, and they appear to slow down and linger for a
brief period of approximately 0.1h/U before accelerating again. The trajectory segments
where the bubbles are ‘trapped’, i.e. where their speed is lower than 0.06U, are marked
in red. This selected threshold is approximately 50 % of the r.m.s. of the liquid vertical
velocity fluctuations, 0.12U, based on the 2-D PIV data in figure 4. As is evident, the
trapped segments frequently have small radii of curvature, a phenomenon that can be
attributed to interactions with the shear layer vortices. Such trapping has been seen at all
velocities for approximately 10 % of the nuclei. Characteristic kinked trajectories have also
been observed for bubbles entrained by vortex rings (Sridhar & Katz 1999). The vertical
profiles on the mean bubble streamwise velocity are compared with the liquid velocity in
the shear layer in figure 30(b). In the middle of the shear layer, i.e. at −0.5 < y/h < −0.1,
where the bubble concentrations and the Reynolds stresses peak, the bubbles are slower
than the mean flow at all speeds. Above and below this region, the differences from the
mean liquid velocity diminish. The shape and location of the bubble trajectories suggest
that the observed trapping is at least one of the mechanisms for the reduced bubble speed.
Trends with velocity are difficult to decipher, and do not deviate beyond the uncertainty
determined based on bootstrapping. In summary, the sample results in figures 29 and 30
suggest that interactions between bubbles and vortices affect the bubble dynamics to a
level that cannot be ignored in assessing the conditions for cavitation inception. There
is a considerable increase in entrainment of bubbles into the shear layer as the velocity
increases from 1.45 to 10.5 or 16 m s−1. Yet, the concentrations, as well as spatial and
size distributions at 10.5 and 16 m s−1 are quite similar. Hence, they do not point at
nuclei-related dynamics that affects the observed rates of cavitation events.
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4. Conclusions

This experimental study characterizes the location of cavitation inception and the
associated pressure fluctuation statistics in the near field of a shear layer behind a
backward-facing step. Results at free-stream velocities of 10.5 and 16 m s−1 confirm
that cavitation inception preferentially occurs in the core of quasi-streamwise secondary
vortices located at 0.45 < x/xr < 0.75, i.e. upstream of the peaks in turbulence level. Unlike
the profiles of mean velocity and Reynolds stress components, which collapse when
scaled using the free-stream velocity and reattachment length, the cavitation-induced
void fractions and the aspect ratio of cavities at the same cavitation index increase
with increasing speeds. The visualizations indicate that cavitation inception takes place
intermittently at multiple points along quasi-streamwise vortices, with different events
not necessarily occurring at the same time. To understand these phenomena and trends
with Reynolds number, this paper examines the interaction of low pressure events
in the QSVs with the strain field in the shear layer in Eulerian and Lagrangian
reference frames. Constrained by the available equipment (maximum 15 kHz), the
3-D time-resolved velocity measurements are performed at 1.45 and 5.3 m s−1 using
tomographic particle tracking, and the pressure distribution is calculated by integrating
the material acceleration. Data analysis examines the scaling trends of the size, shape,
evolution and durations of low pressure events, and compares them with the configuration
of cavities. The QSVs are detected using k-means clustering based on quantities derived
from velocity gradients. In addition, we examine the spatial distributions of ‘natural’ and
seeded nuclei in and around the shear layer to determine whether they play a significant
role in the scaling trends.

Statistical analysis shows that the pressure is lower, and its minima last longer within
the QSVs compared with the surrounding flow. The low pressure regions in the QSVs are
similar in diameters, aspect ratios and orientations to the cavities. Conditional statistics
based on pressure magnitude indicate that with decreasing pressure threshold, the PDFs
of the dimensions of low pressure events match those of the cavitation. Like most
turbulent flows, the vorticity is preferentially aligned with the intermediate eigenvector
of the strain rate tensor. However, this preferred alignment is less pronounced within
the QSVs, where there is an increased probability of alignment with the most extensive
eigenvector. Compared with the surrounding flow, the QSVs are subjected to both higher
axial stretching and higher axial contraction. Occurrence of pressure minima inside the
QSVs (but not outside of them) preferentially involves a dynamic process consisting of
a period of stretching with duration of approximately 0.6h/U, followed by a low pressure
event that lasts approximately 0.2h/U, and ending with a contraction that starts shortly
after the pressure minimum. This sequence of events is explained in terms of the response
of a vortex segment to local stretching, a topic that has been investigated before in simpler
settings. These studies (e.g. Abid et al. 2002; Moet et al. 2005) show that local stretching
initiates periodic stretching–contraction oscillations induced by formation of auxiliary
vortex rings, which originate from realignment of vortex lines. Consequently, the regions
of low pressure are localized and intermittent, and they might occur at multiple points
along the vortex at the same or different times. The previously published time period of
a vortex undergoing a stretching–contraction cycle matches the presently observed time
scales of the straining cycles of the QSVs.

Lagrangian conditional statistics indicate that the decay of pressure minima and
pressure–pressure correlations within the QSVs occurs at a slower pace with increasing
velocity. In contrast, the time history of straining is independent of the Reynolds number.
To explain these trends, it is argued that that, owing to their small size, viscous diffusion,
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hence the Reynolds number, plays a significant role in the response of the vortex to
axial straining and contraction. Specifically, viscous diffusion of the vortex core, which
increases its size, hence opposes the effect of axial stretching, decreases with increasing
Reynolds number. Consequently, for the same axial straining, the QSV diameter and
pressure minimum in its core decrease as the Reynolds number increases. A simple model
of the vortex evolution under the combined effects of stretching/contraction and viscous
diffusion agrees with the observed growth/decay rate of the pressure minima within
the QSVs. Extrapolating the model predictions suggests that the Reynolds number effects
on the pressure minima extends to the speeds of the cavitation tests as well, providing a
plausible explanation for the Reynolds number scaling trends of cavitation inception.

The potential impact of availability of nuclei in the shear layer has also been studied
under ‘natural’ and controlled seeding. Under ‘natural’ seeding and cavitation indices
corresponding to inception or low levels of cavitation, the concentrations of nuclei
contradict the increase in the rate of cavitation events with the Reynolds number. In
fact, owing to the differences in the absolute pressure for the same cavitation index,
the water within the shear layer and in the separated region under it is supersaturated
with non-condensable gas at the lower speed and undersaturated at the higher speed.
Consequently, the concentration of micro-bubbles is much higher at the lower speed, in
contrast to the number cavitation events and concentration of large bubbles resulting from
the cavitation. Controlled injection of microbubbles into the free stream at pressure well
above cavitation inception level results in partial entrainment into the shear layer. Tracking
of the microbubbles reveals several other phenomena, such as trapping by vortices, which
causes a reduction in the mean velocity of the bubbles compared with the surrounding
flow. Increasing velocity from 1.45 to 10.5 m s−1 results in a three times increase in the
concentration of entrained bubbles, but the change between 10.5 and 16 m s−1 is small.
Hence, availability of nuclei does not seem to be the cause for the observed differences in
cavitation inception rates. In conclusion, the observed scaling trends, which are consistent
with other studies of cavitation inception in shear layers, are more likely associated
with differences in the unsteady pressure field. The present measurements and statistical
analysis suggest that they are caused by effect of Reynolds number, or more specifically,
viscous diffusion, on the evolution of secondary vortices subjected to axial straining.
Future research that would further improve our understanding of the processes involved
should follow the time evolution of the pressure and strain fields at the relevant velocities
and in a spatio-temporal resolution that captures the vortex core dynamics.
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