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Abstract

We investigate whether the property of having linear quotients is inherited by ideals generated by
multigraded shifts of a Borel ideal and a squarefree Borel ideal. We show that the ideal generated by
the first multigraded shifts of a Borel ideal has linear quotients, as do the ideal generated by the kth
multigraded shifts of a principal Borel ideal and an equigenerated squarefree Borel ideal for each k.
Furthermore, we show that equigenerated squarefree Borel ideals share the property of being squarefree
Borel with the ideals generated by multigraded shifts.
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1. Introduction

Syzygies of a multigraded module are of great interest from various point of view (see,
for example, [2–4, 7, 12]). We shall consider monomial ideals as multigraded modules
and ask which properties are shared between the ideal itself and the ideals generated
by its multigraded shifts. More precisely, let S = k[x1, . . . , xn] be the polynomial
ring in the variables x1, . . . , xn over a field k. We consider this ring with its natural
multigrading and refer to a monomial and its multidegree interchangeably, that is,
S (xa) denotes the free S -module with one generator of multidegree xa. Suppose that
I ⊆ S is a monomial ideal with minimal multigraded free resolution

F : 0→ Fp → · · · → F1 → F0,

where
Fk =

⊕
a∈Zn

S (xa)βk,a .

Consider the ideal Jk(I) = ({xa | βk,a , 0 }) generated by the kth multigraded shifts of I.
We ask which properties are preserved when transferring from I to Jk(I).
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It is possible to construct a monomial ideal with a given resolution (see, for
example, [1, 6, 13, 15]). However, we will see that there may be no ideal with a
specified property which has a given set of kth multigraded shifts.

We study these questions for Borel ideals and squarefree Borel ideals. Along with a
variety of significant properties of Borel ideals, a result by Galligo [9] states that if k is
of characteristic zero, the generic initial ideal of a graded ideal is always a Borel ideal.
So, inheriting important homological properties by generic initial ideals makes Borel
ideals more interesting. Multigraded shifts of these ideals were studied in Eliahou and
Kervaire [5].

Borel ideals, as well as their squarefree analogue, squarefree Borel ideals, have the
important property of having linear quotients. We investigate whether this property
is inherited by the ideals generated by the multigraded shifts. Miller and Sturmfels
[14, Theorem 2.18] showed that the ideal generated by the first multigraded shifts of
an equigenerated Borel ideal has linear resolution. We will show in Proposition 3.2
that this ideal has linear quotients. We present an example in Section 3 to show that
the same statement does not necessarily hold for the ideal generated by the kth shifts
if 2 ≤ k ≤ pd(I), the projective dimension of I. However, in Theorems 3.4 and 4.3,
we show that if I is a principal Borel ideal or a squarefree Borel ideal, then the
ideal generated by the kth multigraded shifts has linear quotients for k = 0, . . . , pd(I).
Furthermore, Proposition 4.1 shows that the property of being squarefree Borel is
inherited by ideals generated by the multigraded shifts whenever I is equigenerated.

2. Preliminaries

In this section, we explain some terminology and facts that we shall use later.
Throughout, S = k[x1, . . . , xn] denotes a polynomial ring over a field k of

characteristic zero with its natural multigrading, where xa = xa1
1 · · · x

an
n is the unique

monomial with multidegree (a1, . . . , an). A monomial and its multidegree will be used
interchangeably.

Let u = xα1
1 · · · x

αn
n be a monomial in S . The degree of u in xi, denoted by degi u, is

defined to be αi. We denote the segments xα1
1 · · · x

αi−1
i−1 and xα1

1 · · · x
αi
i of u respectively

by u<i and u≤i. The final segments u>i and u≥i of u are defined similarly. Set
min u = min{i : αi , 0} and max u = max{i : αi , 0}. By abuse of notation, if min u = i0
and max u = j0, we denote the variable xi0 by min u and the variable x j0 by max u.
We call a sequence xi1 , . . . , xik of variables admissible for the monomial u if i1, . . . , ik
are pairwise distinct and 1 ≤ it < max u for each t. If u is a squarefree monomial, an
admissible sequence xi1 , . . . , xik for u is called squarefree admissible when none of
the elements of the sequence divides u, that is, uxi1 · · · xik is a squarefree monomial.
As usual, the notation xi1 · · · x̂t · · · xik shows a removed variable xt from a product
xi1 · · · xt · · · xik .

An operation which sends the monomial u to a monomial (u/x j)xi is called a Borel
move if x j divides u and i < j. When u is a squarefree monomial, such a Borel move
is called a squarefree Borel move on u if the monomial (u/x j)xi is also squarefree. If
v ∈ S is also a monomial, then u : v denotes the monomial u/gcd(u, v).
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Let I ⊆ S be a monomial ideal. We denote its minimal set of monomial generators
by G(I) and its projective dimension by pd(I). Suppose that

F : 0→ Fp → · · · → F1 → F0

is the minimal multigraded free resolution of I with

Fk =
⊕
a∈Zn

S (xa)βk,a .

The set of kth multigraded shifts of I is

Bk = {xa| βk,a , 0}.

The ideal generated by Bk will be denoted by Jk(I) or simply by Jk.
The monomial ideal I is called a Borel ideal if it is closed under Borel moves. A

subset B of the Borel ideal I is called its Borel generator if I is the smallest Borel
ideal containing B. The ideal I is said to be a principal Borel ideal if it has a Borel
generator of cardinality one. The ideal I is a squarefree Borel ideal if it is a squarefree
monomial ideal and closed under squarefree Borel moves. In [8], some important
invariants of Borel ideals and squarefree Borel ideals were studied by applying their
Borel generators.

Let I ⊆ S be a Borel ideal. By [5, Theorem 2.1], the minimal multigraded free
resolution F of I can be described as follows: the basis of the multigraded free S -
module Fk in homological degree k of F is formed by monomials uxi1 · · · xik , where
u ∈ G(I) and xi1 , . . . , xik is an admissible sequence for u.

Let J ⊆ S be a squarefree Borel ideal. Suppose that I ⊆ S is the smallest Borel
ideal containing J with minimal multigraded free resolution F as described above. The
ideal J is generated by {u ∈ G(I) : u divides x1 · · · xn}. By [10, Theorem 2.1] and [11,
Lemma 4.4.1], the minimal multigraded free resolution of J is the subcomplex G of
F which is generated by those multihomogeneous basis elements that divide x1 · · · xn.
In other words, the basis of the free S -module Gk in homological degree k consists
of uxi1 · · · xik , where u ∈ G(J) and xi1 , . . . , xik is a squarefree admissible sequence for
u. See also [1, Theorem 2.1] for an explicit description of the chain maps of this
resolution.

A monomial ideal I ⊆ S is said to have linear quotients if there exists an ordering
u1, . . . , ur of the elements of G(I) such that, for each i = 1, . . . , r − 1, the colon ideal
(u1, . . . , ui) : (ui+1) is generated by a subset of {x1, . . . , xn}.

3. Borel ideals

In this section, we study whether the ideals generated by multigraded shifts of a
Borel ideal inherit the property of having linear quotients.

For ease of reference, we formulate the following lemma.

Lemma 3.1. Let I ⊆ S be a monomial ideal and u a monomial in G(I). Suppose that
u′ = uxi/x j ∈ I for some distinct i and j. Then there exists ũ ∈ G(I) such that ũ | u′ and

degi ũ = degi u′ = degi u + 1.

https://doi.org/10.1017/S0004972718001600 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001600


[4] Linear quotients and multigraded shifts of Borel ideals 51

Let I be an equigenerated Borel ideal. By [14, Theorem 2.18], the ideal generated
by the first multigraded shifts of I has linear resolution. In the next result, we show
that this ideal has linear quotients.

Proposition 3.2. Let I ⊆ S be an equigenerated Borel ideal. Then the ideal J1

generated by its first multigraded shifts has linear quotients.

Proof. Let G(J1) = {w1, . . . , wr}, where w1 > · · · > wr in the lexicographic order
induced by the ordering x1 > x2 > · · · > xn of variables. Consider two distinct elements
wi = uxi0 and w j = vx j0 in J1, where u, v ∈ G(I), i0 < max u and j0 < max v. Suppose
that i < j and

wi : w j = x`1 · · · x`p , (3.1)

where `1 ≤ `2 ≤ · · · ≤ `p and p ≥ 2. We show that there exists w` ∈ G(J1) such that
` < j and w` : w j = x`t for some t ∈ {1, . . . , p}.

If `1 < j0, then the element w` = vx`1 ∈ G(J1) is the desired element. Indeed,
vx`1 ∈G(J1) by the description of multigraded shifts given in Section 2 and because J1

is equigenerated.
Now assume that j0 ≤ `1. Then deg(wi) = deg(w j) and, by (3.1), deg(wi : w j) ≥ 2.

So, deg(w j : wi) ≥ 2. On the other hand, (wi)<`1 = (w j)<`1 because wi >lex w j and
wi : w j = x`1 · · · x`p . Now, by the assumption that j0 ≤ `1 and since deg(w j : wi) ≥ 2
and (wi)<`1 = (w j)<`1 , it follows that deg(v>`1 ) ≥ 2. As a consequence,

`1 < max
( v
max v

x`1

)
.

So, w` = ((v/max v)x`1 )x j0 ∈ G(J1) is the desired element. Here (v/max v)x`1 ∈ G(I)
because I is an equigenerated Borel ideal. �

The following example shows that if I is a nonequigenerated Borel ideal, the ideal
J1(I) does not have linear quotients in general.

Example 3.3. Let I be the Borel ideal in k[x1, x2, x3, x4] whose Borel generator is
{x1x2, x4

2, x1x2
3x2

4}, that is,

I = 〈x2
1, x1x2, x4

2, x1x4
3, x1x3

3x4, x1x2
3x2

4〉.

Consider the monomials w = (x4
2) · x1 and w′ = (x1x2

3x2
4) · x2 in the minimal system

of monomial generators of J1(I). Then w : w′ = x3
2 but there exists no monomial

w′′ ∈ G(J1(I)) such that w′′ : w′ = x2. On the other hand, w′ : w = x2
3x2

4 but there exists
no monomial w′′ ∈ G(J1(I)) such that w′′ : w = x3 or x4. Consequently, the ideal J1(I)
does not have linear quotients with respect to any ordering of the minimal system of
monomial generators.

Theorem 3.4. Let I ⊆ S be a principal Borel ideal. Then the ideal Jk generated by the
kth multigraded shifts has linear quotients for k = 0, . . . , pd(I).

https://doi.org/10.1017/S0004972718001600 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001600


52 S. Bayati, I. Jahani and N. Taghipour [5]

Proof. Arrange the elements of G(Jk) in decreasing order x1 > x2 > · · · > xn with
respect to the lexicographical order. Consider two distinct elements wi = uxi1 xi2 · · · xik
and w j = vx j1 x j2 · · · x jk in Jk, where u, v ∈ G(I), i1 < · · · < ik < max u and j1 < · · · <
jk < max v. Suppose that wi >lex w j and

wi : w j = x`1 · · · x`p , (3.2)

where `1 ≤ `2 ≤ · · · ≤ `p and p ≥ 2. Using an inductive argument, it is enough to show
that there exists w ∈ G(Jk) with the following properties:

(i) w >lex w j;
(ii) the monomial w : w j divides wi : w j;
(iii) deg(w : w j) < deg(wi : w j).

By (3.2) and since wi >lex w j, the monomials wi and w j have the same segment before
`1, that is,

(wi)<`1 = (w j)<`1 . (3.3)

If the degree of the segment ṽ = v>`1 is at least two, then

w =
( v
min(ṽ)

x`1

)
(x j1 · · · x jk )

is the desired element with w : w j = x`1 . So, for the rest of the proof, we assume that

deg(v>`1 ) = 1. (3.4)

The elements wi and w j have the same degree. So, by (3.2), deg(w j : wi) = p > 1. On
the other hand, (w j)≤`1 divides (wi)≤`1 by (3.3) and deg(v>`1 ) = 1. Hence, for some
js ∈ { j1, . . . , jk},

`1 < js < max v and x js - wi. (3.5)

Recall that I is a principal Borel ideal. So, there exists a monomial m ∈ G(I) such
that I is the smallest Borel ideal containing m. As a result, for each i with max u <
i ≤ max m, the monomial (u/max u)xi is again an element of G(I), although it is
not obtained from a Borel move. It follows that whenever max u < max v, we have
u′ = (u/max u)max v ∈G(I). Thus, w′i = u′xi1 · · · xik ∈G(Jk). Moreover, w′i : w j divides
wi : w j and w′i >lex w j (by comparing the segments (w′i)≤`1 and (w j)≤`1 ). Replacing wi

with w′i if needed, for the rest of the proof we may assume that

max v ≤ max u. (3.6)

On the other hand, if `p ∈ {i1, . . . , ik}, say `p = it, then w = uxi1 · · · x̂it · · · xik x js is the
desired element, where js is the element with the properties given in (3.5). Here one
has w >lex w j because of the equality of the segments w<`1 = (wi)<`1 = (w j)<`1 and the
fact that deg`1

w = deg`1
wi > deg`1

w j. So, for the rest of the proof, we also assume
that

`p < {i1, . . . , ik}. (3.7)
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We consider two cases in both of which the desired element w is obtained by replacing
`p with js in wi. So, by the same argument on the segments of w and w j before `1 and
their degree in `1, we will have w >lex w j.

Case 1. `p = max u. Set q = max{i1, . . . , ik, js}. Since js < max v and max v ≤ max u
by (3.6), we obtain u′ = (u/max u)xq ∈ G(I) by a Borel move. Furthermore, x js <
{i1, . . . , ik} by (3.5). Hence, {xi1 , . . . , xik , x js} \ {xq} gives an admissible sequence for u′.
Consequently,

w = u′
xi1 · · · xik x js

xq
∈ G(Jk)

is the desired element, obtained by replacing `p = max u in wi with js.

Case 2. `p < max u. Then deg u>`1 ≥ 2 by (3.7) and because x`p is a distinct variable
and max u divides u. On the other hand, u and v have the same degree and deg(v>`1 ) = 1
by (3.4). Hence, (deg v<`1 ) > (deg u<`1 ). But (wi)<`1 = (w j)<`1 by (3.3), so there exists
it ∈ {i1, . . . , ik} such that it < `1 and degit u < degit v. By a Borel move, set

u′ =
u

x`p

xit ∈ G(I).

Since we have assumed that `p < max u, it follows that max u′ = max u,

xi1 , . . . , x̂it , . . . , xik , x js

is an admissible sequence for u′ and

w = u′xi1 · · · x̂it · · · xik x js

is the desired element. �

The following example shows that if I is an equigenerated Borel ideal, but not
principal, then the ideals generated by multigraded shifts do not need to have linear
quotients with respect to any ordering of the generators.

Example 3.5. Let I ⊆ k[x1, . . . , x7] be a Borel ideal with Borel generator

B = {x1x2x7, x3x2
4}.

Then w = (x1x2x7)(x3x4x5) and w′ = (x3x2
4)(x1x2x3) belong to J3(I) and

w : w′ = x5x7 and w′ : w = x3x4.

For each w′′ ∈ J3(I),
w′′ : w′ , x5 and w′′ : w′ , x7.

So, J3(I) does not have linear quotients with respect to any ordering of the minimal
system of monomial generators in which w appears earlier than w′. It can be also seen
that for each w′′ ∈ J3(I),

w′′ : w , x3 and w′′ : w , x4.

Thus, J3(I) also does not have linear quotients when w′ appears earlier than w in the
ordering of G(J3(I)).
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4. Squarefree Borel ideals

In this section, we investigate when the properties of being squarefree Borel and
having linear quotients are inherited by the ideals generated by multigraded shifts of a
squarefree Borel ideal.

Proposition 4.1. Let I ⊆ S be an equigenerated squarefree Borel ideal. Then the ideal
Jk generated by the kth multigraded shifts of I is also a squarefree Borel ideal for
k = 0, . . . , pd(I).

Proof. Let w = uxi1 · · · xik ∈ G(Jk), where u ∈ G(I) and i1 < · · · < ik < max u. Suppose
that x j |w. For each ` with ` < j and x` - w, we show that (w/x j)x` ∈ Jk. We distinguish
two cases.

Case 1. x j | u. From the description of the multigraded shifts of squarefree Borel ideals
in Section 2, j , ik because w is a squarefree monomial. Set

t = max{`, ik} and t̄ = min{`, ik}.

Then t , t̄ because the fact that x` - w means that ` , ik. If j > ik, then xi1 , . . . , xik−1 , xt̄

is a squarefree admissible sequence for u′ = (u/x j)xt ∈ G(I). Hence,

w
x j

x` = u′xi1 · · · xik−1 xt̄ ∈ Jk.

If j < ik, then j < max u and so max u = max((u/x j)x`). Therefore, xi1 , . . . , xik is a
squarefree admissible sequence for u′′ = (u/x j)x` ∈ G(I) and

w
x j

x` = u′′xi1 · · · xik ∈ Jk.

Case 2. x j - u. In this case, j ∈ {i1, . . . , ik}, say j = it, and we have a squarefree
admissible sequence xi1 , . . . , x̂it , . . . , xik , x`. Hence,

w
x j

x` = uxi1 · · · x̂it · · · xik x` ∈ Jk. �

The following example shows that if a squarefree ideal I is not equigenerated, then
the ideals generated by its multigraded shifts do not need to be squarefree Borel.

Example 4.2. Consider the squarefree Borel ideal

I = (x1x2, x1x3x4, x1x3x5, x2x3x4, x2x3x5) ⊆ k[x1, . . . , x5].

Since x4 is a squarefree admissible sequence for x2x3x5, the monomial

w = (x2x3x5)(x4)

belongs to J1(I). But (w/x3)x1 < J1(I) because x3 divides every monomial in J1(I). So,
J1(I) is not a squarefree Borel ideal.
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Theorem 4.3. Let I ⊆ S be a squarefree Borel ideal. Then the ideal Jk generated by
the kth multigraded shifts of I has linear quotients for k = 0, . . . , pd(I).

Proof. Let G(Jk) = {w1, . . . ,wr}, where i < j implies that either (i) deg(wi) < deg(w j)
or (ii) deg(wi) = deg(w j) and wi >lex w j. Here the lexicographical order is induced by
the ordering x1 > x2 > · · · > xn.

Consider two distinct elements wi = uxi1 · · · xik and w j = vx j1 · · · x jk in the minimal
system of monomial generators of Jk, where u, v ∈ G(I), 1 ≤ i1 < · · · < ik < max u and
1 ≤ j1 < · · · < jk < max v. Recall from Section 2 that Jk is a squarefree monomial
ideal. Suppose that i < j and

wi : w j = x`1 · · · x`p ,

where `1 ≤ `2 ≤ · · · ≤ `p and p ≥ 2. We show that there exists w` ∈ G(Jk) such that
l < j and w` : w j = x`t for some t ∈ {1, . . . , p}.

Since wi and w j are squarefree monomials and wi : w j = x`1 . . . x`p , we see that x`1

does not divide w j. In particular, `1 , max v. We consider two cases.

Case 1. `1 < max v. As discussed above, x`1 does not divide w j and consequently

`1 < { j1, . . . , jk}.

If `1 < jk, we take w to be the squarefree monomial w = vx j1 · · · x jk−1 x`1 , so that w ∈ Jk.
By Lemma 3.1, we can choose an element w` ∈ G(Jk) as required such that w` |w and
deg`1

w` = deg`1
w. Otherwise, if jk < `1, by a squarefree Borel move consider

v′ =
v

max v
x`1 ∈ I. (4.1)

Here x`1 - v because w j is a squarefree monomial and wi : w j = x`1 · · · x`p . By
Lemma 3.1, there exists ṽ ∈ G(I) such that ṽ | v′ and deg`1

ṽ = deg`1
v′. So, x`1 divides

ṽ. In particular, x j1 · · · x jk is a squarefree admissible sequence for ṽ because we have
assumed that jk < `1. We set

w = ṽx j1 · · · x jk ∈ Jk

and choose w` ∈ G(Jk) such that w` |w. One has either (i) deg w` < deg w j or (ii)
deg w` = deg w j and in this case w` >lex w j by (4.1). So, w` appears earlier than w j in
the ordering of elements of G(Jk) described in the first part of the proof. Moreover,
x`1 divides w` (otherwise, w` is an element of degree less than w j which divides w j; a
contradiction to the fact that w j ∈ G(Jk)). Hence, we also have w` : w j = x`1 .

Case 2. max v < `1. Since wi and w j are elements of G(Jk), w j does not divide wi. So,
there exists s < `1 such that degxs

wi < degxs
w j. In particular,

xs - wi

because wi and w j are squarefree monomials. Set

t = max{ik, s} and t̄ = min{ik, s}.
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Consider u′ = (u/max u)xt ∈ I and, via Lemma 3.1, choose a monomial ũ ∈ G(I) such
that ũ | u′ and xt | ũ. Then xi1 , . . . , xik−1 , xt̄ is a squarefree admissible sequence for ũ and
consequently w = ũxi1 · · · xik−1 xt̄ ∈ Jk. Choose an element w̃` ∈ G(Jk) for which w̃` |w.
The same argument as used in Case 1 shows that the monomial w̃` appears earlier
than w j in the ordering of the elements of G(Jk). Furthermore, max v < `1 ≤ max u, so
max v < max u and `p = max u. In particular,

w̃` : w j divides x`1 · · · x`p−1 .

Now proceeding by induction on p completes the proof. �

Example 4.4. Let I ⊆ k[x1, . . . , x5] be the squarefree Borel ideal with Borel generator
{x2, x3x5}, that is,

I = (x1, x2, x3x4, x3x5).

Then the ideals J0(I) = I and

J1(I) = (x1x2, x1x3x4, x1x3x5, x2x3x4, x2x3x5, x3x4x5)

with respect to the given ordering have linear quotients. From the proof of
Theorem 4.3, minimal generators with lower degree appear earlier or, in case of
equality of degrees, those generators which are lexicographically greater appear
earlier. Also,

J2(I) = (x1x2x3x4, x1x2x3x5, x1x3x4x5, x2x3x4x5),

J3(I) = (x1x2x3x4x5) and Jk(I) = (0) whenever k > 3. Their generators are ordered as
specified and they have linear quotients with respect to these orderings.
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