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The recent surge in interest in hydrogen and fuel cells for heavy duty vehicle applications has put increased 

focus on improving the durability of both state-of-the-art Pt alloy nanoparticle and atomically-dispersed 

platinum group metal-free (PGM-free) oxygen reduction reaction catalysts [1,2]. Microscopy analysis of 

catalyst degradation usually utilizes a thin slice of pre- and post-mortem membrane electrode assemblies 

(MEAs) prepared by ultramicrotome. However, due to inhomogeneities in the MEA catalyst layers, it can 

be challenging to pinpoint the precise degradation mechanisms that lead to performance loss. 

To address this limitation, electron microscopy methods have been developed that enable characterization 

of the same catalyst particles at various stages in the life cycle of a material. For example, in situ liquid 

electrochemical cells have been designed to analyze catalyst degradation during potential cycling within 

the transmission electron microscope (TEM) [3]. However, interactions between the liquid electrolyte and 

electron beam reduce resolution and may introduce artefacts.  Identical-location transmission electron 

microscopy (IL-TEM), on the other hand, is a method that allows the same regions of a material to be 

studied before and after ex situ cycling without loss of spatial resolution [4,5]. For IL-TEM experiments, 

TEM grids (usually made of gold) are used to support catalysts that are subjected to electrochemical 

cycling in a three-electrode cell, as shown in Figure 1a. Changes in catalyst properties, namely particle 

size distribution, composition, and crystalline structure, can then be directly characterized before and after 

cycling. Since the specimen is identical to a conventional TEM specimen ,  imaging and analytical 

methods like energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy can be 

performed at high resolution. 

IL-TEM has previously been used to elucidate Pt catalyst degradation mechanisms such as migration, 

coalescence, and detachment from the carbon support [6-8]. Ostwald ripening has not been observed in 

most IL-TEM studies [6-8], in stark contrast to MEA tests in which it is identified the dominant 

degradation mechanism [9]. Reproducing processes that occur in MEAs is critical to accurately identifying 

degradation mechanisms that can inform mitigation strategies. 

In this work, we seek to identify the IL-TEM experimental conditions and  protocols (Figure 1b) which 

most closely mimic end of life (EOL) morphology and composition found in MEAs. To reproduce the 

catalyst degradation observed in both Pt-based and PGM-free MEAs, a range of parameters are being 

explored such as specimen preparation method, electrolyte concentration, gaseous environment, upper and 

lower cycling potential, and potential wave shape. Figure 2 shows how different classes of fuel cell 

catalysts behave under the conditions showing in Figure 1. For a Pt/C catalyst (Figure 2a, b), significant 

changes in particle size were observed in high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) images, with the complete loss of particles below 2 nm.  However, for a 
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PtCo/C alloy catalyst, very little change in particle size and composition was observed (Figure 2c, d), in 

stark contrast to MEA tests [10]. For the PGM-free system, degradation was found in the form of severe 

Fe loss (Figure 2e, f). We will present the direct comparison between IL-TEM and MEA tests for each 

class of catalysts and discuss how sample preparation and cycling parameters can be adjusted to replicate 

real-life losses more closely. The contribution of different degradation mechanisms revealed by IL-TEM 

in each system will then be presented, including particle coalescence, Ostwald ripening, transition metal 

leaching, and carbon corrosion. Accurate insights into fundamental fuel cell catalyst degradation 

mechanisms will then be used to guide development of catalysts with enhanced properties [11]. 
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Figure 1. Figure 1. (a) Electrochemical cell setup for IL-TEM experiments. (b) Accelerated stress test and 

conditions used for experiments presented in Figure 2. 
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Figure 2. Figure 2. HAADF-STEM images acquired at beginning of life (BOL) and EOL for (a,b) Pt/C 

catalyst, (c,d) PtCo/C alloy catalyst, and (e,f) PGM-free Fe-N-C catalyst. Inset compositional 

quantification of these regions determined by energy dispersive X-ray spectroscopy. 
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