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APPROXIMATION IN FUNCTION MODULES

Fowzi AHMED SEJEENI

We investigate the existence of best approximation of an element « in a function
module from a subfunction module whose fibers satisfy the intersection property
of balls. Also we investigate the lower semicontinuity of the metric projection
associated with such a subfunction module.

1. INTRODUCTION

Let E be a normed linear space and G a closed subspace of E. The set
(1.1) Po(z) = {90 € G: ||z — ol =inf ||z ~ g|l, g € G}

is called the set of all best approximations to =z from G. This defines a set valued
mapping Pg which is called the metric projection onto G. A mapping s: E — G is
called a selection for Pg if s(z) € Pg(z) for all z € E. A subspace G of a normed
linear space E is called proximinal (respectively Chebychev) if Pg(z) contains at least
(exactly) one element for all z € E.

The set valued mapping Pg is called lower semicontinuous (1.s.c.) if the set

(1.2) {z € E:Pg(z)NU # 0}

is open for each open subset U of G or, what is equivalent, for each sequence {z5} in
E converging to z in E and for each g in Pg(z), there is a sequence {gn} in G such
that for each n € N, gn € Pg(z,) and g, — g, see [2, p.365].

DEFINITION 1.1: A subspace G of the Banach space E is said to have the two-
ball property for open balls if for any pair B(z;, r1) and B(z2, r2) of open balls such
that B(zy, 71) N B(z2, 72) # 0 and B(z;, ;) NG # 0 for i = 1, 2, the intersection
(G N B(z1, r1) N B(z2, r2)) is nonvoid; see 1, Definition 2.16].

Let T be a nonvoid compact Hausdorff space and (E;) a family of Banach spaces

over T. Consider the Banach space H E,={ac H E::|a|l, = sup ||a(t)||t < o0}

(where |.||, is the norm on the Ba.na.ch space E,). Closed subspaces of H E,; will be

called Banach spaces of a vector valued function on T'. teT
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DEFINITION 1.2: A function module is a triple (T, (Bt)sers Ew), where T is a
nonvoid compact Hausdorff space (called base space), (E¢),cr a family of Banach spaces

[=d
(the component spaces) and E. a closed subspace of the space [] E; such that:
teT

(1) E is a C(T)-module (where C(T) is the Banach algebra of all con-
tinuous scalar valued functions on T'), (f, a)(t) = f(t)a(t), f € C(T),
a€c Ey.

(2) For every a € E, the map t — [la(t)]|, is upper semicontinuous.

(3) E,={a(t):a € Ex} forevery teT.

(4) {t:teT,E,#{0}}=T.

REMARK. Instead of (T, (Et)eers Eoo) is a function module” we will often say that

oo

E is a function module in [][ E; or (if T and (Et),cp are understood) that Ey
teT

itself is a function module, see [1, Definition 4.1].

DEFINITION 1.3: Let Go be a sub-function module in the function module E
and a be an element of E,,. The element v¢ in G, is called:

(1) global best approximation of a from Gy if

la—Yolloo = inf{lla — 7|l : ¥ € G };

(2) local best approximation if for each t € T

() = vo(D)ll, = int{lle(t) - gll; : 9 € G:};

that is, 4(¢) in Pg,(a(t)) foreach t € T.
Note that local best approximations are always global but the converse is not always

true.

2. REsuLTs

THEOREM 2.1. Let G be a closed subspace of the Banach space E. If G satisfies
the two-ball property for open balls, then G is proximinal and Pg is lower semi-

continuous.

PROOF: Let z be an arbitrary element in E \ G and define »r = d(z, G) =
inf{{lc — g|| : ¢ € G}. For any positive real number ¢ and any g € G such that
[z — gl < r+ € we have B(z, r +€¢/2)NB(g,€/2) # 0, B(z, 7 +£/2)NG # 0 and
B(g,e/2)NG # 0. Therefore B(z, r +¢/2)NB(g, £¢/2)NG # 0, and then there exists
an element gy in G satisfying the following:

€ €
(2.1) llz = goll <7+ 3 and [lg — gl < 5.
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By applying (2.1) inductively, we can construct a sequence {gn} in G satisfying the
following:

(22) Iz~ gall < 7 +27" and [lgn — gasall < 27

The sequence {gn} is Cauchy, and hence it has a limit g in G. Moreover, we have
[z — g|| = r; that is, g € Pg(=).

For the lower semi-continuity of Pg, let U be an arbitrary open subset of G and
V={z€E:Pg(z)NU # 0}. We may assume without loss of generality that V # 0
and show that V¢ (the complement of V in E) is closed. For,let {z,} be a sequence
in V¢ converging to z in V, g € Pg(z) N U and € > 0 such that B(g,¢) C U.
Define rn, = d(zn, G) and r = d(z, G). Let N be the positive integer such that
|lzn — 2|| < €/2 and |jrs — 7| < €/2 for each n > N. Now, for each n > N, the two
balls B(z., rn) and B(g, €) satisfy the following:

B(zn, "'n) n B(91 E) # 0

(since lon— gl < llon —2ll + o =gl < €/2+7 < ¢/2+ (rate/2) = ra+e)
B(zn, ™) NG # 0, and B(g,e) NG # 0. Hence B(zn, ) N B(g,e) NG # 0, or,
what is equivalent, there is a g, € Pg(z,) such that g, € B(g,€) C U. This contra-

dicts the assumption. Thus V must be open. 0
(o)
THEOREM 2.2. Let E. be a function module in [[ E, such that for each a
teT
in Eo the mapping t — ||a(t)||, is continuous. If ay, ..., an are elements of E, such
that for each t in T, span{a,(t), ..., a,(t)) has dimension n and satisfies the two-ball
property for open balls, then span{a,, ..., @,) contains a local best approximation for
each a € E. em

In order to prove the above theorem, we need the following lemma, which perhaps

is interesting in itself.

LEMMA 2.3. With the assumption of Theorem 2.2, for each a in Eo, the func-
tion p: T — R defined by p(t) = d(a(t), G¢) is continuous.

ProoF: Let H: T x €§ — R be the mapping defined by H(t,a) =

a(t)- Y a;a.-(t)” (where a; = hi(a)and{h;} is the sequence of coefficient function-
=1 t

als associated with the unit vector basis of £7'). Let (2o, r) be a fixed point in T x £7.
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Then

|H(t, a) — H(to, r)| < |H(t, a) — H(t,r)| + |H(t, r) — H(to, 7)|

n
<Y lai — vl (@),

=1

+ |[|e(t) - Er.'.a,-(t) — ||a(te) — Z ri.ai(to)
=1 t i=1 to
This inequality and the continuity of the map ¢ — [[a(t) — Y r;.a;(t)|| imply that
=1 t

n

H is continuous on T'. For each t € T, define A¢: £ — G¢ by a — Y a;.cai(t). Here
=1

A is a one to one onto linear mapping. Moreover for each t € T', a € £ we have

Z a‘-.a,-(t)

< nmax (A -m?x||ai||m .

n

< ) lasll fles(®)ll,
t i=1

| Asal], =

Hence the open mapping theorem and the uniform boundedness principle give positive
reals m and k such that

(23) mlla|| < ||Acal, < klla]l  VteT, Vaedf.
Now, let ¢ be a fixed point in T, and {{}scp be any net in T converging to

to. Pick g € Pg, (afto)) and write g = 3 gi.ci(to), B = Y giai (B € G =
=1 =1

span of (ay, ..., an) over C(T)). Let ¢ be any positive real number, and U, the
neighbourhood of ¢ such that |la(t) — B(t)l|, < [|a(te) — B(to)ll;, + € = p(to) + €. But

(24) p(t) < lla(t) — Bl < p(to) +€  VEE Ty

(since B(t) = i.z::x gi-ai(t) € G¢). The net {a(ts)}scp (Where a(ty) = (ar(ts), - .., an(ts))

n

a(tb) — 2 a,-(t,,).a,-(tb)

=

= p(ts)) is eventually bounded since
B

and

1
la(ts)l < -

Z a.'(tb)a,'(tb)

1
<_<
m
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By (2.4) there is a ¢ € B such that p(ts) < p(to) + 1 for each b > ¢. Thus [la(ts)| <
(1/m)(p(te) + 1 + |la|| ). We may assume without loss of generality that a(ty) — a.

H(t, a(to)) + H(to, a(te))-
H(to, a(t)) + H(t, a(t))-

VAS/A

(2.5) p(t) - plto)
(2.6) plta) — p(2)

|H(to, a(ts)) — H(ts, a(ts))| < |H(to, a) — H(to, a(ts))|
+ |H(to, a) — H(ts, a(ts))]-

The continuity of the map H and a(ty) — a imply that |H(2o, a(ts)) — H(ts, a(ts))| —
0 as t, — t. Consequently, (2.5) and (2.6) imply that p is continuous. 0

PROOF OF THE THEOREM: It suffices to show that for each a € E,, ¢ty € T,
g9 € Pg, (ato)) and € > O there exists ¥ € Go such that 9(ty) = g, and
d(v(t), Pg,(a(t))) < € for each t € T. Write g = Y_ gi.ai(to), ao = ) gi-@i € Goo.

i=1 =1

Let Uy, be the neighbourhood of t; such that, for s € U,

llao(s) ~ a(s)l, < llao(to) — a(to)ll,, + /4

and p(to) < p(s) + e/4. [lao(s) — a(s)l|,
< llao(to) — a(to)ll,, + /4
= p(to) +€/4 < p(s) +¢/2.

Thus for each s € Uy, , we have the following:

B(a(s), p()) N B(ao(s), £/2) # 0,
B(a(s), p(s)) NG, # 0
and B(ao(s), e/2)NG, #0.

Therefore, thereis g, in B(a(s), p(8))NB(ao(s), €/2)NG,, and then d(ao(s), Pg,(a(s))) -
llgs — ao(8)ll, < /2 <e.

Now, for each t € T, t # ty, select a g; from Pg,(a(t)). By the above there
is a; € Goo and a neighbourhood U; of t (we may assume that U, N U; = 0, since
T is HausdorfT) such that a,(t) = g¢ and d(a¢(p), Pg,(a(p))) < € for each p in U.
Let f: : T — [0, 1] be the continuous function such that fiugy =1 and fiy, = 0. For
Pt = fr.c0 + (1 — fi).ar, we have By, = a0, Biju, = ¢ and d(Bi(s), Pa, B(s))) <e
for each s in V; = Uy, U U;. The collection {V;:t € T} forms an open covering of T';

then there are 3, ...,%, in T such that T = |J V;;. Let {h;}7; be the partition of
=1
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unity subordinate to {V;;}. A simple calculation will show that v = Y h;.B;; is the
i=1
desired element of G',. Since € was arbitrary, the result follows from the closeness of

Pg,(a(t)) and the fact that d(a(t), G:) < d(a, G) for each t in T. 0

THEOREM 2.4. Let Eo be a function module in ﬁ E;. If G is a sub-C(T)-
€T
module of E., such that for each t in T the fiber Gy = {7(t) : v € G} has the

two-ball property for open balls, then Go is proximinal (global best approximation

exists).

PROOF: Let a be any fixed element of E,. Foreach ¢t in T, let g(t) € Pg,(a(t)).
Define
(2.7) r=_nf lla=7lle > suplla(t) - 9,

We shall show that there is a Cauchy sequence {yn} in Go such that |la — ynflo, — 7
For, let € > 0; then by definition of r there is # € G such that || —al  <r+E€.
We will show that there is another element ¥ € G . such that

(28) la = Tloo <7+ 5 and 18- 7l

MIN

For each t € T, the two balls B(a(t), r) and B(8(t), €) satisfy the conditions
of the two-ball property (since ||a(t) — g(t)l|, < r and [|B(t) — a(t)|l, < |8 — all, <
r+¢€). Let z(t) € G be such that ||a(t) — z(t)||, < r and ||B(t) — 2(¢)||, < €. Put
ye = (2(t) + B(t))/2; then

lla(t) — w(D)ll, < lle(?) — 2()ll, + l|=() —y(D)ll; <7 +€/2 and
18(2) — y()ll; < /2.

Now, let 7; € G be such that 4¢(t) = y: and V; the neighbourhood of ¢t such
that for each s in U;

(2.9)

(2.10) lla(s) = 7(s)ll, < +€/2 and [|B(s) = n(s)ll, <

(such U, exists by (u.s.c.) of the norm functions) The collection {U, :t € T} forms
an open covering of T. Let 1,...,%, be in T such that T = U U, and {fi}%,

the partition of unity subordinate to {U;}%~ ;. A simple ca.lculatlon will show that
¥ = i fi-11; is the desired element.

i=1

By applying (2.10) inductively, we can construct a sequence {9} in G such that

(2.11) la =Tl <7 +27" and  Jiyn — yntillee <277
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The second inequality of (2.11) implies that {v,} is Cauchy; hence it has a limit v,
in Go and the first inequality of (2.11) implies that |j@ — 4|, = r; that is, v in
Paw(a). []

THEOREM 2.5. Let E, be a function modulein [| E;. If Go is a sub-C(T)-

teT
module of Eo such that for each t in T the fiber Gy = {v(t) : v € Go} has the

two-ball property for open balls, then Pg_, is (l.s.c.).

In order to prove the above theorem, we need the following lemma, which maybe
is interesting in itself.

LEMMA 2.6. With the assumption of Theorem 2.5, for each a in Eo,t in T
and z¢ in G such that ||a(t) — z¢||, < r = d(a, G), there is v in Pg,(a) such that
¥(t) = z¢.

PROOF: We shall show that for each positive € there are two elements 3, and 7.
in G such that

(212) ﬂe(t) = 7z(t) = Tt
(2.13) lla = Bell <7+
(2.14) lo=Tell <7+% and B —velloo < -

To see this, let s € T, z, € G, such that ||z, — a(s)||, < r (if s =t take z; = z;). Let
¥, @, be the elements of G such that ¢(t) = z; and ¢,(s) =z, and h: T — [0, 1]
the continuous function such that h(t) =0 and h(s) = 1. Take 8, = (1 — h).o + h.p,
and let U, be the neighbourhood of s such that ||a(p) — B.(p)||, < r + ¢ for each p
in U,. The collection {U, : s € T} forms an open covering of T. Let 83, ..., 8, in T

be such that T = |J U,; and {f;}7, the partition of unity subordinate to {U,,}7%,
i=1

Take 8. = Y fi.B,,. A simple calculation will show that g, satisfies (2.12) and (2.13).
=1
Now, for s # t, let y, € G, be such that ||a(s) — .||, < = and |y, — B(s)||, <
€ (ys € B(a(s), ) N B(B.(8), )N G,). Let a, = (y, + B:(8))/2 and Q, 2, € Geo such
that Q(t) = z¢ and Q,(s) = a,. Put v, = (1 — f)Q + fQ, (where f: T — [1, 0] such
that f is continuous, f(t) =0 and f(s) =1). Let U, be the neighbourhood of s such
that {|a(p) — 7.(p)ll, < r + /2 for each p in U,. Again {U,: s € T} forms an open
covering of T'. Let sy, ..., 8, in T be such that T = U U,; and {h;}%, the partition
of unity subordinate to {U,;}/,. It can easily be checked that 4, = Eh. “Ys; satisfies

=1

(2.12) and (2.14). Now, apply (2.12)-(2.14) inductively to construct a sequence {y,}
in G with the following:

(2.15) an(t) = 24, [l& = Tallo S 7+27" and |lyn — Tntafle, <27
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The third inequality on the right in (2.15) implies that {y,} is Cauchy, and then it has
a limit 4 in G4 . Clearly v is the desired element. 0

PROOF OF THE THEOREM: Let {a,} be a sequence in E,, converging to «,
and B an element in Pg_(a). Define r = d(a, Gx) and r, = d(a,, Go). For
each t € T and n € N, define A} = B(B(t), dn) N B(ay(t), 7a) N G (where d, =
lan — allg + Irn — 7| +1/n).

(2.16) 18(2) — an(®)ll,

o0

1
<tatlrn—rl+llan —allg + .

By (2.16) A? is a nonempty convex set forall ¢t € T and for all n € N. Now, let ¢ be an
arbitrary but fixed element in T and n € N. Pick z, € A?. Let 8 € Pg_ (as) be the
element that exists from Lemma 2.6; that is, 87(t) = z, and U, is the neighbourhood
of t such that ||B7(8) — B(s)|l, < dn for each s € U; (such U, exists by the (u.s.c.)
of the norm function). Thus for each s in U; we have 87(s) in A}. The collection

n
{U: : t € T} is an open covering of T'. Let t;,...,%, in T be such that T = |J Uy,

=1
and {f;}}., the partition of unity subordinate to {Uy;}7.,. Define Bn = Y fi.B,. For
=1
each t in T f,(t) is a convex combination of elements of A7, and hence §,(t) € A}.

Thus for each ¢t in T we have

(2.17) { 1Ba(2) = an(tll <

18 () = B(t)]] < dn.

The first inequality in (2.17) implies that 8, € P(a,) and the second implies that
Bn — B as n — oco. 0
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