
J. Fluid Mech. (2024), vol. 993, A9, doi:10.1017/jfm.2024.599

On the stability of fully nonlinear hydraulic-fall
solutions to the forced water wave problem
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Two-dimensional free-surface flow over localised topography is examined, with the
emphasis on the stability of hydraulic-fall solutions. A Gaussian topography profile is
assumed with a positive or negative amplitude modelling a bump or a dip, respectively.
Steady hydraulic-fall solutions to the full incompressible, irrotational Euler equations are
computed, and their linear and nonlinear stability is analysed by computing eigenspectra of
the pertinent linearised operator and by solving an initial value problem. The computations
are carried out numerically using a specially developed computational framework based on
the finite-element method. The Hamiltonian structure of the problem is demonstrated, and
stability is determined by computing eigenspectra of the pertinent linearised operator. It is
found that a hydraulic-fall flow over a bump is spectrally stable. The corresponding flow
over a dip is found to be linearly unstable. In the latter case, time-dependent simulations
show that ultimately, the flow settles into a time-periodic motion that corresponds to an
invariant solution in an appropriately defined phase space. Physically, the solution consists
of a localised large-amplitude wave that pulsates above the dip while simultaneously
emitting nonlinear cnoidal waves in the upstream direction and multi-harmonic linear
waves in the downstream direction.

Key words: hamiltonian theory, surface gravity waves, nonlinear instability

1. Introduction

The incompressible flow of an inviscid liquid with a free surface over topography and/or
subject to a surface pressure distribution is a classical problem in fluid dynamics that has
received considerable attention over the last two hundred years (see, for example, Whitham
1974; Akylas 1984; Dias & Vanden-Broeck 2002). The principal aim is to determine the
free-surface profile and to explore how it changes as the relevant parameters, such as the
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Figure 1. Hydraulic-fall solutions. Sketch of the two basic types in the non-dimensional domain, where the
arrow indicates the flow direction: (a) dip forcing, Fr < 1; (b) bump forcing, Fr < 1. Here, Fr is the Froude
number, defined in (1.1). The downstream Froude number, Frd , is of opposite criticality to Fr.

oncoming flow speed or the amplitude of the forcing (either the topography or pressure
distribution), are varied. For a localised forcing, it is well known that in one possible
steady flow configuration, herein referred to as a hydraulic fall, the fluid level drops from a
higher uniform level upstream to a lower uniform level downstream (figure 1). Such flows
have been observed experimentally (e.g. Forbes & Schwartz 1982; Tam et al. 2015), and
have been computed as solutions to the fully nonlinear irrotational Euler equations (e.g.
Forbes 1988; Dias & Vanden-Broeck 1989), and as solutions to reduced-order models such
as the forced Korteweg–de Vries (fKdV) equation (see, for example, Forbes & Schwartz
1982; Dias & Vanden-Broeck 2002). A recent review is provided by Binder (2019).

Most of the studies in the literature that concern hydraulic-fall solutions focus on
steady flow, and there appears to have been very little effort devoted to gaining a
theoretical understanding of the stability of these flows. Experimental studies have tended
to concentrate on flow over a bump as depicted in figure 1(b), and, indeed, we have been
unable to identify any experimental work on hydraulic falls over a dip (figure 1a). This may
simply be due to the fact that presumably a wave tank with a bump is easier to engineer than
one with a dip. In this paper, we discuss the stability properties of hydraulic-fall solutions
for both positive and negative forcings: (i) by carrying out a linear stability analysis; and
(ii) by developing a computational framework based on the finite-element method that we
use to analyse nonlinear stability. We show that over a bump, the hydraulic-fall solution
is spectrally stable, but over a dip, it is linearly unstable. Most intriguingly, from our suite
of time-dependent calculations we identify a new time-dependent invariant solution of the
fully nonlinear system that corresponds to a stable time-periodic orbit in a suitably defined
phase space.

The fKdV equation and fully nonlinear steady solution spaces for various topographic
forcings are by now well established (e.g. Forbes & Schwartz 1982; Dias & Vanden-Broeck
2002; Wade et al. 2014, 2017). For the fKdV system, a number of different solution types
can be identified (Akylas 1984; Dias & Vanden-Broeck 2002; Binder, Blyth & McCue
2013); for a recent review, see Binder (2019). Broadly speaking, these can be classified
as cnoidal wave solutions that are flat upstream and wavy downstream, solitary-wave
solutions that are flat both upstream and downstream, and transcritical solutions that we
are herein referring to as hydraulic falls. These solutions are characterised by the upstream
depth-based Froude number given by

Fr = U√
gH
, (1.1)
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On the stability of fully nonlinear hydraulic-fall solutions

where g is the gravitational constant, and U and H are the speed of the flow and the fluid
depth far upstream. Cnoidal-wave solutions occur when Fr < 1 (subcritical flow), and
solitary-wave solutions occur when Fr > 1 (supercritical flow). A distinguishing feature
of hydraulic-fall solutions is that the flow upstream is subcritical, and the flow downstream
is supercritical. For a given topographic forcing, a steady hydraulic-fall solution exists
only for a particular value of Fr. Furthermore, for hydraulic-fall solutions, if the forcing is
negative (a dip), then the wave profile has a local maximum above the forcing, and if the
forcing is positive (a bump), then the fluid depth decreases monotonically from upstream
to downstream (see figure 1).

Using numerical simulations of the fKdV system carried out for a number of different
types of perturbations to the base steady state, Donahue & Shen (2010), Chardard et al.
(2011) and Choi & Kim (2016) all concluded that a hydraulic fall over a positive forcing
is stable. Page & Părău (2014) showed via time-dependent calculations, starting from a
small wavy Gaussian perturbation, that the hydraulic fall solution appeared to be stable,
although they did not track the long-term behaviour. None of these studies attempted a
formal linear stability analysis.

The paper proceeds as follows. In § 2, we state the mathematical problem and the weak
formulation of the problem that forms the basis of our numerical framework. In § 3.1, we
describe briefly the steady bifurcation structure of the fully nonlinear system. We carry out
a linear stability analysis in § 3.2, and a nonlinear stability analysis via direct numerical
simulations of the fully nonlinear model in § 3.3. Finally, in §§ 3.4 and 4, we discuss our
results and consider possible avenues for future research.

2. Problem formulation

We consider inviscid, irrotational, incompressible flow over a bottom topography under the
influence of gravity and neglecting surface tension. The general flow scenario is depicted
in figure 2. The fluid flows from left to right over a localised topographic structure seen as
a positive bump in the figure. In the absence of the topography so that the bottom is flat, or
sufficiently far upstream of the obstacle, the flow consists of a uniform stream of strength
U with uniform fluid depth H. Our concern is with the generally unsteady disruption that
is provoked at the free surface by the topography.

We solve for the fluid flow and the deformation of the free surface using a numerical
finite-element method. In the following subsections we first describe the mathematical
problem to be solved, before discussing the truncated computational problem that is
required for the numerical implementation. To aid the discussion, we use primes to
denote regions and boundaries in the mathematical problem. For example,Ω ′(t) represents
the fluid domain in the mathematical problem, and Ω(t) represents the corresponding
truncated computational domain.

2.1. Mathematical formulation
We non-dimensionalise the problem by scaling all lengths and velocities by the height
H and strength U of the oncoming uniform stream, respectively. The corresponding time
scale is H/U. Figure 2(a) shows the domain for the mathematical problem expressed in
terms of dimensionless variables and with reference to a Cartesian set of axes x = (x, y).
The free surface is described by r = (xf (s, t), yf (s, t)), and the bottom topography by
σ = (xb(s), yb(s)), where s is a suitably chosen parameter (e.g. arc length). Written in
terms of the velocity potential φ(x, t), the dimensionless governing equation and boundary
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Figure 2. Sketches of the non-dimensional time-dependent problem domain for the hydraulic-fall problem.
(a) The mathematical domain. The fluid domain is Ω ′(t), the bottom boundary is Γ ′

0, and the free surface is
Γ ′

2. As x → −∞, we impose uniform flow, φ ∼ x. (b) The computational domain. The inflow boundary is
denoted Γ3, and the outflow boundary is Γ1. The upstream and downstream sponges are indicated by dotted
lines on the free surface Γ2. In the computational domain, far downstream we impose that φ = Vx. In both
sketches, the normal vectors to each boundary Γi are given as ni.

conditions are

∇2φ = 0, x ∈ Ω ′(t) (conservation of mass), (2.1)

∇φ · n0 = 0, x ∈ Γ ′
0, (no penetration on bottom), (2.2)

∂r
∂t

· n2 = ∇φ · n2, x ∈ Γ ′
2(t) (kinematic condition), (2.3)

φt + 1
2

|∇φ|2 + 1
Fr2 ( yf − 1)− 1

2
= 0, x ∈ Γ ′

2(t) (dynamic condition). (2.4)

The Froude number Fr was defined in (1.1). The dynamic boundary condition follows from
applying Bernoulli’s equation at the free surface and utilising the upstream uniform flow
conditions, namely

yf → 1, φ → x as x → −∞. (2.5)
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On the stability of fully nonlinear hydraulic-fall solutions

Throughout, we will adopt the Gaussian topographic forcing function

yb = a e−b2x2
b, (2.6)

for some a, b ∈ R.

2.2. Truncated computational formulation
To prepare for the numerical discretisation, as shown in figure 2(b) we truncate the infinite
domain so that x ∈ [−L, L], with L to be chosen to be sufficiently large. The problem
on the truncated domain is given by (2.1)–(2.4) (with the primes on the flow domain
and boundary symbols removed). Boundary conditions must be imposed at the artificial
outflow and inflow boundaries Γ1 and Γ3, respectively, that arise due to the truncation.

At the inflow boundary Γ3, corresponding to x = −L, the velocity potential and free
surface level are set to mirror the condition (2.5) in the mathematical formulation.
Accordingly, we impose

yf = 1, φ = x, x ∈ Γ3 (inflow condition), (2.7)

which imposes a Dirichlet condition on φ. The conditions to be imposed at the outflow
boundary are more subtle. Anticipating the presence of waves propagating downstream,
for our unsteady calculations, we will make use of a sponge layer to force the free surface
to become locally flat downstream, allowing us to impose the outflow Neumann boundary
condition

∇φ · n1 = V on x ∈ Γ1 (outflow condition), (2.8)

where n1 = i is the unit vector in the x direction, and V is set to ensure conservation of
mass. In this way, we expect to capture the genuine flow features across the main part of
the computational domain (the ‘computational window’ – see figure 2b), except in a short
region close to the outflow and inflow boundaries where the flow is artificially forced into
becoming a locally uniform stream. The choice of V together with details of the sponge
layer will be discussed below.

2.3. Steady calculations
In presenting the steady solution space we include both types of transcritical flow
(hydraulic falls and rises) for completeness and to provide greater context. Since
hydraulic-rise solutions are subcritical at the downstream end (contrast the hydraulic fall
solutions sketched in figure 1), we found that in practice it is convenient to replace the
conditions on φ in (2.7) and (2.8) with a Neumann condition on φ at the inflow boundary
Γ3, and a Dirichlet condition on φ at the outflow boundary. In this way, we can prevent the
occurrence of cnoidal waves downstream.

As was mentioned above, the downstream speed V in (2.8) is chosen to ensure
conservation of mass. If γs = yf (x = L) is the a priori unknown free-surface level local to
Γ1, then we must choose V = 1/γs. The steady form of the dynamic boundary condition
(2.4) then requires

1
2
γ−2

s + 1
Fr2 (γs − 1)− 1

2
= 0. (2.9)

This is satisfied for any Fr if γs = 1, but if γs /= 1, then it imposes a constraint on the
Froude number, thus the Froude number must come as part of the solution.
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While our focus in this paper is on hydraulic-fall solutions, we can also calculate
hydraulic-rise solutions for which the fluid depth increases monotonically from its
upstream level, where Fr > 1, to its downstream level, where Fr < 1. These solutions are
not observed in experiments, so the main focus of our stability analysis is hydraulic falls,
although we do present a brief description of the nonlinear stability of hydraulic rises for
completeness.

2.4. Time-dependent calculations
In the time-dependent problem when waves reach the artificial boundaries in the truncated
computational domain at x = ±L, either they will be reflected back into the domain, or the
simulation will fail. A number of different approaches have been proposed for dealing with
this issue (see Romate (1991) for a review). These include imposing appropriate radiation
conditions (Buttle et al. 2018; Ţugulan, Trichtchenko & Părău 2022) or introducing
perfectly-matched layers (see, for example, Bermúdez et al. (2007) for acoustic waves). We
choose a simpler approach by introducing so-called sponge layers adjacent to the inflow
and outflow boundaries. The sponge layer was described by Boyd (2000) and Alias (2014),
and it has been implemented, for example, by Grimshaw & Maleewong (2016) and Keeler,
Binder & Blyth (2017) in the case of the fKdV equation.

In the sponge layers, disturbances near to the inflow and outflow boundaries are
exponentially damped, so

yf − y± ∝ e−A±t, (2.10)

where y− and y+ are, respectively, target upstream and downstream free-surface levels that
will be discussed below, and A+ and A− are specified decay rate constants. To achieve this,
we modify the kinematic condition (2.3) to become

∂r
∂t

· n2 − S−(x)( yf − y−)︸ ︷︷ ︸
upstream sponge

− S+(x) ( yf − y+)︸ ︷︷ ︸
downstream sponge

= ∇φ · n2. (2.11)

The sponge functions S±(x) take the form

S+(x) = A+[1 + tanh(B+(x − C+))], S−(x) = A−[1 + tanh(−B−(x − C−))],
(2.12a,b)

so that the exponential damping occurs only over specified regions dictated by the
parameters B± and C±. Care must be exercised when choosing values for A±,B±,C±
to ensure that free-surface waves do not get reflected back into the main part of the
computational domain. After extensive experimentation, we found that taking A± = 5 is
appropriate, setting B+ = 1 ensures that small-amplitude waves are absorbed downstream,
and taking B− = 0.01 avoids large-amplitude waves being reflected back into the domain
at the upstream end. We set the locations of the sponge layers by taking C± = ±L ∓ 10,
and typically we choose L > 100 – see figure 2(b), where the sponge region is marked
approximately by dashed lines on Γ2.

The upstream target level we set as y− = 1, whereas for the downstream target level,
we set either y+ = γs or y+ = 1, depending on the initial condition. This choice will be
discussed in §§ 3.3 and 3.4. Regardless of the choice of γs, we fix V = 1/yf (L, t) so that the
outflow flux is equal to unity. We stress that this technique of damping the waves upstream
and downstream is independent of the underlying numerical discretisation of the system. It
could in principle be applied to the analogous three-dimensional problem as an alternative
to the radiation conditions used in Buttle et al. (2018) and Ţugulan et al. (2022).
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On the stability of fully nonlinear hydraulic-fall solutions

2.5. Weak formulation
The governing equations (2.1)–(2.4) are highly nonlinear, and numerical methods are
typically required to solve them. Boundary-integral methods are popular (see, for example,
Forbes & Schwartz 1982; Dias & Vanden-Broeck 2002; Binder, Vanden-Broeck &
Dias 2005; Binder, Dias & Vanden-Broeck 2008; Wade et al. 2014, 2017), although
finite-difference schemes have been used (Grimshaw, Zhang & Chow 2007), and more
recently a spectral method has been implemented (Forbes, Walters & Hocking 2021).
We choose a different approach and develop a numerical framework based on a weak
formulation of the governing equations over the computational domain (figure 2b).
The advantages of this approach will be discussed in § 2.6, but first we describe the
mathematical weak formulation.

We multiply (2.1) by a test function ψ(x) that is required to vanish on boundaries
where Dirichlet conditions in φ are imposed, for example, Γ3. Integrating (2.1) over the
computational domain and integrating by parts yields∫∫

Ω(t)
(∇2φ)ψ dV ≡

∫
∂Ω(t)

(n · ∇φ)ψ dS −
∫∫

Ω(t)
∇φ · ∇ψ dV = 0, (2.13)

where ∂Ω(t) represents the boundary of Ω(t), n is the outward-pointing unit normal
vector on each part of the boundary, and dV, dS are differential area and line elements,
respectively. The domain boundary can be decomposed into ∂Ω(t) = Γ0 + Γ1 +
Γ2(t)+ Γ3, so imposing the Neumann conditions (2.2), (2.3) and (2.8) means that (2.13)
becomes

RBulk(x, φ(x)) ≡
∫
Γ2(t)

(
∂r
∂t

· n2

)
︸ ︷︷ ︸
kinematiccond.

ψ dS +
∫
Γ1

V︸︷︷︸
outflow

ψ dS

−
∫∫

Ω(t)
∇φ · ∇ψ dV = 0, (2.14)

with the unit normal n2 identified in figure 2. To satisfy the dynamic boundary condition,
we multiply (2.4) by a test function and integrate over the free surface to obtain

RDyn(x, φ(x)) ≡
∫
Γ2(t)

(
φt + 1

2
|∇φ|2 + 1

Fr2 ( yf − 1)− 1
2

)
ψ dS = 0. (2.15)

This finalises the weak formulation of the problem. Equations (2.14) and (2.15) are to be
solved to determine the free-surface location yf (x, t) and the velocity potential in the fluid
φ(x, t).

2.6. Numerical discretisation
To solve (2.14) and (2.15) numerically, we utilise the open-source C++ package
oomph-lib (Heil & Hazel 2006) that discretises the governing equations using a Galerkin
finite-element method and allows us to take advantage of state-of-the-art linear solvers and
mesh-update techniques, and provides flexibility to switch between steady, time-dependent
and linear stability calculations. We utilise an isoparametric representation, wherein the
same interpolating shape functions are used for ψ and for the position variables. For this
problem, we used piecewise-cubic shape functions, and typically chose 400 × 10 elements
in the x × y directions, which corresponds to 1201 × 31 nodes. The variation of flow
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quantities in the y direction is found to be small compared to that in the x direction.
It is therefore possible to use a smaller number of elements in the vertical direction.
We use a structured quadrilateral mesh with either a spine-node update strategy (for the
stability analysis and time-dependent calculations) or a pseudo-solid elastic mesh update
strategy (for the steady calculations), although in principle other mesh geometries, such
as an unstructured triangular mesh, can be used. Newton iterations are used to calculate
steady states and a backwards-difference Euler order 2 implicit method is used for unsteady
time-stepping; after extensive experimentation, we set the time step �t = 1.0, which
is small enough to resolve the temporal features of the solutions to be discussed. An
attractive feature of this formulation is that time-dependent calculations require only a
very minor (and easy) augmentation of the Jacobian matrix used in the Newton iterations,
so it is straightforward to switch between steady-state calculations and time-dependent
calculations. Another notable feature is that despite calculating quantities in the bulk fluid
as well as the free surface, the corresponding Jacobian matrix is sparse, in contrast to the
boundary-integral approaches, and the linear inversion is quick based on the open-source
SuperLU package (Li 2005), which performs LU factorisation. Using 400 × 10 elements
(approximately 30 000 unknowns), and working on a standard laptop using a single i7
processor, we find that converging Newton iterations take approximately 13 s for the
steady calculations, and for the unsteady calculations, advancing one non-dimensional unit
of time takes approximately 8 s. For 400 × 1 elements (approximately 6000 unknowns),
the aforementioned components of the steady and time-dependent calculations each take
approximately 0.2 s.

Finally, in the weak formulation, the numerical generalised eigenvalue problem that
results from the linear stability analysis is highly rank deficient as time derivatives do not
appear explicitly in the bulk fluid. To compute the eigenvalues and eigenmodes accurately
and efficiently, we implement the eigensolver from the Anasazi linear algebra library
(Heroux et al. 2003) that is based on Arnoldi iteration and has been used successfully
in other rank-deficient generalised eigenproblems (Thompson, Juel & Hazel 2014; Keeler
et al. 2019).

3. Steady solutions, stability analysis and time-dependent simulations

In this section, we first describe the steady hydraulic-fall solution structure. Next,
we establish the linear stability properties of the hydraulic-fall solutions by solving a
generalised eigenvalue problem, and probe the nonlinear stability properties by performing
time-dependent simulations.

3.1. Steady bifurcation structure
We briefly describe the steady bifurcation structure for the fully nonlinear system. In
figure 3, we show the hydraulic-fall solution space in the (a,Fr) plane (we remind the
reader that a is the amplitude of the forcing). The hydraulic-rise steady states are included
for completeness.

We focus on the difference between the free-surface profiles for a < 0 and a > 0. For
a > 0, the hydraulic-fall/rise profiles are monotonic decreasing/increasing functions of x,
respectively, and there is a unique hydraulic-fall solution for each a. For a < 0, the profiles
are non-monotonic, and in each case the wave height reaches a maximum close to x = 0
before decreasing monotonically (vice versa for the hydraulic-rise profiles).

Unlike the corresponding curve for the fKdV equation with delta function forcing (see,
for example, Binder 2019), the solution curve in figure 3 is symmetric neither about a = 0
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Figure 3. Steady solution space for b = 0.3. The amplitude of the forcing, a, is the horizontal measure, and
the vertical measure is the Froude number Fr. The insets show profiles on the branches indicated by arrows.
Here, a∗ ≈ −0.016 and (aF,FrF) ≈ (−0.0165, 1.006).

nor about Fr = 1. (Although the latter appears true, close inspection reveals this not to
be the case – see the zoomed inset diagram in the figure.) Again in contrast to what is
observed for the fKdV equation, the solution curve has a turning point that is located at
(aF,FrF), with FrF > 1, so that there is a parameter window aF < a < a∗ in which there
is a multiplicity of hydraulic-rise solutions.

There are no hydraulic-fall solutions for a ≤ a∗. We encounter numerical difficulties
in reaching the point a = a∗. As the branch approaches this point, the wave profile, as
shown in the top left inset of figure 3 (labelled A) appears to approach a solitary-wave
type solution in which the downstream height satisfies γs → 1. We believe that the profile
at a = a∗ corresponds to that at the termination point of the Fr = 1 branch of solution (not
computed here), as described by Keeler, Blyth & King (2021) for the fKdV model.

3.2. Linear stability analysis
To analyse the stability of the steady solutions discussed in the previous subsection, we first
introduce the velocity potential on the free surface, ϕ(x, t) ≡ φ(x, yf , t), and the surface
elevation η ≡ yf − 1. We then write

ϕ = ϕs(x)+ ϕ̂(x, t), η = ηs(x)+ η̂(x, t), (3.1a,b)

where ϕs(x) and ηs(x) are the velocity potential and elevation for a steady hydraulic-fall
solution, and the hatted variables are time-dependent perturbations that are assumed to
vanish as x → ±∞. We emphasise that the perturbations are arbitrary and not at this
point assumed to be small.

It is helpful for the subsequent linear stability analysis to write the system of equations
in Hamiltonian form. However, since we perturb about steady hydraulic-fall solutions for
which the surface potential and elevation functions ϕs and ηs do not vanish as x → ∞,
some modification to the well-known Craig–Sulem–Zakharov (CSZ) Hamiltonian
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formulation of the water wave problem (Zakharov 1968; Craig & Sulem 1993) is necessary,
which we now describe. We note that the base state in (3.1a,b) does not necessarily have
to represent a hydraulic-fall solution; the following analysis is also valid if the underlying
steady state is a hydraulic-rise or solitary-wave solution, for example.

In constructing the Hamiltonian, it is important to realise that (3.1a,b) reflects a
nonlinear perturbation to free-surface quantities, and that some care must be exercised
when defining corresponding bulk velocity potentials. In particular, we define ξ(x, y, t)
and φ̂(x, y, t) to be the solutions to the following Dirichlet–Neumann problems, denoted
A and B, which are both defined on the time-dependent domain Ω ′(t):

problem A

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇2ξ = 0 in Ω ′(t),
ξ = ϕs on Γ ′

2(t),
n0 · ∇ξ = 0 on Γ ′

0,
ξ ∼ x as x → −∞,

ξ ∼ γ−1
s x as x → ∞,

problem B

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇2φ̂ = 0 in Ω ′(t),
φ̂ = ϕ̂ on Γ ′

2(t),
n0 · ∇φ̂ = 0 on Γ ′

0,

φ̂ → 0 as x → −∞,

φ̂ → 0 as x → ∞.

(3.2a,b)

We assume that η̂ and higher-order corrections to ξ decay sufficiently fast as x → ±∞ for
the integrals that we will state below (e.g. (3.4)) to be convergent. A subtle point to note is
that ξ does not correspond to the velocity potential of the steady state as it is defined on the
time-dependent domain, which in general does not coincide with that for the steady state.
However, the trace of ξ on the free surface coincides with that for the steady problem. (We
note that this construction relies on the assumption that the free surface is a graph.)

The combined velocity potential φ = ξ + φ̂ satisfies Laplace’s equation (2.1) in the
time-dependent domain. Taking inspiration from the CSZ construction, problems A and
B have been formulated in such a way that we may write down a Hamiltonian for our
problem in the form

Ĥ(ϕ̂, η̂) = Ĥ0(ξ, ηs, η̂)+ 1
2

∫∫
Ω ′(t)

|∇φ̂|2 dV + 1
2 Fr2

∫ ∞

−∞
η̂2 dx︸ ︷︷ ︸

CSZ

+
∫∫

Ω ′(t)
∇ξ · ∇φ̂ dV + 1

Fr2

∫ ∞

−∞
ηsη̂ dx︸ ︷︷ ︸

perturbation

. (3.3)

We have split Ĥ into a term that replicates the original CSZ Hamiltonian, a perturbation
term that arises from the nonlinear perturbation in (3.1a,b), and a term that can be
considered as the ‘base’ energy, Ĥ0, defined as

Ĥ0(ξ, ηs, η̂) =
∫ ∞

−∞

[
1
2

∫ 1+ηs+η̂

0
(|∇ξ |2 − 1) dy + 1

2 Fr2 η
2
s + Q

]
dx, Q = 1

2 Fr2 ηs(ηs + 2).

(3.4)

It is important to note that the integral in (3.4) is convergent due to the addition of the
term Q. (Since Q does not depend on φ̂ or η̂, it does not contribute on taking variations
of Ĥ with respect to these variables.) As x → −∞, the terms inside the square brackets
in (3.4) vanish due to the inflow conditions (2.7). As x → ∞, they vanish due to the
downstream condition (2.9), imposed on the mathematical domain as x → ∞, assuming
that we restrict the flow to approach a uniform stream with free-surface height either 1
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On the stability of fully nonlinear hydraulic-fall solutions

or γs. This restriction as x → ∞ is satisfied when discussing computations for nonlinear
stability in § 3.3.

Finally, by using variational arguments as described in Zakharov (1968) and Craig &
Sulem (1993), it can be shown that the system in (2.1)–(2.4), together with (3.1a,b), can be
written as

∂ζ

∂t
= K

δĤ
δζ
, K =

(
0 I
−I 0

)
,

δ

δζ
=

(
δ

δη̂
,
δ

δϕ̂

)T

, (3.5a–c)

where ζ = (η̂, ϕ̂)T, and δ/δζ is the variational derivative.
Although the stability theory of Hamiltonian systems is well known (see, for example,

Holm et al. 1985), it is helpful to repeat the salient details. First, we linearise (3.5a–c)
about ϕ̂ ≡ 0 ≡ η̂, that is, we set ζ = εζ̄ , with 0 < ε � 1 and ζ̄ = (η̄, ϕ̄)T. At O(ε), we
find

∂ ζ̄

∂t
= KLζ̄ , L = 1

2
δ

δζ̄
(δ2Ĥ), (3.6a,b)

where δ2Ĥ is the symmetric Hessian matrix (see, for example, Holm et al. 1985).
Proceeding further, we write ζ̄ = gs est, where gs = (gη̂,s(x), gϕ̂,s(x))T so that (3.6a–c)
becomes the eigenvalue problem

sgs = KLgs, (3.7)

for eigenvalues s and eigenmodes gs.
We distinguish between two classes of solutions to (3.7), which correspond to (i) a

continuous essential spectrum sess, and (ii) a discrete point spectrum sp. The eigenmodes
of sess are bounded as |x| → ∞, whilst the eigenmodes of sp decay to zero as |x| → ∞.
With K skew-symmetric and assuming L self-adjoint, it is easy to show that if
s = ρ ∈ C satisfies (3.7), then so do s = −ρ and s = ±ρ∗ (where stars indicate complex
conjugates), therefore there is a fourfold symmetry in the complex plane. This is a standard
distinguishing feature of Hamiltonian systems (see, for example, Holm et al. 1985).

We calculate sess and sp numerically using our finite-element framework (this
implementation is identical to the procedure described in Thompson et al. 2014). The
calculation is delicate and requires care to ensure convergence. In addition, we remark that
to calculate sess and sp, we have to solve three separate numerical problems (one for sess,
and two for sp); the precise details will be discussed in parallel with the results below.

3.2.1. The essential spectrum sess
The essential spectrum sess can be calculated by examining the form of (3.7) in the
limit as |x| → ∞ (see, for example, Sandstede & Scheel 2000). An interesting aspect of
this problem is that the operator L takes different forms as x → −∞ and as x → ∞,
and consequently different dispersion relations are obtained in these limits. This has
implications for the spatial wavenumber of the eigenmodes.

Sufficiently far downstream, the flow corresponds to a uniform stream of height γs with
speed V = γ−1

s . The dispersion relation relating the frequency ω to the wavenumber kd of
small-amplitude waves is

ω = Vkd ±
√

kd tanh kdγs

Fr2 (downstream dispersion relation), (3.8)
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2

0

–2

–4

–6

0 0.1 0.2

Upstream dispersion relation Downstream dispersion relation

0.3 0.1 0.2 0.30.4 0.5

0.010

0.008

0.006

0.004

0.002

0

ku kd

(×10–3)

ω

ω = τ

(a) (b)

Figure 4. The dispersion curves for Fr = 0.9659 and γs = 0.9550 (corresponding to the hydraulic-fall
solution when a = −0.01, b = 0.3). (a) The upstream wave frequency ω as a function of the upstream
wavenumber ku. (b) The downstream wave frequency ω as a function of the upstream wavenumber kd . The
minimum ω = τ = −0.006217 of the upstream dispersion curve is shown with a dotted line in (a).

corresponding to waves that travel faster/slower, respectively, than the downstream speed
V . Upstream, where the fluid depth and speed are both unity, with an obvious shift in
notation the dispersion relation is

ω = ku ±
√

ku tanh ku

Fr2 (upstream dispersion relation). (3.9)

In both cases, the essential spectrum is such that

sess = iω, gs ∝ (eikx, ieikx)T, (3.10a,b)

with k = ku or kd, and ω ∈ R. The profile of gη̂,s will be such that it connects a spatially
oscillatory wave comprising wavenumbers kd that satisfy (3.8) as x → ∞, to a different
spatially oscillatory wave consisting of wavenumbers ku that satisfy (3.9) as x → −∞.

The dispersion relations in (3.8) and (3.9) are shown in figure 4 for a = −0.01,
Fr = 0.9659. We plot the dispersion curves for positive k and for the minus sign in
(3.8) and (3.9), but note that the dispersion curve for the plus sign can be obtained
by simply replacing k and ω with −k and −ω. We emphasise an important distinction
between the upstream and downstream dispersion curves. As can be seen in figure 4(a),
the upstream dispersion curve has a stationary point at a frequency that we denote τ ,
whereas the downstream dispersion curve increases monotonically with kd, as can be seen
in figure 4(b). This observation will be important when we describe the construction of
sess below.

To calculate sess numerically, we set φ = −L at the upstream boundary Γ3, and allow the
upstream height to come as part of the solution (in so doing we are able to capture waves
upstream), and we ‘pin’ the downstream height at the outflow boundary Γ1. Since we do
not constrain φ at the outflow boundary, this allows us to capture waves downstream. We
filter out spurious essential modes by removing modes that grow as x → ±∞; we found
that a convenient empirical method of achieving this was to reject any eigenmode with
|Re(sess)| > 10−7. We note that we do not apply the sponge layer in this calculation, i.e.
we set A± = 0.
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0
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0 0.5 1.0 1.5
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0

–1.0 –0.5 0 0.5 1.0

(×10–3)

0

Essential spectrum Wave profile

Upstream signal

Upstream

Downstream

Downstream signalDispersion relation

Type I

modes

Im(s) > τ

sess

s = i|τ|

s = –i|τ|

λ = 0.1309i
Fr = 0.8823, a = 0.01, γs = 0.8481

Im
(s

)
R

e(
g η̂

,λ
)

Re (s)

ω

ω = +|Im(λ)|

ω = –|Im(λ)|

(a) (b)

(c)

(d ) (e)( f )

(g)

Figure 5. Type I modes of the numerically calculated sess for the hydraulic-fall solution with Fr = 0.8823,
a = 0.01, b = 0.3. (a) The numerically computed sess is shown with blue markers on the imaginary s axis,
and a particular element sess = λ = 0.1309i is highlighted with a solid red marker. The horizontal dotted lines
indicate the levels s = ±i|τ | = ±0.04489i; in this calculation, |Im(λ)| > |τ |. (b) The underlying steady state.
(c) The real part of the eigenmode associated with λ. (d,e) The upstream/downstream portions of the real part
of the eigenmode, denoted gu and gd , respectively. ( f ) The downstream and upstream dispersion relations given
in (3.8) and (3.9), respectively, with the minus sign taken in both cases. The dashed horizontal lines indicate
ω = ±|Im(λ)|. (g) The power spectrum, i.e. |fft(g)|2 (the square of the Fourier transform). The horizontal
axes of ( f,g) are identical, so a direct comparison between the peaks of the power spectrum and the intersection
of the dispersion curves with ω = Im(λ) can be made. We also note that in (d–g), all calculations corresponding
to the upstream section are shown as solid blue lines, while the downstream section use dotted yellow lines.

The essential spectrum comprises two types of modes, denoted types I and II. Type I
modes occur when |Im(sess)| > |τ |. A set of calculations associated with a typical member
of this class is shown in figure 5. In figure 5(a), sess is shown on the imaginary axis in
the complex s-plane for the underlying steady-state shown in figure 5(b) for a = 0.01,
Fr = 0.8823. In figure 5(a) we highlight a particular member of sess, denoted λ, that
satisfies |Im(λ)| > |τ | (values quoted in the caption). The corresponding mode (real
part) is shown in figure 5(c) and comprises two distinct wave patterns upstream and
downstream, denoted gu and gd, and highlighted in figures 5(d,e), respectively. The
dominant wavenumbers of the type I modes can be determined, numerically, by calculating
the power spectra of gu and gd as functions of the wavenumber k, as shown in figure 5(g).
We calculate the power spectra using the fast Fourier transform (fft) of gu and gd. For
type I modes, there is a single dominant wavenumber for each of the upstream and
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s = i|τ|

s = –i|τ|
μ = 0.03027i

Fr = 0.8823, a = 0.01, γs = 0.8481

y

x(×10–3)
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(s

)

Re (s)

(a) (b)

x

R
e(

g η̂
,μ

)

(c)

(d )

ω

ω = +|Im(μ)|

ω = –|Im(μ)|

( f )

0.1

–0.1

0

gd

gu

Upstream

Downstream

Figure 6. Type II modes of the numerically calculated sess for the hydraulic-fall solution with Fr = 0.8823,
a = 0.01, b = 0.3. The figure follows the same description as for figure 5, with the exception that in this
calculation, we highlight a different member sess = μ = 0.03027i such that |Im(μ)| < |τ |. Here, τ has the
same value as in figure 5.

downstream signals, as shown by the peak in each of the power spectra in figure 5(g).
The wave numbers associated with these peaks correspond precisely to the intersections
of the upstream and downstream dispersion curves with the horizontal line ω = +|Im(λ)|,
as shown in figure 5( f ), which has the same horizontal axis and scale as figure 5(g) to aid
this comparison. This illustrates the excellent agreement between the theory and numerics,
and gives us confidence in the fidelity of the numerical eigensolver.

Type II modes occur when |Im(sess)| < |τ |. A set of calculations associated with a
typical member of this class, denoted by sess = μ, is shown in figure 6. This figure follows
a structure identical to that of figure 5. In this class of modes, the upstream section of
the mode, shown in figure 6(d), is clearly multi-harmonic. This is a direct consequence
of the fact that in the upstream dispersion curve, for a given |ω| < |τ |, multiple values
of ku satisfy (3.9). For type II modes, there are three dominant wavenumbers upstream,
and one dominant wavenumber downstream. As for the type I modes, the wavenumbers
associated with the peaks in the power spectra correspond precisely to the intersections
of the upstream and downstream dispersion curves, but this time with the horizontal lines
ω = ±|Im(μ)|, as shown in figures 6( f,g). For type II modes, the wavenumbers associated
with ω = −|Im(μ)| will travel (as t progresses) more slowly than the uniform upstream
speed, while wavenumbers associated with ω = +|Im(μ)| will travel faster.

993 A9-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

59
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.599


On the stability of fully nonlinear hydraulic-fall solutions

0.1

0.05

–0.05
–0.10

0

–0.1
–200 2000

–200 2000

0

0.1

Point spectrum

–0.1

–200 2000

0

–0.1

–5.38

–5.40

–5.42

–5.44

550 600 650 700 750

–200 2000

0

0.06

–0.06

1.1

1.0

0.9
–100 –50 0 50 100

–0.0001 0 0.0001

R
e(

g η̂
,–

ν
)

R
e(

g η̂
,ν

)
lo

g
(m

ax
|R

e(
g η̂

,ν
)|)

Im
(g

η̂
,ν

)

–ν∗

–ν ν∗

ν

Im
(g

η̂
,–

ν
)

Im
(s

)

x

x

Type III

modes
Type IV

modes

Fr = 0.9659, a = –0.01, γs = 0.9550

y

x

x

x

x

Re (s)

Spatial decay

rate

–3.324 × 10–4

(a)

(b)

(c) (e)

(g)

( f )
(d )

Figure 7. Type III and IV modes of the numerically calculated sp for the hydraulic-fall solution with Fr =
0.9659, a = −0.01, b = 0.3. (a) Here, sess is marked on the imaginary axis, and sp with ν = 2.375 × 10−5 +
0.0235i is indicated with green stars. (b) The underlying steady state. (c,d) Type III eigenmodes corresponding
to sp = −ν,−ν∗ (real and imaginary parts). (e, f ) Type IV eigenmodes corresponding to sp = ν, ν∗. (g) Plot of
log(max |Re(gη̂,ν )|) against x, indicating the small spatial decay rate (estimated here) of the downstream wave
in (e).

3.2.2. The point spectrum sp
Throughout the following discussion, we will use ν to represent the eigenvalue in the
point spectrum sp that lies in the first quadrant of the complex plane. As was mentioned
earlier, the point spectrum has a fourfold symmetry in the complex plane. In contrast to the
forced solitary-wave fKdV calculations of Camassa & Wu (1991) and Keeler et al. (2017),
where the point spectrum eigenmodes are even-symmetric so that gη̂,ν(−x) = gη̂,−ν(x),
hydraulic-fall solutions are not even-symmetric, so we expect that gη̂,ν(−x) /= gη̂,−ν(x).

The numerical computation of the eigenmodes requires a great deal of care to filter out
grid-dependent spurious modes. A very wide computational domain is needed because
evanescent waves on the upstream or downstream side of the eigenmodes decay extremely
slowly (this is quantified below). We identify two different types of mode in the point
spectrum, which we term type III corresponding to eigenvalues in the left half-plane
(here sp = −ν,−ν∗), and type IV corresponding to eigenvalues in the right half-plane
(here sp = ν, ν∗). To compute type III modes, we impose yf = γs and φ(L, y) = L at the
outflow boundary Γ1 so that the profile is flat downstream, but there are evanescent waves
upstream. For type IV modes, we set yf = 1 and φ(−L, y) = −L at the inflow boundary Γ3
to capture eigenmodes that are flat upstream and have evanescent waves downstream. We
found empirically that a convenient way to filter out the spurious type III/IV modes was
to reject any mode with eigenvalue in the right/left half-plane, respectively. We confirmed
that the point spectra converge as the domain size L is increased and the mesh resolution
is made finer.

In figure 7, we show results for the negative forcing case a = −0.01, Fr = 0.9659.
In figure 7(a), the point spectrum sp (green stars) is shown together with the essential
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Figure 8. Hydraulic-fall solutions for b = 0.3, with numerically calculated sp as a is varied (the corresponding
values of Fr can be inferred from figure 3). The solid black lines indicate sp, and the arrows indicate how sp
evolves as a decreases from zero. Here, sess is shown by hollow circular markers. We note that the eigenmodes
of sess change as a is varied, but sess itself remains on the imaginary axis. The insets show eigenmodes
corresponding to sp, as indicated by arrows for the values a = −10−5 (bottom insets) and a = −0.016 ≈ a∗
(top insets).

spectrum sess (blue circles) in the complex s-plane. The underlying steady state is shown
in figure 7(b). Figures 7(c,d) show the corresponding III modes, and figures 7(e, f ) show
the corresponding IV modes. Note that the sponge layer is not included for either the type
III or type IV calculations. The exponential decay rate of the type IV downstream waves
is scrutinised in figure 7(g) by plotting the logarithm of the local wave maxima against x
and then estimating its slope. The decay rate is computed to be −3.3 × 10−4.

We find a non-empty point spectrum only when a < 0 (we calculated the essential
and point spectrum for values of a, b in the range a∗ < a < 0.1 and 0.3 ≤ b ≤ 3.0), and
moreover, the point spectrum contains only four eigenvalues. We can investigate the linear
instability for a < 0 further by computing the point spectrum as a is varied continuously.
Figure 8 shows that as a → 0−, the quartet of eigenvalues appears to approach the origin.
This is consistent with the fact that when a = 0, i.e. for a flat bottom, the spectrum
contains an isolated zero of multiplicity four (see, for example, Akers & Nicholls 2012).
As a → a∗ ≈ −0.016, the unstable eigenmodes approach those found at the ‘termination
point’ solutions discussed in § 3.1. The fact that we have not found a point spectrum when
a > 0 appears to suggest that hydraulic-fall solutions over positive bumps are linearly
stable.

Although we have analysed the stability properties of the linearised system, as
is well known, linear stability does not imply nonlinear stability (see, for example,
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Holm et al. 1985). In the next subsection, we will perform numerical simulations to provide
evidence for nonlinear stability.

3.3. Nonlinear stability
In this subsection, we solve an initial value problem in order to confirm the
results of the previous section and to probe the nonlinear stability properties of the
hydraulic-fall solutions. We introduce a localised perturbation to the steady solution ys(x),
taking

yf (x, t = 0) = ys(x)+ εx e−a2
2(x−a3)

2
, (3.11)

for some choice of the perturbation amplitude ε and the constants a2 and a3. In the
results to be presented below, we choose a2 = 0.5 in (3.11) and set a3 = 0, but the
general conclusion on the solution’s stability remains the same for other values of a3. The
computation is carried out as follows. Having deformed the flow domain to incorporate
the perturbation (3.11), we solve Laplace’s equation over this domain together with the
steady kinematic condition on the free surface Γ2, (2.3), the no-penetration condition on
the bottom Γ0, (2.2), and the inflow and outflow conditions on Γ3 and Γ1, (2.7) and (2.8),
respectively. This provides us with the initial velocity potential over the perturbed domain,
namely φ(x, t = 0). We set the downstream target level for the sponge layer as y+ = γs.

Our stability analysis of the hydraulic-fall solutions depends on two parameters: the
amplitude of the topographic forcing, a, and the size of the perturbation, ε, in (3.11). To
standardise the size of the perturbation as a is varied, we set

ε = lΔs, Δs ≡ |1 − γs|, (3.12)

with l > 0. This provides a convenient way to compare results for different values of a.
As the system is Hamiltonian, the underlying dynamical system cannot contain attractors

or repellers as the Hamiltonian is invariant along any trajectory in the system’s phase
space. Therefore, in this system, the stability properties of the steady states are interpreted
by a local argument; the system can evolve towards/away from a steady state as energy is
emitted far upstream/downstream.

When discussing the results of our numerical simulations, it will be useful to refer to the
value of the ‘wave resistance coefficient’ that was introduced by Camassa & Wu (1991)
for the fKdV equation, which is defined as

Cr = −
∫
Γ2

∂yf (x, t)
∂x

yb(x) dS. (3.13)

In the fKdV model, Cr is the power supplied by the bottom forcing yb (Camassa & Wu
1991).

3.3.1. Positive forcing
We start by examining hydraulic falls over a positive forcing with a > 0. Figure 9 shows
the results of a time-dependent calculation using the initial condition (3.11) with l = 2.0
(other parameter values are quoted in the caption). An animation of the time evolution
of the free surface can be found in supplementary movie 1 (available at https://doi.org/
10.1017/jfm.2024.599). Evidently, the system returns quickly to the original unperturbed
stable state. It was found that this behaviour was typical for forcing amplitudes in the range
a = (0, 0.1] and perturbations in the range l ∈ (0, 4], providing evidence that the solution
is stable to localised perturbations as prescribed in (3.11) for all a > 0 sampled.
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Figure 9. Perturbation of a hydraulic fall over positive forcing with a = 0.01, Fr = 0.88228 and initial
condition (3.11), with l = 2.0, b = 0.3, a2 = 0.5 and a3 = 0. (a) Waterfall plot of free-surface evolution.
(b) The initial perturbation (solid red line) and the steady state (dotted black line). (c) The free surface (solid
red line) at t = 1247 and the steady state (dotted black line).

3.3.2. Negative forcing
Figure 10 shows the result of a time-dependent calculation for a topographical dip with
a = −0.01, b = 0.3 and initial condition (3.11) (the other parameter values are shown
in the captions). We strongly recommend the reader to watch supplementary movie 2
to support the following discussion. A waterfall plot of the time evolution of the free
surface is shown in figure 10(g). Figure 10(c) shows the time trace of yf (0, t) over the
range 0 < t < 105 (zoomed-in regions of this time trace are shown in figures 10(a,e)),
and figure 10(d) shows the (Cr, yf (0, t)) phase plane projection. The thicker lines in
figure 10(d) indicate regions in phase space that are visited more frequently. Wave profiles
at times t = 5000 and t = 105 are shown in figures 10( f,b), respectively.

Considering these results, the time evolution can be divided broadly into two distinct
stages. The initial stage (over 0 < t < 5000, say, and shown in figure 10(e)) is characterised
by a roughly sinusoidal temporal oscillation of yf (0, t) about the steady-state value, the
latter shown as a dotted line in figure 10(c). In this stage, the transient growth is well
matched by the real part of the unstable eigenvalue s = ν of the underlying state, as shown
by the dashed line in figure 10(c). The frequency of the oscillation is in excellent agreement
with the imaginary part of ν. In fact, the same observation holds for a broad range of
topography amplitudes a. This is illustrated in figure 11(a), where Im(ν) is plotted against
a. Also shown is the frequency of yf (0, t) estimated from the time trace during the initial
stage of the evolution. Evidently, there is excellent agreement between the two. We also
found that this frequency is independent of the perturbation amplitude l.

During this initial stage of the evolution, the amplitude of the oscillations increases
and small-amplitude waves are emitted and travel downstream, as can be seen in of
figure 10( f ). We would expect that the wavenumber of these emitted waves conforms
with the linear dispersion relation (3.8). We can test this by estimating the frequency
and wavenumber of the emitted waves from the time signals and from the instantaneous
free-surface profile, respectively. To approximate the frequency, we calculated the mean
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Figure 10. Perturbation of the hydraulic-fall solution with a = −0.01, Fr = 0.9659 (and
Δs = 0.0450) with the initial condition (3.11) taking l = 2.0, b = 0.3, a2 = 0.5 and a3 = 0.
The underlying type IV eigenmode of the steady state has ν = 2.375 × 10−5 + 0.0235i.
(a) Time trace of yf (0, t) over the window 8.6 × 104 < t < 9.15 × 105. (b) Free-surface profile at
t = 105. The estimation of the wavenumber k is indicated. (c) Time trace of yf (0, t) over 0 < t < 105. The
dotted line indicates ys,f (0). We note that the frequency of the oscillations cannot be resolved on this time
scale, and zoomed regions are shown in (a,e). (d) The phase plane projection (Cr, yf (0, t)) with the vertical
axis on the same scale as (c). Thicker lines indicate locations in phase space that are visited more frequently.
(e) Time trace of yf (0, t) over 0 < t < 5000. ( f ) Free-surface profile at t = 5000. The arrows indicate the
direction of wave propagation. (g) Waterfall plot of free-surface evolution.

separation of the local maxima of the time signal yf (0, t), and to estimate the wavenumber,
we extracted the mean separation of the local maxima in the spatial wave profile yf (x, t)
at t = 104. The results are shown in figure 11(b), where we see good agreement with the
dispersion relation ω = ω(k), with k = kd, in (3.8), although the disparity between the
two increases as the wavenumber k increases. Also shown in figure 11(b) is the (positive)
imaginary part of the eigenvalue in the corresponding point spectrum (see § 3.2.2).
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Figure 11. (a) The frequency of oscillations in the initial stage of the evolution for the case studied in
figure 10 but over a range of a values, and b = 0.3. The solid lines are the imaginary part of ν, and the
line with circular markers is the estimate of the frequency from the time-dependent simulations. (b) The linear
dispersion relation ω = ω(k), with k = kd , according to (3.8), shown with a dot-dashed curve. The estimated
frequency–wavenumber relation for the small-amplitude waves emitted in figure 10( f ) is illustrated with red
circular markers. The (positive) imaginary part of the eigenvalue in the point spectrum, Im(ν), is shown with a
solid blue line.

Eventually, the amplitude of the oscillations saturates, heralding the second evolutionary
stage, which we refer to as the limiting stage. Here, the oscillations are less sinusoidal
in character. The limiting stage is characterised by a regular stream of larger-amplitude
cnoidal waves propagating in the upstream direction and away from the topographical
dip, and, in contrast to the initial stage, the waves travelling downstream, as shown
in figure 10(b), now consist of multi-harmonic waves. The phase-plane projection
(Cr, yf (0, t)) shown in figure 10(d) has a distinctive guitar-pick shape. At large time t, the
trajectory appears to have converged to a closed loop (shown in white with arrows), which
represents an invariant solution of the system. We remark that this limiting behaviour was
found to be typical for parameter values a∗ < a < 0, 0.3 ≤ b ≤ 3.0 and l ∈ (0, 4]. We also
recommend the reader to watch the animation in supplementary movie 3 focusing on how
the limiting stage for figure 10 evolves over a temporal period.

In conclusion, the steady state hydraulic-fall solution with negative forcing is unstable,
and perturbations from it settle down to a time-dependent, nonlinear stable invariant
solution irrespective of size of the perturbation in (3.11). We discuss this in more detail in
§ 3.4.

3.3.3. Hydraulic rises
For completeness, we describe briefly the nonlinear stability of the steady hydraulic-rise
solutions. Hydraulic rises are unstable for both positive and negative a, as demonstrated in
figures 12 and 13, respectively. For positive forcings, as the initial disturbance propagates
downstream, a solitary wave emanates from the origin and moves upstream, whilst a steady
cnoidal wave pattern emerges downstream. Ignoring the solitary wave, this structure is
known as a generalised steady hydraulic rise (see figure 12). For negative forcings, similar
to what was found for the hydraulic fall, the system settles into a time-periodic orbit as
indicated in figure 13(c). We observe that the temporal signal of yf (0) in the limiting stage,
as shown in figure 13(b), is more sinusoidal than that for the hydraulic fall (see figure 10a),
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Figure 12. Waterfall plot of free-surface evolution of a perturbation of a hydraulic rise over positive forcing
with a = 0.01, Fr = 1.1173 and initial condition (3.11), with l = 2.0, b = 0.3, a2 = 0.5 and a3 = 0.
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Figure 13. Hydraulic rise for the case a = −0.01, b = 0.3, Fr = 1.0436 and initial condition (3.11), with
l = 2.0, a2 = 0.5 and a3 = 0. (a) Waterfall plot for the system starting from a state of near uniform flow.
(b) Time trace of yf (0, t) in the limiting stage. (c) The projected phase plane (Cr, yf (0, t)). The initial condition
is shown as a circular marker, and the trajectory is in orange.

and that a cnoidal wave pattern similar to that seen for the positively forced hydraulic rise
emerges downstream.

3.4. Time-dependent invariant solution
To explore further the existence of a time-dependent invariant solution for negative forcing,
a < 0, we calculate the free-surface response when the system starts from a condition of
near uniform flow with a flat free surface. Specifically, to provide the initial condition,
we solve Laplace’s equation over the flow domain shown in figure 2, but with a flat free
surface Γ2, enforcing the steady form of the free-surface kinematic condition, (2.3), the
no-penetration condition on the bottom Γ0, (2.2), and the inflow and outflow conditions
on Γ3 and Γ1, (2.7) and (2.8), respectively. This yields the initial velocity potential
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Figure 14. Hydraulic fall for the case a = −0.01, b = 0.3, Fr = 0.9659. (a) Waterfall plot for the system
starting from a state of near uniform flow. (b) Time trace of yf (0, t). (c) Time trace in the period 9.5 × 104 <

t < 105. (d) The projected phase plane (Cr, yf (0, t)). The initial condition is shown as a circular marker, the
system trajectory is in red, and the limiting orbit from figure 10 is shown in white.

φ(x, t = 0). This starting condition is artificial as the pressure at the free surface does not
match the constant ambient pressure at t = 0, but we overlook this slight inconsistency.
During the calculation we set the downstream sponge target level as y+ = 1.

The results are shown in figure 14 for a = −0.01 and Fr = 0.9659, which are the same
values as in figure 10. The waterfall plot shown in figure 14(a) indicates that the region left
in the wake of the downstream travelling waves is itself wavy. The signal yf (0, t) shown
in figures 14(b,c) appears to be periodic and is similar in character to the oscillations
observed in figure 10(a). Furthermore, in figure 14(d), the trajectory in the (Cr, yf (0, t))
plane is shown, and it is clear that the system is evolving towards the guitar-pick-shaped
limiting orbit observed in figure 10, which is also shown (coloured white and labelled as
the ‘limiting orbit’). This calculation provides further evidence of what appears to be a
time-periodic orbit and that it is the same solution as in figure 10.

In figure 15, we examine the time-dependent invariant solution further by analysing
the calculation in figure 10 for a = −0.01. We begin by noting that, as can be seen in
figure 15(a), the mean level of the downstream spatial signal, denoted yd, decreases as
time progresses. Consequently, a modified downstream dispersion relation obtains for
the limiting stage, and this is found by replacing γs and V in (3.8) with y∞ and 1/y∞,
respectively.

Next, we observe that the average temporal frequency, denoted ω̄, estimated using the
local maxima of the time signal yf (0, t) in figure 15(c), varies in time from a value close to
ω̄ ≈ Im(ν) in the initial stage of evolution to a smaller value, denoted ω1, in the limiting
stage (see figure 15b). This frequency modulation can be explored further by calculating
the power spectrum of the temporal signal of yf (0, t) in the limiting stage, i.e. over
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Figure 15. Frequency and wavenumber analysis of the downstream portion of the wave, yd , and the time
signal yf (0, t), for the calculation in figure 10. (a) The downstream mean level yd as a function of time. (b)
The average frequency as t varies, estimated from the local maxima of the time signal of yf (0, t). (c) The time
signal of yf (0, t). (d) The power spectrum of the downstream wave in the limiting stage of the evolution, with
the two peaks occurring at k1 ≈ 0.2275, k2 ≈ 0.3850. (e) The power spectra of yf (0, t); note that the vertical
axes is the frequency ω, and the horizontal axis is the power. ( f ) The limiting stage dispersion curve together
with the levels ω = ω1 ≈ 0.018, ω2 ≈ 0.036. Note that the horizontal axis and scale are identical in (d, f ), and
the vertical axis and scale are identical in (e, f ), to aid comparison. (g,h) The wave profile at the given time slot
and the downstream portion of the free surface.

105 < t < 1.5 × 105. The result is shown in figure 15(e). This shows that there are actually
two main temporal frequencies in the limiting stage, as indicated by the peaks in the
temporal power spectra shown in figure 15(e). We denote these two dominant frequencies
by ω1 ≈ 0.018 and ω2 ≈ 0.036.

In addition, we find there are two dominant wave numbers of the spatial downstream
wave signal, yd (see figure 15h), as indicated by the spatial power spectrum of yd at t = 105

shown in figure 15(d). We denote these two dominant wave numbers by k1 ≈ 0.2275 and
k2 ≈ 0.3850.

Bringing this all altogether, in figure 15( f ) we show the limiting dispersion curve
together with two horizontal lines indicating the levels ω = ω1, ω2. The values of k where
the curve intersects these lines correspond precisely to the two dominant wavenumbers
k1, k2 seen in figure 15(d). To aid comparison across panels in the figure, the horizontal
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Figure 16. The power spectrum of yf (0, t) in the limiting stage of the evolution for the solution when a =
−0.005, b = 0.3, l = 2. The primary harmonic ω1 ≈ 0.01257 and the next three subharmonic frequencies are
identified.

axes in figures 15(d, f ) are identical, as are the vertical axes of figures 15(e, f ). These results
indicate that the wavenumbers of the downstream disturbance are linked to the temporal
frequencies via the downstream dispersion curve.

In figure 16, we show the power spectrum of the time signal of yf (0, t) at the limiting
stage for a slightly different case with a = −0.005, b = 0.3. The energy peak at the
dominant frequency ω1 is evident, with other peaks of diminishing strength located
approximately at ω = nω1, where n = 2, 3, 4, . . ., presumably generated via nonlinear
effects. This is strong numerical evidence that the invariant solution is a periodic orbit.
The downstream wavenumbers associated with the subharmonic frequencies nω1 must
satisfy the linear dispersion relation (3.8), and in general will be incommensurate. This
explains the rather irregular appearance of the downstream waves in figure 15(h).

In summary, in this subsection we have obtained the most important result of the
present paper, namely the apparent existence of a temporally periodic orbit of the fully
nonlinear system. Time-periodic behaviour in free-surface flow over topography has been
observed before, notably for the fKdV equation, by (Camassa & Wu 1991), Wu (1987)
and Grimshaw & Smyth (1986). Through unsteady simulations, these authors found a
similar oscillatory behaviour of the free surface over the topography. In this case, the
period of the oscillation was linked to the frequency at which solitary waves were emitted
in the upstream direction. However, in none of these studies was the long-time behaviour
explored. It is also worth noting that this solution does not fall easily into any previously
recognised class of time-periodic Euler free-surface flows. It is not spatially localised, and
it is not spatially periodic. It cannot therefore be classified as a breather solution (see,
for example, Peregrine 1983), or as a standing wave, or as a travelling standing wave
(Wilkening 2021).

4. Conclusion

We have examined the stability of a hydraulic-fall flow over a localised bottom topography.
The topography is in the form of a Gaussian whose amplitude is either positive (a bump)
or negative (a dip). In the initial part of our analysis, we studied the linear stability of
these solutions by first demonstrating that the full equations can be cast in the form of a
canonical Hamiltonian system with a Hamiltonian that is a modification of that derived
by Zakharov (1968) and Craig & Sulem (1993) for the classical water wave problem. As a
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consequence, the spectrum of the system linearised about a steady hydraulic-fall solution
has a fourfold symmetry in the complex plane.

In the case of a bump, our numerical computations showed that either the point spectrum
is empty or else all of its eigenvalues are located on the imaginary axis so that the
underlying flow is spectrally stable. For a dip, we identified a single eigenvalue in the
point spectrum (to within the fourfold symmetry) that lies off the imaginary axis with a
positive real part, meaning that the flow is linearly unstable. For both the bump and the
dip, the essential spectrum occupies the whole of the imaginary axis. For both the bump
and the dip, we carefully analysed the associated eigenfunctions, and we demonstrated that
their behaviour in the far field, away from the localised topography, could be reconciled
with the dispersion relation for small-amplitude waves over a flat bottom.

In the second part of our work, we examined the nonlinear stability properties by solving
an initial value problem for the full Euler equations, with the initial condition taken to
represent a small perturbation about a steady hydraulic fall. For a bump, the simulations
showed that the disturbance to the free surface disperses so that the steady solution is
ultimately recaptured. This is in keeping with the prediction of the linear stability analysis.
Consequently, we concentrated most of our attention on the dip. In this case, our numerical
simulations showed that the steady hydraulic fall is also nonlinearly unstable, and that
ultimately the flow approaches a periodic state in which the free surface exhibits a localised
peak that pulsates up and down over the dip, while small-amplitude waves are emitted
continuously in both the upstream and downstream directions. This periodic state may be
interpreted as an invariant solution of the underlying dynamical system. We have shown
numerically that the periodic waves that are emitted downstream have a dominant temporal
frequency that can be linked accurately to the linear dispersion relation based on the mean
downstream depth. The subharmonic frequencies of these waves were found to be rational
multiples of the dominant frequency, thereby reinforcing our conclusion that a periodic
state has been achieved.

Interesting questions remain. For example, beside periodic solutions as identified
here, there exists the possibility of quasi-periodic solutions. Such objects exist in phase
space as so-called invariant tori (e.g. Kuznetsov 1998). However, directly calculating
time-dependent invariant solutions, such as periodic orbits or invariant tori, remains
a highly non-trivial numerical task. In other applications in fluid dynamics, periodic
orbits have been computed semi-analytically using a weakly nonlinear approach, e.g.
for air bubbles in a Hele-Shaw channel (Keeler et al. 2019). Page & Kerswell (2018,
2019) have recently applied Koopman analysis and dynamic mode decomposition to
approximate periodic orbits for the Burgers equation and the Navier–Stokes equations.
Another possibility is to adapt the methodology for calculating travelling-wave solutions
that are periodic in space and time from Wilkening (2011) and Wilkening & Zhao (2021).
It would be of interest to understand whether these methods can be implemented for the
non-localised and non-spatially periodic solution discussed here in order to further probe
the landscape of invariant solutions in phase space.

Finally, as was noted in the Introduction, there is an apparent lack of experimental results
in the literature concerning hydraulic falls over a dip. It would be of interest to see if the
numerical observations in the present work, and in particular the time-periodic flow that
appears at large time, can be realised in the laboratory.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.599.
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