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GENERALIZATION OF THE HAUSDORFF 
MOMENT PROBLEM 

DAVID BORWEIN AND AMNON JAKIMOVSKI 

1. Introduction. Suppose throughout that {kn} is a sequence of 
positive integers, that 

oo L 

0 ^ k < h < h < • • • < /„, In -> °0 , S f = °° » 

that feo = 1 if /o = 1, and that {un
{r)} (r = 0, 1, . . . , jfe„ - 1, w = 0, 

1, . . .) is a sequence of real numbers. We shall be concerned with the 
problem of establishing necessary and sufficient conditions for there to 
be a function a satisfying 

(1) ( - l ) V r ) = ) tln\ogTtda{t) J o 

for r = 0, 1, . . . , kn — 1, n = 0, 1, . . . 

and certain additional conditions. The case h = 0, kn = 1 for n = 0, 
1, . . . of the problem is the version of the classical moment problem 
considered originally by Hausdorff [5], [6], [7]; the above formulation 
will emerge as a natural generalization thereof. An alternative formula
tion of the problem is to express it as the "infinite Hermite interpolation 
problem" of establishing necessary and sufficient conditions for a function 
F to be a Laplace transform of the form 

F(z) = I œ e-uzdy(u) 
J o 

and to satisfy 

F(r)(ln) = ( ~ l ) X ( r ) for r = 0, 1, . . . , kn - 1, n = 0, 1, . . . . 

Considerable simplification is obtained by adoption of the following 
notation. Construct a monotonie sequence {\s} from \ln] by repeating 
each ln kn times. Then 

0 ^ Xo ^ Xi g X2 ^ . . . S An, Xi > 0, Xn -> oo, Ë f" = °° • 
n=l "n 
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HAUSDORFF MOMENT PROBLEM 947 

For each 5 there is an integer n(s) such that Xs = /w(s). Let ms = kn{s) 

and construct a sequence {MS(7°} (r = 0, 1, . . . , ms — 1, 5 = 0, 1, . . .) 
from {un

(r)} by setting /x/r) = un(s)
(r). Then ras is the multiplicity of Xs, 

i.e., it is the number of indices j for which X;- = \s; and /x/r) = /xs
(r) when

ever X; = \s. Formula (1) can be written in the equivalent form 

*> 0 
(2) ( - l ) V r ) = / f'log'tMt) 

for r = 0, 1, . . . , ms — 1, 5 = 0, 1, . . . . 

For 0 ^ & ^ 5 S n, let m5(fe, w) be the multiplicity of \s among 
A*, \k+i, . . . , \n. By a standard result on Hermite interpolation (see 
[3, p. 29]) there is a unique polynomial Pn{z) of degree at most n such 
that 

(3) Pn
(r)(K) = ( " l ) W r ) forr = 0, 1, . . . , m,(0, ») - 1, 

5 = 0, 1, . . . , n. 

It is known (see [11, p. 45]) that 

Pn(z) = 2 ul*k, • • • > Xn](A*+l - Z) . . . (\n- Z) 
k=0 

where the divided difference u[\k, . . . , Xw] is given by 

u[\k, . . . , K] = - 2 ^ J c C,n (Xjt - 2) . . . (Xn - Z) ' 

C^ being a positively sensed Jordan contour enclosing \k, XA+i, . 
For 0 ^ & ^ », 0 < / ^ 1, let 

\i* = Xfc+i . . . \nu[\k, . . . , XJ, 

fdz  
' Ckn (X* - S) . . . (X„ - 2) ' 

(4) \nk(t) = -\k+i. . . X„ —- I 
Z7TZ- */ C 

A»*(0) = X„*(0+), 

with the convention that products such as X +̂i . . . Xw = 1 when k = n. 
If /(z) is analytic inside and on Ckn then, by the theory of residues, 

f(z)dz J. (\k - Z) . . . (Xn - Z) 

is a linear combination, with coefficients depending only on \k, 
Xfc+i, . . . , Xn, of the values f(r)(\s), r = 0, 1, . . . , ms(k, n) — 1, 5 = 
&, & + 1, . . . , n. It follows that \nk(t) is a linear combination of the 
functions ft8 log7" £, r = 0, 1, . . . , ms(k, n) — 1, s = k, k + 1, . . . ,n 
and that \nk is the same linear combination with ( —l)r/xs

(r) substituted 
for ft* log7* /. Consequently, if a G BV, where BV is the space of norma-
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948 D. BORWEIN AND A. JAKIMOVSKI 

lized functions of bounded variation on [0, 1], i.e., a(0) = 0, 2a(t) = 
a(t+) + a{t-) for 0 < t < 1, and if 

( - l ) V r ) = I tXslogtda(t) forO g r < m,(k,n), k ^ s S n, 
J o 

then 

A»* = I \nk{t)da(t). 
•J o 

An explicit formula for ^[X ,̂ . . . , XJ can be obtained by evaluating 

2TTZ J i 

fdz 
ckn (Xk - z) . . . (Xn - z) 

and substituting ( — l)Vs ( r ) for /Xs log7"/ in the result. 
Let 

Do = (1 + X0)*> = 1, Dn = ( l + ~ ) . . . ( l + ~ ) 

= (1 + \n)dn iovn ^ 1. 
Then, for n ^ 0, 

X w 

i T Ao k=0 

and, for n > k ^ 0, 

(5) j=k+l 1 + Aj ./=A;+1 ^ i=A;+l ^ ^ , - 1 # ^ A 

n T n 1 

Further, it is known that if all the Xn's are different, then 

n 

(6) 0 g An,(0 ^ X M O ^ 1 for 0 g / ^ 1, 0 ^ 5 ^ n, 

by [10, Lemma 1] and 

(7) I \nk(t)dt = ^- lorO^k^n 

by [6, p. 294]. A simple continuity argument applied to (4) shows that 
(6) and (7) remain valid when different Xw's are allowed to coalesce. 

Let 6 be an even continuous convex function such that 6{u)/u —-> 0 as 
u —> 0 and 6(u)/u —> oo as u —» oo . Associated with this function is the 
Orlicz class Le of all functions x Lebesgue integrable over [0, 1] for which 

I 6(x 
J o 

(t))dt < oo. 
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HAUSDORFF MOMENT PROBLEM 949 

Let Lœ be the space of measurable functions x on [0, 1] with finite 
norm 

||tf||œ = ess. sup0<*<i \x(t)\. 

Let 

Mi(n) = É |Xrt|, 
k=0 

Mœ(n) = maxo^gn |A»*| -j", 
Uk 

and let 

Me = supw^0 Me(n), Mx = sup^o Mi(n)t Mœ = sup^o Mœ(n). 

The following two theorems are the main results established in the 
present paper. 

THEOREM 1. A necessary and sufficient condition for there to be a func
tion 

(i) a 6 BV satisfying (1) is that Mi < oo ; 
(ii) 13 £Lœ satisfying 

(8) ( - l ) V r ) = r^log'tpWdt J o 

forr = 0, 1, . . . ,*„ - 1,» = 0, 1, . . . 

is /Aa/ Mœ < oo ; 
(iii) P (z Le satisfying (8) w /Aa/ Me < oo. 

Fwr/Amware 
(iv) if (1) w satisfied by a function a Ç BV, then 

Mi = / J \da(t)\-8\a(0+)\ where ô = 0 wAe» /0 = 0, 5 = 1 when l0 > 0; 
moreover a is unique when /0 = 0, and when h > 0 i/ differs by a constant, 
over the interval 0 < t ^ 1, from any other function in BV satisfying (1); 

(v) i/ (8) is satisfied by a function fi G Z,œ, /Ae?z 0 is essentially unique 
and Mœ = H0IU; 

(vi) if (8) is satisfied by a function $ 6 L0, Âew 0 is essentially unique 
and 

Me = I d(0(t))dt. 
J o 

THEOREM 2. For w = 0, 1, . . . , 

Mi(n) ^ Mi(n + 1), M„(») ^ Mœ(w + 1), Me(n) S Me(n + 1); 
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950 D. BORWEIN AND A. JAK1MOVSKI 

and 

l i m ^ M i f a ) = Mu lining Mœ(n) = Mœ,\\mn^ Me(n) = Me. 

The case /0 = 0, kn = 1 for n = 0, 1, . . . of Theorem l(i) was estab
lished by Hausdorff [5], [6] and Schoenberg [13] subsequently gave a 
different proof; the case /o > 0, kn = 1 for n = 0, 1, . . . was proved by 
Leviatan [9]. (See also [4].) 

The case ln = n, kn = 1 for n = 0, 1, . . . of Theorem l(ii) is due to 
Hausdorff [7]. 

The case ln = n, kn = 1 for n = 0, 1, . . . , 6(u) = \u\p, 1 < p < oo, of 
Theorem l(iii) is due to Hausdorff [7] and the case kn = 1 for n = 
0, 1, . . . to Leviatan [9], [10]. (See also [1] and [2].) 

See [2] and the references there given for known special cases of 
Theorem 2. 

2. Preliminary results. 

LEMMA 1. Let r, a be non-negative integers, let 0 < X < Xa+i, and let 

s = L _ JK\ L _ \\( y i_\r 

\ Xfc+i/ \ \n/ \ j^jc+i \j — X/ 

Then (i) 8nk is uniformly bounded for n > k ^ a, 
(ii) limw^œ ônk = Ofor k ^ a, 

( D \x D 

7TI l°gr 7T ~~* Q uniformly when n > k —» oo . 
Proof. Let 0 < e < X, a = X - e, 0 = X + e, let 

w 1 
Y = = Twfc == x ^ T — > 

j=lc+l *j 

and, for n > a, let 

Aw 

Then an —* \, f3n -^> \ and so we can choose a positive integer N ^ a so 
large that 

|«w - X| < €, |/3n - X| < e for » > TV. 

First, for w > k ^ TV, we have that 

\ j=k+l "j ~ A / \Afc+i — A/ 

Since 7wJfc —> oo as n —> oo , it follows that (i) and (ii) hold for k ^ N. The 
extension of these conclusions to the range N > k ^ a is simple. 
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Next, let 

I n 1 \ r 

anfc = \uk+\ . . . un — vk+i . . . vn\ I 2 ^ Â w > 
\ j=k+l Ay — A/ 

Then, for n > k ^ N, we have that 

(9) 0 ^ ankZ (f - e^)yr ( ~ Z ^ ) ' 

2Tt7
r(>- + 1 ) ! / X w V _ 2 ( r + l ) ! / Xk+i V , 

= (aT) r + 1 Un-i - X/ (X - e)r+1 \X*+1 - X/ € 

and, by (5), that 

(10) 0^bnk^ vk+1...vA t, v-\Y X( t ÏT-Ï - l°zw) 
\ j=k+l Ay — A/ \ j=k+l Ay — A Ukl 

<^+i ( £ i y-y £ _ i j _ \ 
~~ \ y=£+l Xy — X / \ y=A;+l Xy — X 1 + Xy/ 

/ A 1 V X + 1 
^ %+i • • • vnr\ 2 . T r l - r 

\ j=tc+l Ay — A/ At+1 

g ^ ^ r / X,+ 1 \ ' \±1 <g — ^ — (_^±i_) 'Mil. 
\Xfc+i — X/ X^+i (X — e)r \Xfc+i — X/ Xfc+i 

I t follows from (9) t ha t ank —» 0 uniformly when n > & —> oo , and from 
(10) t ha t bnk —•> 0 uniformly when w > & —» co . Since 

. / i V l \ rDn 

** - te;log Â 
^ an* + 6»* for n > k ^ N, 

conclusion (iii) follows. 

LEMMA 2. Let \p(t) = (\k+1 — t) . . . (\n — t) where 0 ^ k < n and 
0 < t < Xfc+i, and let r be a positive integer. Then 

Mut) i £ i y-1 

Xfc+i — t \ j=n+\ Xy — tj ^\t)-(-\YHt){ t r1-)7 

\ j=k+l Ay — II 

where M is a number independent of t, k and n. 

Proof. The result is evidently true with M = 0 when r = 1. Suppose 
therefore that r > 2 and let 

Ty 
1 

Xy - t 
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952 D. BORWEIN AND A. JAKIMOVSKI 

As easy inductive argument shows that 

*^Û _ ( _ i r ( V 7 V 

is equal to a linear combination with constant coefficients of terms of 
the form 

( n \ 6. / n \ b0 / n \ bm 

E 7/0 E 7/0 * • • • E 7/") 
where the a / s and 6/s are positive integers, a\ > 1 and 

ai6i + a2b2 + . . . + ambm = r. 

Each of the terms is no greater than 

( n \ / n \ 6 , -1 / n \ b9 ( n \ bm 

S 7/'-1 ( E 7/0 E 7/0 ... E 7/0 
( n \a1—l+a1(b1 — l)+a2b,2 + ...+ambm I n \ r—I 

The desired conclusion follows. 

LEMMA 3. Let ^(t) = (Xs+1 - t) . . . (Xn - t)% $(/) = (X, - / )V(0 

w&ere a is a positive integer, 0 ^ s < n and Xs < Xs+i. 77&e» <£(r)(Xs) = 0 
when 0 ^ r < a, aw^ w/̂ ew r ^ a, 

| $ < r , ( X s ) | ^ M ^ ( X s ) ( é - — - ) ' " 
\ j=s+l hj ~~ A s / 

where M is a number independent of s and n. 

Proof. The first part is evident. For the second part we observe that, 
when r ^ a, 

|*<r>(X,)| = fix - 1) . . . (r - a + 1)*<M>(\,), 

and, as in the proof of Lemma 2, that ^{r~a)0Ks)/i/0^s) can be expressed 
as a linear combination with constant coefficients of terms each with 
absolute value no greater than 

( E - ^ - V " 
\ j=S+l ^j ~ A

5 / 
The desired conclusion follows. 

LEMMA 4. If Mi < oo, Xs < Xf+i and 7 = 0, 1, . . . , ms — 1, /feg« 

M,(r) = lim 
W->oo 

Proof. For r = 0 the above sum is equal to /z$(0) for every n ^ s by 

tx-(1_i.)...(,_i.)( t_4.)- . 
fc=s \ Afc+i/ \ A n / \ y=/t4-l Ay — A s / 
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(3). Suppose therefore t ha t 1 ^ r ^ ms — 1. Then, by Lemmas 2 and 3 
we have, for n ^ s, t ha t 

(11) (-l)7Vr)(As) - £ x j l - IT") • • • i1 - I*) 

\ j=*+l A; — A , / I 

where M is a positive number independent of 5 and n, and 

\ Xjfc+l/ \ Xn7 \ j=k+l X7- — X57 

Since ^ * = o \Kk\ ^ Afi for n ^ 0, and, by Lemma l ( i ) and (ii), wnk is 
uniformly bounded and l i m ^ ^ wnk = 0 for k è 5, the r ight-hand side of 
(11) tends to 0 as n —» oo. In view of (3), this establishes the desired 
conclusion. 

LEMMA 5. If Mi < GO and r = 0, 1, . . . , ms — 1, then 

Proof. Suppose, without loss in generality, t ha t Xs < \s+i, and let 

dnk = L _ A_) L _ x.) ( £ i V 
\ Xfc+i/ \ Xn7 \j=ic+i \j — Xs7 

Then , by Lemma l ( i i ) and (iii), 

n^oo k=Q \ \Un/ JJkJ 

since 2^L=o \Kk\ è Mi for n è 0 and J9„ —•> 00; and, by Lemma l ( i i ) and 
L e m m a 4, 

l i m j ^ Kkànk = M5
(r)-

w->oo fc=0 

T h e desired conclusion follows. 

LEMMA 6. If a function x Ç BV is swc/̂  /&a/ 

I tXs log7"/ * c ( 0 = 0 /or r = 0, 1, . . . , ra, - 1, 5 = 0, 1, . . . , 
•J 0 

thenx(t) = # ( O + ) / 0 r O < / ^ 1. If, in addition, \0 = 0,then x(0+) = 0. 
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Proof. When X0 = 0 it follows from a known result (see [11, Theorem 
8.2]) that 

J 0 
fdx(t) = 0 for» = 0, 1, . 

The proof can now be completed in the same way as in the proof of 
Lemma 3 in [2]. 

3. Proofs of the main results. 

Proofs of the necessity parts of Theorem l ( i ) , (ii) and (iii). 
Part (i). Suppose the function a £ BV satisfies (1). For 0 ^ k ^ n, we 

have that 

Kk = I \nk(t)da{t), 
J 0 

and thus, by (6), 

n ri n ri 

Z IM ^ I MOIE W ) ^ \Mt)\ 
fc=0 

Hence 

i ^ I |da( 
•^ o 

(12) Mi ^ I \da(t)\. 
J o 

Part (ii). Suppose the function 0 £ A» satisfies (8). For 0 ^ & ̂  w, 
we have that 

(13) Xnk = I \nk(t)P(t)dt 
J 0 

and thus, by (6) and (7), 

•L^n 

Hence 

(14) Mœ S \\P\\œ. 

Part (iii). Suppose the function p £ Le satisfies (8). It follows from 
(13) and (7), by Jensen's inequality (see [15, pp. 23-24]) that 

e(~^ \nkJ ^ PfJ^ \nk(t)0(/3(t))dt for 0 ^ k 

Hence, by (6), 

Z ^ e f e x J ^ r&M))dt 
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and so 

(15) MQ g I e((3(t))dt. 
J o 

Proofs of the sufficiency parts of Theorem l ( i) , (ii) and (iii). 
We first observe that 

and, by Young's inequality (see [8, p. 12]), that 

where N is the convex function complementary to 9 (see [8, p. 11]). 
Hence 

£ |X,*| ^ iV(l) Ê # + É # e f e x j ^ iV(l) + Me. 

It follows that Mi ^ Mo,, Mi ^ N(l) + Me and so Mi < GO under 
each of the three hypotheses of the sufficiency parts of Theorem l(i) , 
(ii) and (iii). Suppose therefore that Mi < oo. 

For n = 0, 1, . . . , define the function an on [0, 1] by setting 

ff, _ \0 f o r 0 ^ * < l/Dn, 
an{) ~ ] £ X* for 1/DH ^ ^ 1 , 

so that 

•^ o 
|<fcr«(0l = Z M ^ Mi. 

fe=0 

Consequently, by Helly's theorem (see [14, p. 29]), there is an increasing 
sequence of positive integers {n^ and a function a of bounded variation 
on [0, 1] such that 

(16) lim,_>0O o^.(0 = a(t) for 0 ^ / ^ 1 

and 

(17) I |da (0| ^ Mi. 
J o 

Part (i). By Lemma 5, we have that 

(-l)W r ) = limÈ ^TrY^TT = l i m V f*\ogrtdan{t) 

for r = 0, 1, . . . , ms — 1, 5 = 0, 1, . . . . It follows, by the Helly-Bray 
theorem, (see [14, p. 31]) that a satisfies (2) and hence (1). 
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Part (ii). Suppose Mœ < oo. Let 0 S x < y ^ 1. Then for n suffi
ciently large there are integers a, b (depending on n) such that — 1 ^ 
a < b ^ n and 

a±1 ^ ^ ^ _ D^ (Z)_ i = 0)^ ^ < X < ^ ± 1 < D ± < _ 
D = D = D = y D 

since 

Now 

1 dk Dk  

max — = max — T ~ ~ 
O^k^n Un o ^kSn L>n L -\~ Ak 

->Q as n —» oo . 

My) - an(x)\ 

b 7 

fc=a+1 X/n 

2 ^ ^nA: 
fc=a+l 

< M 

and 

lim £ 7T = ^ - x. 
n->cD k=a+l Un 

In view of (16), it follows that 

\a(y) - a(x)\ < M 

y — x ~ °°* 

Hence 

<*(t) = c + \ 0(u)du forO ^ / g 1 

where fi £ Lœ and H/S^ ^ Jkf̂ . Further, ft satisfies (8) since a satisfies 

a). 
Part (iii). Suppose Me < &> • Let 0 = x0 < xx < 

for n sufficiently large, there exist integers a0, ai, . 
n) such that —l=a0<a1<...<am = n and 

< xm = 1. Then, 
am (depending on 

^ ^ < % ^ forj = 1, 2, . . . , » - 1, 

so that 

aj+i 

Let 

a»(xi+i) - an(Xj) = J2 ^nk for j = 0, 1, . 
k=l+aj 

_ / V1 ^*W^ttfom) -antes) 

\ fc=l4-av £*« 

m — 1. 

https://doi.org/10.4153/CJM-1981-075-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-075-0


HAUSDORFF MOMENT PROBLEM 957 

Then, by Jensen's inequality (see [15, pp. 23-24]), 

* * S 23 ÏT®\A*<*) for; = 0 , l , . . . , m - 1, 
k=l+aj L>n \ U i t / 

and so 

m— 1 

Also 

aj+i j 

lim 23 "fT = x^+i ~~ XJ f°rJ = 0, 1, . . . , ra — 1. 

In view of (16), it follows that 

lim E *„ = £ <*m - « , ) e ( a y : ; f e ) ) ^ Me, 

and, by a theorem of Medvedev [12], this implies that 

a(t) = c + I /3(w)dM forO ^ / g 1 
•J o 

where 0 <E i« and JJ 0 (0 (0 )* ^ if*. Further, 0 satisfies (8) since a 
satisfies (1). 

Proofs of Theorem l(iv), (v) and (vi). 
Part (iv). Suppose that l0 = 0. By Lemma 6 the function a Ç BV 

satisfying (1) is unique. By (12), (17) and the proof of the sufficiency 
part of Theorem l(i) , we have that 

fi ^ I \da 
J o 

Mi ^ I |da (0 | ^ Mi. 
J o 

Suppose that l0 > 0, and let 7(0) = 0, y(t) = a(t) - a(0 + ) for 
0 < / ^ 1. Then 7 £ BV and satisfies (1). Hence, by (12), 

«J 0 
M, g I |d7(0l-

^ 0 

Further, by (17) and the proof of the sufficiency part of Theorem l(i) , 
there is a function à Ç BV satisfying (1) and 

I \da (0| S Mi. 
•J 0 

By Lemma 6, y(t) = à(t) - 5 ( 0 + ) for 0 < * ^ 1. Since 7 ( 0 + ) = 
7(0), we have that 

Mi S I |<*y(0l ^ I |d« (01 ^ Mi. 
J 0 ^ 0 
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Hence 

M. x= J ' M O I - |«(0+)|. 
J o 

Part (v). By Lemma 6, the function $ £ Lœ satisfying (8) is essentially 
unique. By (14) and the proof of the sufficiency part of Theorem l(ii), 
we have that Ma è \\P\\œ ̂  Mœ. 

Part (vi). This part can be established by the proof of Part (v) with 
certain obvious modifications. 

Proof of Theorem 2. Let 0 ^ k ^ n. Then 

| l ^* | \ I W l x 
\ X ~~ A / Ara+l,fc T" x AW+1,A;+1 
V A n + i / A n + i 

, , (, U l f Pn+1(s)<fe  
— — Afc+i . . . A n + i I 1 — - I . I , 

\ A w + i / 2 T T W c f c i n + 1 (A* — 
2) . . . (Xn + i - z) 

— Xfc+l. . . \ n . I 

WiJ_ f Pn+i(z)dz 

P w + i ( g ) J s 

Xn+i 2 ? r i J ckinil (\k+i — z) . . . (Xn + i — z) 

(Xfc - z) . . . (X„ - z) 

and hence 

— X» 

(18) Xn* §= = ( l - - ^ ) X„+1,* T 5 + (1 + X.) ̂ p ± i -£*-. 

It follows that 

Mœ(n) S Mœ{n + 1) ( l + - - ) ^-w- = Mœ(n + 1). 
\ A n + i / JJn+1 

Since 

( l - - ^ - ) ^ + ( l + X , ) — % - = l , 

applying Jensen's inequality to (18) yields 

i y n I \ A n + i / -LVfi \ "Je I 

+ (l + x,) —^— e(xn+1,*+1 £*ti) } 

= ( l — ^k 1 ^fc Q | \ Qn±l) _L_ ^fe+1 dk+i I Dn+l\ 
\ X n + i / Dn+i \ dk / Xw+i Dn+x \ ' e^+i / 

https://doi.org/10.4153/CJM-1981-075-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-075-0


HAUSDORFF MOMENT PROBLEM 959 

Summing this inequality for k = 0, 1, . . . , n, we get that 

Mein) ^ Me(n + 1) - 7 - ^ 7 7 - e ( x n + 1 , „ ^ ) ^ M,(n + 1). 

Since the above argument is valid when 6 is any even continuous convex 
function, we can take 6{u) = \u\ to obtain, in addition, that 

Mi(n) g Mi(n + 1). 

This completes the proof of Theorem 2. 

Note. In all but Theorem 2 the condition that the sequences \ln\ and 
{\n\ be monotonie is redundant and was imposed only to avoid non
essential and tedious complication in the proofs. Without the mono-
tonicity condition, but with \ln) distinct, X0 = /o è 0, k0 = 1 if /0 = 0, 
ln > 0 for n = 1, 2, . . . , identities and inequalities such as (5), (6) (using 
(10) and (11) on p. 46 of [11] and the proof of Lemma 1 in [10]) and (7) 
can readily be shown to hold, and Lemmas 5 and 6 and Theorem 1 
remain valid. Removal of the monotonicity condition involves changes in 
statements and proofs of lemmas as indicated below. 

Statements. 

LEMMA 1. Replace 0 < X < Xa+i by 0 < X < min^>a \k. 

LEMMA 2. Replace 0 < / < X*+i by 0 < t ^ X, for j > k, and 

Ht) I £ i )r"1
bymaxl *(')!( £ -J—)""1 

Xfc+1 — / \ j=k+l Xj — tl i>]ç \\i — t\ \ j=k+l \\j — t\l 

LEMMA 3. Replace \s < Xs+i by \s ^ \j for n > j > s, and 

( n -j \ r—a / n i \ r—a 

j=s+l A; — \s/ \ j=s+l IA j — A s | / 

LEMMA 4. Replace Xs < X5+i by X.s ^ X̂  for j > s. 

Proofs. 

Lemma 1. Replace \k+i/(\k+i — X) by maxi>A X;/(Xi — X), and l/X*+i 
by maxj>k 1/X,-. 

Lemma 2. In the inequalities replace y j by \y j\ and 7^+1 by maxj>k\y j \ . 

Lemma 3. Replace X-, — Xs by |X̂  — X,|. 

Lemma 4. Replace l/(XA+i — \s) by max i>jt VIX, — Xs|, and take 

I \ x*+i/ \ xre7 I \ J=A;+I \\j — x s | / 

Lemma 5. Replace Xs < Xs+i by Xs 7̂  X7- for 7 > s. 
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