GENERALIZATION OF THE HAUSDORFF MOMENT PROBLEM

DAVID BORWEIN AND AMNON JAKIMOVSKI

1. Introduction. Suppose throughout that $\left\{k_{n}\right\}$ is a sequence of positive integers, that

$$
0 \leqq l_{0}<l_{1}<l_{2}<\ldots<l_{n}, l_{n} \rightarrow \infty, \sum_{n=1}^{\infty} \frac{k_{n}}{l_{n}}=\infty,
$$

that $k_{0}=1$ if $l_{0}=1$, and that $\left\{u_{n}^{(r)}\right\}\left(r=0,1, \ldots, k_{n}-1, n=0\right.$, $1, \ldots$) is a sequence of real numbers. We shall be concerned with the problem of establishing necessary and sufficient conditions for there to be a function α satisfying

$$
\begin{align*}
& (-1)^{r} u_{n}^{(r)}=\int_{0}^{1} t^{l_{n}} \log ^{\tau} t d \alpha(t) \tag{1}\\
& \quad \text { for } r=0,1, \ldots, k_{n}-1, \quad n=0,1, \ldots
\end{align*}
$$

and certain additional conditions. The case $l_{0}=0, k_{n}=1$ for $n=0$, $1, \ldots$ of the problem is the version of the classical moment problem considered originally by Hausdorff [5], [6], [7]; the above formulation will emerge as a natural generalization thereof. An alternative formulation of the problem is to express it as the "infinite Hermite interpolation problem" of establishing necessary and sufficient conditions for a function F to be a Laplace transform of the form

$$
F(z)=\int_{0}^{\infty} e^{-u z} d \gamma(u)
$$

and to satisfy

$$
F^{(r)}\left(l_{n}\right)=(-1)^{r} u_{n}^{(r)} \text { for } r=0,1, \ldots, k_{n}-1, n=0,1, \ldots
$$

Considerable simplification is obtained by adoption of the following notation. Construct a monotonic sequence $\left\{\lambda_{s}\right\}$ from $\left\{l_{n}\right\}$ by repeating each $l_{n} k_{n}$ times. Then

$$
0 \leqq \lambda_{0} \leqq \lambda_{1} \leqq \lambda_{2} \leqq \ldots \leqq \lambda_{n}, \lambda_{1}>0, \quad \lambda_{n} \rightarrow \infty, \quad \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty .
$$

[^0]For each s there is an integer $n(s)$ such that $\lambda_{s}=l_{n(s)}$. Let $m_{s}=k_{n(s)}$ and construct a sequence $\left\{\mu_{s}{ }^{(r)}\right\}\left(r=0,1, \ldots, m_{s}-1, s=0,1, \ldots\right)$ from $\left\{u_{n}{ }^{(r)}\right\}$ by setting $\mu_{s}{ }^{(r)}=u_{n}(s)^{(r)}$. Then m_{s} is the multiplicity of λ_{s}, i.e., it is the number of indices j for which $\lambda_{j}=\lambda_{s}$; and $\mu_{j}{ }^{(\tau)}=\mu_{s}{ }^{(\tau)}$ whenever $\lambda_{j}=\lambda_{s}$. Formula (1) can be written in the equivalent form

$$
\begin{align*}
& (-1)^{\tau} \mu_{s}^{(r)}=\int_{0}^{1} t^{\lambda_{s}} \log ^{r} t d \alpha(t) \tag{2}\\
& \quad \text { for } r=0,1, \ldots, m_{s}-1, \quad s=0,1, \ldots .
\end{align*}
$$

For $0 \leqq k \leqq s \leqq n$, let $m_{s}(k, n)$ be the multiplicity of λ_{s} among $\lambda_{k}, \lambda_{k+1}, \ldots, \lambda_{n}$. By a standard result on Hermite interpolation (see [3, p. 29]) there is a unique polynomial $P_{n}(z)$ of degree at most n such that

$$
\begin{align*}
P_{n}^{(r)}\left(\lambda_{s}\right)=(-1)^{r} \mu_{s}^{(r)} \text { for } \mathrm{r}=0,1, \ldots, \mathrm{~m}_{s}(0, n) & -1, \tag{3}\\
s & =0,1, \ldots, n .
\end{align*}
$$

It is known (see [11, p. 45]) that

$$
P_{n}(z)=\sum_{k=0}^{n} u\left[\lambda_{k}, \ldots, \lambda_{n}\right]\left(\lambda_{k+1}-z\right) \ldots\left(\lambda_{n}-z\right)
$$

where the divided difference $u\left[\lambda_{k}, \ldots, \lambda_{n}\right]$ is given by

$$
u\left[\lambda_{k}, \ldots, \lambda_{n}\right]=-\frac{1}{2 \pi i} \int_{c_{k n}} \frac{P_{n}(z) d z}{\left(\lambda_{k}-z\right) \ldots\left(\lambda_{n}-z\right)},
$$

$C_{k n}$ being a positively sensed Jordan contour enclosing $\lambda_{k}, \lambda_{k+1}, \ldots, \lambda_{n}$. For $0 \leqq k \leqq n, 0<t \leqq 1$, let

$$
\lambda_{n k}=\lambda_{k+1} \ldots \lambda_{n} u\left[\lambda_{k}, \ldots, \lambda_{n}\right],
$$

$$
\begin{align*}
& \lambda_{n k}(t)=-\lambda_{k+1} \ldots \lambda_{n} \frac{1}{2 \pi i} \int_{C_{k n}} \frac{t^{2} d z}{\left(\lambda_{k}-z\right) \ldots\left(\lambda_{n}-z\right)}, \tag{4}\\
& \lambda_{n k}(0)=\lambda_{n k}(0+),
\end{align*}
$$

with the convention that products such as $\lambda_{k+1} \ldots \lambda_{n}=1$ when $k=n$.
If $f(z)$ is analytic inside and on $C_{k n}$ then, by the theory of residues,

$$
\int_{c_{k n}} \frac{f(z) d z}{\left(\lambda_{k}-z\right) \ldots\left(\lambda_{n}-z\right)}
$$

is a linear combination, with coefficients depending only on λ_{k}, $\lambda_{k+1}, \ldots, \lambda_{n}$, of the values $f^{(r)}\left(\lambda_{s}\right), r=0,1, \ldots, m_{s}(k, n)-1, s=$ $k, k+1, \ldots, n$. It follows that $\lambda_{n k}(t)$ is a linear combination of the functions $t^{\lambda} \cdot \log ^{r} t, \quad r=0,1, \ldots, m_{s}(k, n)-1, \quad s=k, k+1, \ldots, n$ and that $\lambda_{n k}$ is the same linear combination with $(-1)^{r} \mu_{s}{ }^{(r)}$ substituted for $t^{\lambda} \cdot \log ^{\top} t$. Consequently, if $\alpha \in \mathrm{BV}$, where BV is the space of norma-
lized functions of bounded variation on [0, 1], i.e., $\alpha(0)=0,2 \alpha(t)=$ $\alpha(t+)+\alpha(t-)$ for $0<t<1$, and if

$$
(-1)^{\tau} \mu_{s}^{(r)}=\int_{0}^{1} t^{\lambda_{s}} \log ^{r} t d \alpha(t) \text { for } 0 \leqq \mathrm{r}<m_{s}(k, n), \quad k \leqq s \leqq n
$$

then

$$
\lambda_{n k}=\int_{0}^{1} \lambda_{n k}(t) d \alpha(t)
$$

An explicit formula for $u\left[\lambda_{k}, \ldots, \lambda_{n}\right]$ can be obtained by evaluating

$$
\frac{1}{2 \pi i} \int_{c_{k n}} \frac{t^{2} d z}{\left(\lambda_{k}-z\right) \ldots\left(\lambda_{n}-z\right)}
$$

and substituting $(-1)^{\tau} \mu_{s}{ }^{(r)}$ for $t^{\lambda_{s}} \log ^{\tau} t$ in the result.
Let

$$
D_{0}=\left(1+\lambda_{0}\right) d_{0}=1, D_{n}=\left(1+\frac{1}{\lambda_{1}}\right) \ldots\left(1+\frac{1}{\lambda_{n}}\right)
$$

$$
=\left(1+\lambda_{n}\right) d_{n} \quad \text { for } n \geqq 1
$$

Then, for $n \geqq 0$,

$$
D_{n}=\lambda_{n+1} d_{n+1}=\frac{\lambda_{0}}{1+\lambda_{0}}+\sum_{k=0}^{n} d_{k}
$$

and, for $n>k \geqq 0$,

$$
\begin{align*}
\sum_{j=k+1}^{n} \frac{1}{1+\lambda_{j}}=\sum_{j=k+1}^{n} \frac{d_{j}}{D_{j}} \leqq \sum_{j=k+1}^{n} \int_{D_{j-1}}^{D_{j}} \frac{d x}{x} & =\log \frac{D_{n}}{D_{k}} \tag{5}\\
& \leqq \sum_{j=k+1}^{n} \frac{d_{j}}{D_{j-1}}=\sum_{j=k+1}^{n} \frac{1}{\lambda}
\end{align*}
$$

Further, it is known that if all the λ_{n} 's are different, then
(6) $\quad 0 \leqq \lambda_{n s}(t) \leqq \sum_{k=0}^{n} \lambda_{n k}(t) \leqq 1 \quad$ for $0 \leqq t \leqq 1, \quad 0 \leqq s \leqq n$,
by [10, Lemma 1] and

$$
\begin{equation*}
\int_{0}^{1} \lambda_{n k}(t) d t=\frac{d_{k}}{D_{n}} \quad \text { for } 0 \leqq k \leqq n \tag{7}
\end{equation*}
$$

by [6, p. 294]. A simple continuity argument applied to (4) shows that (6) and (7) remain valid when different λ_{n} 's are allowed to coalesce.

Let θ be an even continuous convex function such that $\theta(u) / u \rightarrow 0$ as $u \rightarrow 0$ and $\theta(u) / u \rightarrow \infty$ as $u \rightarrow \infty$. Associated with this function is the Orlicz class L_{θ} of all functions x Lebesgue integrable over [0,1] for which

$$
\int_{0}^{1} \theta(x(t)) d t<\infty
$$

Let L_{∞} be the space of measurable functions x on $[0,1]$ with finite norm

$$
\|x\|_{\infty}=\text { ess. } \sup _{0<t<1}|x(t)|
$$

Let

$$
\begin{aligned}
& M_{\theta}(n)=\sum_{k=0}^{n} \frac{d_{k}}{D_{n}} \theta\left(\frac{D_{n}}{d_{k}} \lambda_{n k}\right), \\
& M_{1}(n)=\sum_{k=0}^{n}\left|\lambda_{n k}\right| \\
& M_{\infty}(n)=\max _{0 \leqq k \leqq n}\left|\lambda_{n k}\right| \frac{D_{n}}{d_{k}}
\end{aligned}
$$

and let

$$
M_{\theta}=\sup _{n \geqq 0} M_{\theta}(n), M_{1}=\sup _{n \geqq 0} M_{1}(n), M_{\infty}=\sup _{n \geqq 0} M_{\infty}(n)
$$

The following two theorems are the main results established in the present paper.

Theorem 1. A necessary and sufficient condition for there to be a function
(i) $\alpha \in \mathrm{BV}$ satisfying (1) is that $M_{1}<\infty$;
(ii) $\beta \in L_{\infty}$ satisfying
(8) $\quad(-1)^{r} u_{n}{ }^{(r)}=\int_{0}^{1} t^{l_{n}} \log ^{r} t \beta(t) d t$

$$
\text { for } r=0,1, \ldots, k_{n}-1, n=0,1, \ldots
$$

is that $M_{\infty}<\infty$;
(iii) $\beta \in L_{\theta}$ satisfying (8) is that $M_{\theta}<\infty$.

Furthermore

(iv) if (1) is satisfied by a function $\alpha \in \mathrm{BV}$, then
$M_{1}=\int_{0}^{1}|d \alpha(t)|-\delta|\alpha(0+)|$ where $\delta=0$ when $l_{0}=0, \delta=1$ when $l_{0}>0 ;$ moreover α is unique when $l_{0}=0$, and when $l_{0}>0$ it differs by a constant, over the interval $0<t \leqq 1$, from any other function in BV satisfying (1);
(v) if (8) is satisfied by a function $\beta \in L_{\infty}$, then β is essentially unique and $M_{\infty}=\|\beta\|_{\infty}$;
(vi) if (8) is satisfied by a function $\beta \in L_{\theta}$, then β is essentially unique and

$$
M_{\theta}=\int_{0}^{1} \theta(\beta(t)) d t
$$

Theorem 2. For $n=0,1, \ldots$,

$$
M_{1}(n) \leqq M_{1}(n+1), M_{\infty}(n) \leqq M_{\infty}(n+1), M_{\theta}(n) \leqq M_{\theta}(n+1)
$$

and

$$
\lim _{n \rightarrow \infty} M_{1}(n)=M_{1}, \lim _{n \rightarrow \infty} M_{\infty}(n)=M_{\infty}, \lim _{n \rightarrow \infty} M_{\theta}(n)=M_{\theta} .
$$

The case $l_{0}=0, k_{n}=1$ for $n=0,1, \ldots$ of Theorem 1 (i) was established by Hausdorff [5], [6] and Schoenberg [13] subsequently gave a different proof; the case $l_{0}>0, k_{n}=1$ for $n=0,1, \ldots$ was proved by Leviatan [9]. (See also [4].)
The case $l_{n}=n, k_{n}=1$ for $n=0,1, \ldots$ of Theorem $1(\mathrm{ii})$ is due to Hausdorff [7].
The case $l_{n}=n, k_{n}=1$ for $n=0,1, \ldots, \theta(u)=|u|^{p}, 1<p<\infty$, of Theorem 1(iii) is due to Hausdorff [7] and the case $k_{n}=1$ for $n=$ $0,1, \ldots$ to Leviatan [9], [10]. (See also [1] and [2].)

See [2] and the references there given for known special cases of Theorem 2.

2. Preliminary results.

Lemma 1. Let r, a be non-negative integers, let $0<\lambda<\lambda_{a+1}$, and let

$$
\delta_{n k}=\left(1-\frac{\lambda}{\lambda_{k+1}}\right) \ldots\left(1-\frac{\lambda}{\lambda_{n}}\right)\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda}\right)^{r} .
$$

Then (i) $\delta_{n k}$ is uniformly bounded for $n>k \geqq a$,
(ii) $\lim _{n \rightarrow \infty} \delta_{n k}=0$ for $k \geqq a$,
(iii) $\delta_{n k}-\left(\frac{D_{k}}{D_{n}}\right)^{\lambda} \log ^{\frac{}{2}} \frac{D_{n}}{D_{k}} \rightarrow 0$ uniformly when $n>k \rightarrow \infty$.

Proof. Let $0<\epsilon<\lambda, \alpha=\lambda-\epsilon, \beta=\lambda+\epsilon$, let

$$
\gamma=\gamma_{n k}=\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}},
$$

and, for $n>a$, let

$$
u_{n}=1-\frac{\lambda}{\lambda_{n}}=e^{-\alpha_{n} \lambda_{n}}, v_{n}=\left(1+\frac{1}{\lambda_{n}}\right)^{-\lambda}=e^{-\beta_{n} \lambda_{n}} .
$$

Then $a_{n} \rightarrow \lambda, \beta_{n} \rightarrow \lambda$ and so we can choose a positive integer $N \geqq a$ so large that

$$
\left|\alpha_{n}-\lambda\right|<\epsilon,\left|\beta_{n}-\lambda\right|<\epsilon \text { for } n>N .
$$

First, for $n>k \geqq N$, we have that

$$
0<\delta_{n k}=u_{k+1} \ldots u_{n}\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda}\right)^{r} \leqq e^{-\alpha \gamma} \gamma^{r}\left(\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda}\right)^{r} .
$$

Since $\gamma_{n k} \rightarrow \infty$ as $n \rightarrow \infty$, it follows that (i) and (ii) hold for $k \geqq N$. The extension of these conclusions to the range $N>k \geqq a$ is simple.

Next, let

$$
\begin{aligned}
& \mathrm{a}_{n k}=\left|u_{k+1} \ldots u_{n}-v_{k+1} \ldots v_{n}\right|\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda}\right)^{r}, \\
& b_{n k}=v_{k+1} \ldots v_{n}\left\{\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda}\right)^{r}-\log ^{r} \frac{D_{n}}{D_{k}}\right\} .
\end{aligned}
$$

Then, for $n>k \geqq N$, we have that
(9) $\quad 0 \leqq a_{n k} \leqq\left(e^{-\alpha \gamma}-e^{-\beta \gamma}\right) \gamma^{r}\left(\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda}\right)^{r}$

$$
\begin{aligned}
& \leqq \gamma(\beta-\alpha) e^{-\alpha \gamma} \gamma^{r}\left(\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda}\right)^{\tau} \\
& \leqq \frac{2 \gamma \epsilon \gamma^{\tau}(r+1)!}{(\alpha \gamma)^{\tau+1}}\left(\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda}\right)^{r}=\frac{2(r+1)!}{(\lambda-\epsilon)^{r+1}}\left(\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda}\right)^{r} \epsilon^{\prime}
\end{aligned}
$$

and, by (5), that
(10) $0 \leqq b_{n k} \leqq v_{k+1} \ldots v_{n} r\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda}\right)^{r-1}\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda}-\log \frac{D_{n}}{D_{k}}\right)$

$$
\begin{aligned}
& \leqq v_{k+1} \ldots v_{n} r\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda}\right)^{r-1}\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda}-\frac{1}{1+\lambda_{j}}\right) \\
& \leqq v_{k+1} \ldots v_{n} r\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda}\right)^{r} \frac{\lambda+1}{\lambda_{k+1}} \\
& \leqq e^{-\alpha \gamma} r \gamma^{r}\left(\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda}\right)^{r} \frac{\lambda+1}{\lambda_{k+1}} \leqq \frac{r r!}{(\lambda-\epsilon)^{r}}\left(\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda}\right)^{r} \frac{\lambda+1}{\lambda_{k+1}} .
\end{aligned}
$$

It follows from (9) that $a_{n k} \rightarrow 0$ uniformly when $n>k \rightarrow \infty$, and from (10) that $b_{n k} \rightarrow 0$ uniformly when $n>k \rightarrow \infty$. Since

$$
\left|\delta_{n k}-\left(\frac{D_{k}}{D_{n}}\right)^{\lambda} \log ^{r} \frac{D_{n}}{D_{k}}\right| \leqq a_{n k}+b_{n k} \quad \text { for } n>k \geqq N
$$

conclusion (iii) follows.
Lemma 2. Let $\psi(t)=\left(\lambda_{k+1}-t\right) \ldots\left(\lambda_{n}-t\right)$ where $0 \leqq k<n$ and $0<t<\lambda_{k+1}$, and let r be a positive integer. Then

$$
\left|\psi^{(r)}(t)-(-1)^{r} \psi(t)\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-t}\right)^{r}\right| \leqq \frac{M \psi(t)}{\lambda_{k+1}-t}\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-t}\right)^{r-1}
$$

where M is a number independent of t, k and n.
Proof. The result is evidently true with $M=0$ when $r=1$. Suppose therefore that $r \geqq 2$ and let

$$
\gamma_{j}=\frac{1}{\lambda_{j}-t} .
$$

As easy inductive argument shows that

$$
\frac{\psi^{(r)}(t)}{\psi(t)}-(-1)^{r}\left(\sum_{j=k+1}^{n} \gamma_{j}\right)^{r}
$$

is equal to a linear combination with constant coefficients of terms of the form

$$
\left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{1}}\right)^{b_{1}}\left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{2}}\right)^{b_{2}} \ldots\left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{m}}\right)^{b_{m}}
$$

where the a_{i} 's and b_{i} 's áre positive integers, $a_{1}>1$ and

$$
a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{m} b_{m}=r .
$$

Each of the terms is no greater than

$$
\begin{aligned}
& \gamma_{k+1}\left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{1}-1}\right)\left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{1}}\right)^{b_{1}-1}\left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{2}}\right)^{b_{2}} \ldots\left(\sum_{j=k+1}^{n} \gamma_{j}^{a_{m}}\right)^{b_{m}} \\
& \leqq \gamma_{k+1}\left(\sum_{j=k+1}^{n} \gamma_{j}\right)^{a_{1}-1+a_{1}\left(b_{1}-1\right)+a_{2} b_{2}+\ldots+a_{m} b_{m}}=\gamma_{k+1}\left(\sum_{j=k+1}^{n} \gamma_{j}\right)^{r-1} .
\end{aligned}
$$

The desired conclusion follows.
Lemma 3. Let $\psi(t)=\left(\lambda_{s+1}-t\right) \ldots\left(\lambda_{n}-t\right), \quad \Phi(t)=\left(\lambda_{s}-t\right){ }^{a} \psi(t)$ where a is a positive integer, $0 \leqq s<n$ and $\lambda_{s}<\lambda_{s+1}$. Then $\Phi^{(r)}\left(\lambda_{s}\right)=0$ when $0 \leqq r<a$, and when $r \geqq a$,

$$
\left|\Phi^{(\tau)}\left(\lambda_{s}\right)\right| \leqq M \psi\left(\lambda_{s}\right)\left(\sum_{j=s+1}^{n} \frac{1}{\lambda_{j}-\lambda_{s}}\right)^{r-a}
$$

where M is a number independent of s and n.
Proof. The first part is evident. For the second part we observe that, when $r \geqq a$,

$$
\left|\Phi^{(r)}\left(\lambda_{s}\right)\right|=r(r-1) \ldots(r-a+1) \psi^{(r-a)}\left(\lambda_{s}\right),
$$

and, as in the proof of Lemma 2, that $\psi^{(r-a)}\left(\lambda_{s}\right) / \psi\left(\lambda_{s}\right)$ can be expressed as a linear combination with constant coefficients of terms each with absolute value no greater than

$$
\left(\sum_{j=s+1}^{n} \frac{1}{\lambda_{j}-\lambda_{s}}\right)^{r-a} .
$$

The desired conclusion follows.
Lemma 4. If $M_{1}<\infty, \lambda_{s}<\lambda_{\varepsilon+1}$ and $r=0,1, \ldots, m_{s}-1$, then

$$
\mu_{s}^{(r)}=\lim _{n \rightarrow \infty} \sum_{k=s}^{n} \lambda_{n k}\left(1-\frac{\lambda_{s}}{\lambda_{k+1}}\right) \ldots\left(1-\frac{\lambda_{s}}{\lambda_{n}}\right)\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda_{s}}\right)^{r} .
$$

Proof. For $r=0$ the above sum is equal to $\mu_{s}{ }^{(0)}$ for every $n \geqq s$ by
(3). Suppose therefore that $1 \leqq r \leqq m_{s}-1$. Then, by Lemmas 2 and 3 we have, for $n \geqq s$, that

$$
\begin{align*}
\begin{aligned}
&(-1)^{r} P_{n}{ }^{(r)}\left(\lambda_{s}\right)-\sum_{k=s}^{n} \lambda_{n k}\left(1-\frac{\lambda_{s}}{\lambda_{k+1}}\right) \ldots\left(1-\frac{\lambda_{s}}{\lambda_{n}}\right) \\
& \left.\quad \times\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda_{s}}\right)^{r} \right\rvert\, \\
& \leqq M \sum_{k=s}^{n}\left|\lambda_{n k}\right| \frac{w_{n k}}{\lambda_{k+1}-\lambda_{s}}+M w_{n s} \sum_{k=s-m_{s}+1}^{s-1}\left|\lambda_{n k}\right|
\end{aligned} \tag{11}
\end{align*}
$$

where M is a positive number independent of s and n, and

$$
w_{n k}=\left(1-\frac{\lambda_{s}}{\lambda_{k+1}}\right) \ldots\left(1-\frac{\lambda_{s}}{\lambda_{n}}\right)\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda_{s}}\right)^{r-1}
$$

Since $\sum_{k=0}^{n}\left|\lambda_{n k}\right| \leqq M_{1}$ for $n \geqq 0$, and, by Lemma 1 (i) and (ii), $w_{n k}$ is uniformly bounded and $\lim _{n \rightarrow \infty} w_{n k}=0$ for $k \geqq s$, the right-hand side of (11) tends to 0 as $n \rightarrow \infty$. In view of (3), this establishes the desired conclusion.

Lemma 5. If $M_{1}<\infty$ and $r=0,1, \ldots, m_{s}-1$, then

$$
(-1)^{r} \mu_{s}^{(r)}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \lambda_{n k}\left(\frac{D_{k}}{D_{n}}\right)^{\lambda_{s}} \log ^{r} \frac{D_{k}}{D_{n}}
$$

Proof. Suppose, without loss in generality, that $\lambda_{s}<\lambda_{s+1}$, and let

$$
\delta_{n k}=\left(1-\frac{\lambda_{s}}{\lambda_{k+1}}\right) \ldots\left(1-\frac{\lambda_{s}}{\lambda_{n}}\right)\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-\lambda_{s}}\right)^{\tau}
$$

Then, by Lemma 1 (ii) and (iii),

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \lambda_{n k}\left\{\delta_{n k}-\left(\frac{D_{k}}{D_{n}}\right)^{\lambda_{s}} \log ^{r} \frac{D_{n}}{D_{k}}\right\}=0
$$

since $\sum_{k=0}^{n}\left|\lambda_{n k}\right| \leqq M_{1}$ for $n \geqq 0$ and $D_{n} \rightarrow \infty$; and, by Lemma 1 (ii) and Lemma 4,

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \lambda_{n k} \delta_{n k}=\mu_{s}{ }^{(r)}
$$

The desired conclusion follows.
Lemma 6. If a function $x \in \mathrm{BV}$ is such that

$$
\int_{0}^{1} t^{\lambda_{s}} \log ^{r} t d x(t)=0 \quad \text { for } r=0,1, \ldots, m_{s}-1, \quad s=0,1, \ldots
$$

then $x(t)=x(0+)$ for $0<t \leqq 1$. If, in addition, $\lambda_{0}=0$, then $x(0+)=0$.

Proof. When $\lambda_{0}=0$ it follows from a known result (see [11, Theorem 8.2]) that

$$
\int_{0}^{1} t^{n} d x(t)=0 \quad \text { for } n=0,1, \ldots
$$

The proof can now be completed in the same way as in the proof of Lemma 3 in [2].

3. Proofs of the main results.

Proofs of the necessity parts of Theorem 1(i), (ii) and (iii).
Part (i). Suppose the function $\alpha \in \mathrm{BV}$ satisfies (1). For $0 \leqq k \leqq n$, we have that

$$
\lambda_{n k}=\int_{0}^{1} \lambda_{n k}(t) d \alpha(t),
$$

and thus, by (6),

$$
\sum_{k=0}^{n}\left|\lambda_{n k}\right| \leqq \int_{0}^{1}|d \alpha(t)| \sum_{k=0}^{n} \lambda_{n k}(t) \leqq \int_{0}^{1}|d \alpha(t)| .
$$

Hence
(12) $\quad M_{1} \leqq \int_{0}^{1}|d \alpha(t)|$.

Part (ii). Suppose the function $\beta \in L_{\infty}$ satisfies (8). For $0 \leqq k \leqq n$, we have that
(13) $\lambda_{n k}=\int_{0}^{1} \lambda_{n k}(t) \beta(t) d t$
and thus, by (6) and (7),

$$
\left|\lambda_{n k}\right| \leqq\|\beta\|_{\infty} \frac{d_{k}}{D_{n}} .
$$

Hence
(14) $\quad M_{\infty} \leqq\|\beta\|_{\infty}$.

Part (iii). Suppose the function $\beta \in L_{\theta}$ satisfies (8). It follows from (13) and (7), by Jensen's inequality (see [15, pp. 23-24]) that

$$
\Theta\left(\frac{D_{n}}{d_{k}} \lambda_{n k}\right) \leqq \frac{D_{n}}{d_{k}} \int_{0}^{1} \lambda_{n k}(t) \Theta(\beta(t)) d t \quad \text { for } 0 \leqq k \leqq n .
$$

Hence, by (6),

$$
\sum_{k=0}^{n} \frac{d_{k}}{D_{n}} \Theta\left(\frac{D_{n}}{d_{k}} \lambda_{n k}\right) \leqq \int_{0}^{1} \Theta(\beta(t)) d t
$$

and so
(15) $\quad M_{\Theta} \leqq \int_{0}^{1} \theta(\beta(t)) d t$.

Proofs of the sufficiency parts of Theorem 1 (i), (ii) and (iii).
We first observe that

$$
\sum_{k=0}^{n}\left|\lambda_{n k}\right| \leqq M_{\infty} \sum_{k=0}^{n} \frac{d_{k}}{D_{n}} \leqq M_{\infty}
$$

and, by Young's inequality (see [8, p. 12]), that

$$
\frac{D_{n}}{d_{k}}\left|\lambda_{n k}\right| \leqq N(1)+\Theta\left(\frac{D_{n}}{d_{k}} \lambda_{n k}\right)
$$

where N is the convex function complementary to θ (see [8, p. 11]). Hence

$$
\sum_{k=0}^{n}\left|\lambda_{n k}\right| \leqq N(1) \sum_{k=0}^{n} \frac{d_{k}}{D_{n}}+\sum_{k=0}^{n} \frac{d_{k}}{D_{n}} \Theta\left(\frac{D_{n}}{d_{k}} \lambda_{n k}\right) \leqq N(1)+M_{\theta}
$$

It follows that $M_{1} \leqq M_{\infty}, M_{1} \leqq N(1)+M_{\theta}$ and so $M_{1}<\infty$ under each of the three hypotheses of the sufficiency parts of Theorem 1(i), (ii) and (iii). Suppose therefore that $M_{1}<\infty$.

For $n=0,1, \ldots$, define the function α_{n} on [0,1] by setting

$$
\alpha_{n}(t)= \begin{cases}0 & \text { for } 0 \leqq t<1 / D_{n} \\ \sum_{D_{k} \leqq t D_{n}} \lambda_{n k} & \text { for } 1 / D_{n} \leqq t \leqq 1\end{cases}
$$

so that

$$
\int_{0}^{1}\left|d \alpha_{n}(t)\right|=\sum_{k=0}^{n}\left|\lambda_{n k}\right| \leqq M_{1}
$$

Consequently, by Helly's theorem (see [14, p. 29]), there is an increasing sequence of positive integers $\left\{n_{i}\right\}$ and a function α of bounded variation on $[0,1]$ such that
(16) $\quad \lim _{i \rightarrow \infty} \alpha_{n i}(t)=\alpha(t) \quad$ for $0 \leqq t \leqq 1$
and

$$
\begin{equation*}
\int_{0}^{1}|d \alpha(t)| \leqq M_{1} \tag{17}
\end{equation*}
$$

Part (i). By Lemma 5, we have that

$$
(-1)^{r} \mu_{s}^{(r)}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \lambda_{n k}\left(\frac{D_{k}}{D_{n}}\right)^{\lambda_{s}} \log ^{r} \frac{D_{k}}{D_{s}}=\lim _{n \rightarrow \infty} \int_{0}^{1} t^{\lambda_{s}} \log ^{r} t d \alpha_{n}(t)
$$

for $r=0,1, \ldots, m_{s}-1, s=0,1, \ldots$ It follows, by the Helly-Bray theorem, (see [14, p. 31]) that α satisfies (2) and hence (1).

Part (ii). Suppose $M_{\infty}<\infty$. Let $0 \leqq x<y \leqq 1$. Then for n sufficiently large there are integers a, b (depending on n) such that $-1 \leqq$ $a<b \leqq n$ and

$$
\frac{D_{a}}{D_{n}} \leqq x<\frac{D_{a+1}}{D_{n}} \leqq \frac{D_{b}}{D_{n}} \leqq y<\frac{D_{b+1}}{D_{n}} \quad\left(D_{-1}=0\right),
$$

since

$$
\max _{0 \leq k \leq n} \frac{d_{k}}{D_{n}}=\max _{0 \leqq k \leqq n} \frac{D_{k}}{D_{n}} \frac{1}{1+\lambda_{k}} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Now

$$
\frac{\left|\alpha_{n}(y)-\alpha_{n}(x)\right|}{\sum_{k=a+1}^{b} \frac{d_{k}}{D_{n}}}=\frac{\left|\sum_{k=a+1}^{b} \lambda_{n k}\right|}{\sum_{k=a+1}^{b} \frac{d_{k}}{D_{n}}} \leqq M_{\infty}
$$

and

$$
\lim _{n \rightarrow \infty} \sum_{k=a+1}^{b} \frac{d_{k}}{D_{n}}=y-x .
$$

In view of (16), it follows that

$$
\frac{|\alpha(y)-\alpha(x)|}{y-x} \leqq M_{\infty} .
$$

Hence

$$
\alpha(t)=c+\int_{0}^{t} \beta(u) d u \quad \text { for } 0 \leqq t \leqq 1
$$

where $\beta \in L_{\infty}$ and $\|\beta\|_{\infty} \leqq M_{\infty}$. Further, β satisfies (8) since α satisfies (1).

Part (iii). Suppose $M_{\theta}<\infty$. Let $0=x_{0}<x_{1}<\ldots<x_{m}=1$. Then, for n sufficiently large, there exist integers $a_{0}, a_{1}, \ldots, a_{m}$ (depending on n) such that $-1=a_{0}<a_{1}<\ldots<a_{m}=n$ and

$$
\frac{D_{a_{j}}}{D_{n}} \leqq x_{j}<\frac{D_{1+a j}}{D_{n}} \quad \text { for } j=1,2, \ldots, m-1,
$$

so that

$$
\alpha_{n}\left(x_{j+1}\right)-\alpha_{n}\left(x_{j}\right)=\sum_{k=1+a_{j}}^{a_{j+1}} \lambda_{n k} \quad \text { for } j=0,1, \ldots, m-1 .
$$

Let

$$
\sigma_{j n}=\left(\sum_{k=1+a_{j}}^{a_{j}+1} \frac{d_{k}}{D_{n}}\right) \theta\left(\frac{\alpha_{n}\left(x_{j+1}\right)-\alpha_{n}\left(x_{j}\right)}{\sum_{k=1+a ;}^{a_{j+1}} \frac{d_{k}}{D_{n}}}\right) .
$$

Then, by Jensen's inequality (see [15, pp. 23-24]),

$$
\sigma_{j n} \leqq \sum_{k=1+a_{j}}^{a_{j+1}} \frac{d_{k}}{D_{n}} \Theta\left(\frac{D_{n}}{\mathrm{~d}_{k}} \lambda_{n k}\right) \quad \text { for } j=0,1, \ldots, m-1,
$$

and so

$$
\sum_{j=0}^{m-1} \sigma_{j n} \leqq M_{\theta} .
$$

Also

$$
\lim _{n \rightarrow \infty} \sum_{k=1+a_{j}}^{a_{j+1}} \frac{d_{k}}{D_{n}}=x_{j+1}-x_{j} \quad \text { for } j=0,1, \ldots, m-1 .
$$

In view of (16), it follows that

$$
\lim _{n \rightarrow \infty} \sum_{j=0}^{m-1} \sigma_{j n}=\sum_{j=0}^{m-1}\left(x_{j+1}-x_{j}\right) \theta\left(\frac{\alpha\left(x_{j+1}\right)-\alpha\left(x_{j}\right)}{x_{j+1}-x_{j}}\right) \leqq M_{\Theta},
$$

and, by a theorem of Medvedev [12], this implies that

$$
\alpha(t)=c+\int_{0}^{t} \beta(u) d u \quad \text { for } 0 \leqq t \leqq 1
$$

where $\beta \in L_{\theta}$ and $\int_{0}^{1} \theta(\beta(t)) d t \leqq M_{\theta}$. Further, β satisfies (8) since α satisfies (1).

Proofs of Theorem 1(iv), (v) and (vi).
Part (iv). Suppose that $l_{0}=0$. By Lemma 6 the function $\alpha \in \mathrm{BV}$ satisfying (1) is unique. By (12), (17) and the proof of the sufficiency part of Theorem 1(i), we have that

$$
M_{1} \leqq \int_{0}^{1}|d \alpha(t)| \leqq M_{1}
$$

Suppose that $l_{0}>0$, and let $\gamma(0)=0, \gamma(t)=\alpha(t)-\alpha(0+)$ for $0<t \leqq 1$. Then $\gamma \in \mathrm{BV}$ and satisfies (1). Hence, by (12),

$$
M_{1} \leqq \int_{0}^{1}|d \gamma(t)| .
$$

Further, by (17) and the proof of the sufficiency part of Theorem $1(\mathrm{i})$, there is a function $\tilde{\alpha} \in B V$ satisfying (1) and

$$
\int_{0}^{1}|d \tilde{\alpha}(t)| \leqq M_{1} .
$$

By Lemma 6, $\gamma(t)=\tilde{\alpha}(t)-\tilde{\alpha}(0+)$ for $0<t \leqq 1$. Since $\gamma(0+)=$ $\gamma(0)$, we have that

$$
M_{1} \leqq \int_{0}^{1}|d \gamma(t)| \leqq \int_{0}^{1}|d \tilde{\alpha}(t)| \leqq M_{1} .
$$

Hence

$$
M_{1}=\int_{0}^{1}|d \alpha(t)|-|\alpha(0+)| .
$$

Part (v). By Lemma 6, the function $\beta \in L_{\infty}$ satisfying (8) is essentially unique. By (14) and the proof of the sufficiency part of Theorem 1 (ii), we have that $M_{\infty} \leqq\|\beta\|_{\infty} \leqq M_{\infty}$.

Part (vi). This part can be established by the proof of Part (v) with certain obvious modifications.

Proof of Theorem 2. Let $0 \leqq k \leqq n$. Then

$$
\begin{aligned}
& \left(1-\frac{\lambda_{k}}{\lambda_{n+1}}\right) \lambda_{n+1, k}+\frac{\lambda_{k+1}}{\lambda_{n+1}} \lambda_{n+1, k+1} \\
& =-\lambda_{k+1} \ldots \lambda_{n+1}\left(1-\frac{\lambda_{k}}{\lambda_{n+1}}\right) \frac{1}{2 \pi i} \int_{c_{k, n+1}} \frac{P_{n+1}(z) d z}{\left(\lambda_{k}-z\right) \ldots\left(\lambda_{n+1}-z\right)} \\
& -\lambda_{k+2} \ldots \lambda_{n+1} \frac{\lambda_{k+1}}{\lambda_{n+1}} \frac{1}{2 \pi i} \int_{c_{k, n+1}} \frac{P_{n+1}(z) d z}{\left(\lambda_{k+1}-z\right) \ldots\left(\lambda_{n+1}-z\right)} \\
& =-\lambda_{k+1} \ldots \lambda_{n} \frac{1}{2 \pi i} \int_{C_{k, n+1}} \frac{P_{n+1}(z) d z}{\left(\lambda_{k}-z\right) \ldots\left(\lambda_{n}-z\right)}=\lambda_{n k} ;
\end{aligned}
$$

and hence

$$
\begin{equation*}
\lambda_{n k} \frac{D_{n}}{d_{k}}=\left(1-\frac{\lambda_{k}}{\lambda_{n+1}}\right)_{\lambda_{n+1, k}} \frac{D_{n}}{d_{k}}+\left(1+\lambda_{k}\right) \frac{\lambda_{n+1, k+1}}{\lambda_{n+1}} \frac{D_{n}}{d_{k+1}} . \tag{18}
\end{equation*}
$$

It follows that

$$
M_{\infty}(n) \leqq M_{\infty}(n+1)\left(1+\frac{1}{\lambda_{n+1}}\right) \frac{D_{n}}{D_{n+1}}=M_{\infty}(n+1) .
$$

Since

$$
\left(1-\frac{\lambda_{k}}{\lambda_{n+1}}\right) \frac{D_{n}}{D_{n+1}}+\left(1+\lambda_{k}\right) \frac{D_{n}}{\lambda_{n+1} D_{n+1}}=1,
$$

applying Jensen's inequality to (18) yields

$$
\begin{aligned}
& \frac{d_{k}}{D_{n}} \Theta\left(\frac{D_{n}}{d_{k}} \lambda_{n k}\right) \\
& \begin{array}{l}
\leqq \frac{d_{k}}{D_{n}}\left\{\left(1-\frac{\lambda_{k}}{\lambda_{n+1}}\right) \frac{D_{n}}{D_{n+1}} \Theta\left(\lambda_{n+1, k+1} \frac{D_{n+1}}{d_{k}}\right)\right. \\
\\
\left.\quad+\left(1+\lambda_{k}\right) \frac{D_{n}}{\lambda_{n+1} D_{n+1}} \Theta\left(\lambda_{n+1, k+1} \frac{D_{n+1}}{d_{k+1}}\right)\right\} \\
=\left(1-\frac{\lambda_{k}}{\lambda_{n+1}}\right) \frac{d_{k}}{D_{n+1}} \Theta\left(\lambda_{n+1, k} \frac{D_{n+1}}{d_{k}}\right)+\frac{\lambda_{k+1}}{\lambda_{n+1}} \frac{d_{n+1}}{D_{n+1}} \Theta\left(\lambda_{n+1, k+1} \frac{D_{n+1}}{d_{k+1}}\right)
\end{array}
\end{aligned}
$$

Summing this inequality for $k=0,1, \ldots, n$, we get that

$$
M_{\theta}(n) \leqq M_{\theta}(n+1)-\frac{\lambda_{0} d_{0}}{\lambda_{n+1} D_{n+1}} \Theta\left(\lambda_{n+1,0} \frac{D_{n+1}}{d_{0}}\right) \leqq M_{\theta}(n+1) .
$$

Since the above argument is valid when θ is any even continuous convex function, we can take $\theta(u)=|u|$ to obtain, in addition, that

$$
M_{1}(n) \leqq M_{1}(n+1) .
$$

This completes the proof of Theorem 2.
Note. In all but Theorem 2 the condition that the sequences $\left\{l_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be monotonic is redundant and was imposed only to avoid nonessential and tedious complication in the proofs. Without the monotonicity condition, but with $\left\{l_{n}\right\}$ distinct, $\lambda_{0}=l_{0} \geqq 0, k_{0}=1$ if $l_{0}=0$, $l_{n}>0$ for $n=1,2, \ldots$, identities and inequalities such as (5), (6) (using (10) and (11) on p. 46 of [11] and the proof of Lemma 1 in [10]) and (7) can readily be shown to hold, and Lemmas 5 and 6 and Theorem 1 remain valid. Removal of the monotonicity condition involves changes in statements and proofs of lemmas as indicated below.

Statements.

Lemma 1. Replace $0<\lambda<\lambda_{a+1}$ by $0<\lambda<\min _{k>a} \lambda_{k}$.
Lemma 2. Replace $0<t<\lambda_{k+1}$ by $0<t \neq \lambda_{j}$ for $j>k$, and

$$
\frac{\psi(t)}{\lambda_{k+1}-t}\left(\sum_{j=k+1}^{n} \frac{1}{\lambda_{j}-t}\right)^{r-1} \text { by } \max _{i>k} \frac{|\psi(t)|}{\left|\lambda_{i}-t\right|}\left(\sum_{j=k+1}^{n} \frac{1}{\left|\lambda_{j}-t\right|}\right)^{r-1} .
$$

Lemma 3. Replace $\lambda_{s}<\lambda_{s+1}$ by $\lambda_{s} \neq \lambda_{j}$ for $n>j>s$, and

$$
\psi\left(\lambda_{s}\right)\left(\sum_{j=s+1}^{n} \frac{1}{\lambda_{j}-\lambda_{s}}\right)^{r-a} \text { by }\left|\psi\left(\lambda_{s}\right)\right|\left(\sum_{j=s+1}^{n} \frac{1}{\left|\lambda_{j}-\lambda_{s}\right|}\right)^{r-a} .
$$

Lemma 4. Replace $\lambda_{s}<\lambda_{s+1}$ by $\lambda_{s} \neq \lambda_{j}$ for $j>s$.

Proofs.

Lemma 1. Replace $\lambda_{k+1} /\left(\lambda_{k+1}-\lambda\right)$ by $\max _{j>k} \lambda_{j} /\left(\lambda_{j}-\lambda\right)$, and $1 / \lambda_{k+1}$ by $\max _{j>k} 1 / \lambda_{j}$.

Lemma 2. In the inequalities replace γ_{j} by $\left|\gamma_{j}\right|$ and γ_{k+1} by $\max _{j>k}\left|\gamma_{j}\right|$.
Lemma 3. Replace $\lambda_{j}-\lambda_{s}$ by $\left|\lambda_{j}-\lambda_{s}\right|$.
Lemma 4. Replace $1 /\left(\lambda_{k+1}-\lambda_{s}\right)$ by $\max _{j>k} 1 /\left|\lambda_{j}-\lambda_{s}\right|$, and take

$$
w_{n k}=\left|\left(1-\frac{\lambda_{s}}{\lambda_{k+1}}\right) \ldots\left(1-\frac{\lambda_{s}}{\lambda_{n}}\right)\right|\left(\sum_{j=k+1}^{n} \frac{1}{\left|\lambda_{j}-\lambda_{s}\right|}\right)^{\tau-1} .
$$

Lemma 5. Replace $\lambda_{s}<\lambda_{s+1}$ by $\lambda_{s} \neq \lambda_{j}$ for $j>s$.

References

1. D. L. Berman, Application of interpolatory polynomial operators to solve the moment problem, Urkain Math. Z. 14 (1963), 184-190.
2. D. Borwein, The Hausdorff moment problem, Can. Math. Bull. 21 (1978), 257-265; Corrections 22 (1979), 128.
3. P. J. Davis, Interpolation and approximation (Blaisdell, New York, 1965).
4. K. Endl, On systems of linear inequalities in infinitely many variables and generalized Hausdorff means, Math. Z. 82 (1963), 1-7.
5. F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z. 9 (1921), 74-109.
6. - Summationsmethoden und Momentfolgen II, Math. Z. 9 (1921), 280-299.
7. - Momentprobleme für ein eindliches Interval, Math. Z. 16 (1923), 220-248.
8. M. A. Krasnosel'skii and Ya. B. Rutickĭi, Convex functions and Orlicz spaces (P . Noordhoff, Groningen, 1961).
9. D. Leviatan, A generalized moment problem, Israel J. Math. 5 (1967), 97-103.
10. - Some moment problems in a finite interval, Can. J. Math. 20 (1968), 960-966.
11. G. G. Lorentz, Bernstein polynomials (University of Toronto Press, Toronto, 1953).
12. U. T. Medvedev, Generalization of a theorem of F. Riesz, Uspeshi, Mat. Nauk 8 (1953), 115-118.
13. I. J. Schoenberg, On finite rowed systems of linear inequalities in infinitely many variables, Trans. A.M.S. 34 (1932), 594-619.
14. D. V. Widder, The Laplace transform (Princeton, 1946).
15. A. Zygmund, Trigonometric series I, 2nd edition (Cambridge University Press, Cambridge, 1959).

The University of Western Ontario, London, Ontario;
Tel-Aviv University, Tel-Aviv, Israel

[^0]: Received March 5, 1980 and in revised form January 5, 1981. This research was supported in part by the Natural Sciences and Engineering Research Council of Canada Grant A-2983.

