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HALF-SILVERED MIRRORS AND WYTHOFF’'S GAME

BY
HORACIO PORTA AND KENNETH B. STOLARSKY

ABSTRACT. We propose the following problem. Given an array of verti-
cal mirrors that simultaneously transmit and refiect, and a single incoming
ray of light, describe the configuration of all light rays that are generated.
We solve the problem here for a certain infinite configuration of mirrors;
the solution involves the winning positions (a(n), b(n)) of Wythoff’s game.

1. Introduction. We propose the following problem. Given an array of vertical
mirrors that simultaneously transmit and reflect, and a single incoming ray of light,
describe the configuration of all light rays that are generated. We solve the problem
here for a certain infinite configuration of mirrors; the solution involves two infinite
sequences of integers, the a(n), b(n) of Section 2, that occur in the theory of Wythoff’s
game ([4], [9], [10], [11], [13]). The pairs (a(n), b(n)) are the winning positions of
Wythoff’s game. These sequences also occur in quasicrystallography ([6], [7], [21],
[25]); see [33] for their history, [28] for a connection with affine transformations, and
[27] for a connection with a certain dynamical system.

For only two straight line mirrors in the plane the problem is easily solved, whether
or not they intersect or are parallel. As the number of mirrors increases, so does the
complexity of the problem. The case of mirrors that only reflect is usually found under
the heading of “billiards”. Here the standard reference seems to be [12], Chapter 6,
and this should be supplemented by [34], Chapters 15-18.

A simplified version of the apparatus used in the famous Michelson—-Morley exper-
iment incorporates a half-silvered mirror [1] (see [20], pp. 465—467, for a somewhat
more technical account). Some further optical analysis of plates that both transmit and
reflect is found in [20], pp. 200-204. However all of what the authors have found
connected with the above problem-circle seems essentially one dimensional in nature.
Much of it grew out of a problem posed by Moser and Wyman (in [22]). For a good
sampling of results in this direction consult [18] and the references therein. However,
our problem is two-dimensional; “vertical” and “horizontal” will mean parallel to the
y and x axis, respectively.

2. The main result. Place straight half-silvered mirrors on the positive x and y
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axes of a coordinate plane and on the line segments defined by x +y =1,2,4,7,...,
Fpp—1,...,x 20,y 20, where F, are the Fibonacci numbers.

We shall always assume that the incoming ray is vertical with entry point at (#, 0)
or horizontal with entry point at (0,m), where n,m are positive integers. Rays that
leave the first quadrant are considered to have escaped forever.

Next define a partition Z* = A U B of the set Z* of positive integers into two
disjoint classes A, B, as follows. Let ¢ = (1 + \/5)/2 be the golden mean, and set
a(n) = [n¢], and b(n) = [nd)z] = a(n) + n (here we use [x] to denote the integral part
of x). Then let A = {a(n)}2,, and B = {b(n)}>°,. That the “Beatty sequences” A
and B constitute such a partition is well known [23], [33], [34]. Also, a(F2,—1) = F2,
and a(F2,) = Fap — 1.

THEOREM. For the above system of half-silvered mirrors with a vertical incoming
ray starting at (n,0), there are only two possible final configurations. If n € A, the
final configuration consists of all vertical rays x = v, y 2 0 and all horizontal rays
y =h, x 20, where v,h € A. If n € B, the same conclusion holds but now with
v,h €B.

3. Preliminary results. Since the denominators of the convergents of the contin-
ued fraction for ¢ are the Fibonacci numbers, the distance from m¢ to the nearest
integer has its local extrema exactly when m is a Fibonacci number. Further, the
convergents to a continued fraction are alternatively above and below their limit, and
therefore the fractional part {m@} is closest to 1 when m = F»; and closest to zero
when m = Fj,,1. For example, when 1 = m < Fy,,, the quantity m¢ is closest to 1
when m = Fy;. In fact, the elementary theory of continued fractions (see, e.g., [24],
Chapter 7) yields the following slightly more detailed statement:

LEMMA.

0 max {mg} = {Fap} = 1— >
1=Sm<Fa

@) min {mg} = {Fou19} = ¢~
1§m<F2,\.+3

) L, o

(iii) —Fz;gl<ur:n§—l{m¢} ={-Fy¢}=¢

® a6} = (Fao = 1=

Next we prove:

ProposiTioN 1. If n is a positive even integer, then

(11) a(k+Fn):a(k)+Fn+laf0r '_Fn+2 <k<Fn+17 k#07
and
(1”) a(k+Fn+l) :a(k)+Fn+2a for _Fn+1 <k <Fn+2-

https://doi.org/10.4153/CMB-1990-020-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1990-020-3

1990] HALF SILVERED MIRRORS 121

ProOF. Let k satisfy k # 0 and —F 4y < k < Fpyy. If kK > 0 then part (ii) in the
Lemma applies (with n = 25 +2) to give {k¢} 2 ¢~V and if k < O then part
(iii) in the Lemma applies (with n = 2s) to give {k¢} = ¢~". In either case we get
{k¢} 2 ¢ = Fpe1 —Fn@, 50 Fry1 — Fpp < {k¢} = k¢ —a(k) < 1 < 1+Fpy — Fr9.
Hence (k+F,)¢ —1 < a(k)+F,1 < (k+F,)¢, and therefore a(k+F,) = [(k+F,)¢] =
a(k)+ F .. This proves (1.1). Suppose next that —F,,; < k < F,4,. By applying parts
(i) and (iv) of the Lemma we obtain in a similar way {k¢} S 1 —¢™" < 1—¢ "D =
1+ Fpp — Fpu¢, 80 Frip — Fpo¢ < 0 < k¢ —ak) < 1+ Fpyp — Foy1¢. Hence
(Fpp1+k)o—1 < ak)+Fup < (Fpep +k)¢ and therefore a(k + F,p1) = [(k+Fu1)9] =
a(k) + F,4>. This completes the proof of Proposition 1. O

Note that the bounds on & are best possible since

a(Fpy1 + Fr) = a(Fpy2) = Friz — 1

# a(Fpns1) + Fpoy = Fpio + Fry = Frys,

a(—Fp2 +Fp) = a(=Fp1) = —Fp2 — 1
F# a(—Fp2) + Fppy = —Fpi3 + Fpy = —Fpi2,

and

a(Fpyp + Frn1) = a(Fpy3) = Fraa

# a(Fpi2) + Fpio = Fpq — 1,
a(—Fps1 +Fpe1) =0

Fa(—Fp))+Fpp = —Fpa— 1+ Fpp = —1.

Next we show that the function a(n) is “almost linear” with suitable constraints on
its arguments.

ProposiTioN 2. If 1 < j, [ and j+1 = F,, then

2.1) a(j)+a(l) = Fpy — 1
and
(2.10) b(j)+b(l) = Fuey — 1.

Proor. By Proposition 1 (note that —F, < —/) and the identity [—x] = —[x] — 1 for
non-integral x # 0, we have a(j) = a(—Il+F,) = a(—1)+Fpy; = —a(l) — 1+ F,,,. This
proves equation (2.i). To obtain (2.ii) simply add (2.i) and the equation j+ [ = F,.

ProposiTION 3. The diophantine equation
a(p)+blg)=r, r 2 3,

has a solution p,q 2 1 if and only if r is not of the formr = F, — 1.
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Proor. First suppose that r is of the form r = F,—1. If a( p)+b(g) = r withp, g = 1,
then necessarily p < F,_; and by Proposition 2 we have a(p) + a(F,—; —p) = r. This
leads to the contradiction a(F,_; — p) = b(q).

To prove the converse we will use the Zeckendorf number system (see [4] for
example). Every integer m 2 F, = 1 may be written in a unique way as a sum of
Fibonacci numbers by means of the greedy algorithm: let m = F, + m’ where F, is
maximal subject to 1 = F, = m, and apply the same process to the remainder n,
etc., until some remainder is zero. We may then represent m by a string of zeros and
ones with the leftmost character a one and no two ones consecutive. For example,
10000101 is Fo+F4+F9 = 1+3+34 = 38; the “place values” are Fibonacci numbers
rather than powers of ten. This is the Zeckendorf- or Fibonacci-number system, and is
quite ubiquitous in the Fibonacci literature. Moreover, m belongs to A to B depending
upon whether its representation as a string of ones and zeros ends in an even or an
odd number of zeros, respectively. Here an excellent reference is [14], especially pp.
339-340 for the quadratic case with @ = 1 in the notation of [14].

Next, call a zero (or block of zeros) in a Zeckendorf representation internal if there
is at least one more one to its right. Corresponding to every internal zero of m there
is a simple minded decomposition m = m; + m,, with m;,m, 2 1. For example, if
m = 101000010001, then corresponding to the sixth zero from the right (or any other
zero in its block) we have m = 101000000000 + 10001.

For the proof we first assume that r ends with a one. We have three cases. First
suppose that the representation of » has a block with an even number of zeros. It is
easy to see that to the right of the rightmost such block, call it Bg, there must be
an odd number of characters (if an even number of odd blocks of zeros occur to the
right of Bg, there are an odd number of separating ones). Hence the decomposition
of r corresponding to any zero in Bg gives r = r| + r, where the number of zeros
at the end of r| and r, differ in parity. For example, if » = 101000010001 then
r = 101000000000 + 10001.

Secondly, say r has no even internal blocks, but does have an internal block of at
least 3 zeros. Call the rightmost such block B, call the ones to its left and right 1, and
1z respectively, and let 0/, 0” be the first and second zeros of Bg. Replace 1,0'0” by
011. This is no longer a valid Zeckendorf representation, but since F, >+ F,_ = F,,
it also represents r. Now decompose r by splitting it between the two new 1’s. For
example, r = 10101000101 = 10100110101 = 10100100000+ 10101 = r| +r,. Since
every “block™ of zeros to the right of Bg has only one zero, there are an odd number
of ones to the right of B if the number of zeros to the right is even, and vice versa.
Hence the number of terminal zeros of r; and r, differ in parity.

If the above cases do not occur, we have the third case in which the representation
of r consists of alternating zeros and ones. Upon adding one to it and using 2F, = F3
followed by repeated applications of F,_;+F, = F,;,, we find that r+1 is a Fibonacci
number. This completes the proof for r ending in 1.

If r has terminal zeros, let ¥’ < r be the number obtained by removing them. If
r’ belongs to case one or two above, decompose it accordingly, and restore the zeros
to each term to obtain the desired decomposition of r. Otherwise r is 1010---101
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followed by one or more zeros. If one zero, then r in an F, — 1. If more than one
zero, use the construction of case two to complete the argument. This ends the proof
of Proposition 3.

4. Proof of the theorem. Suppose the incoming ray is vertical with entry point
at (ng,0). For every F, — 1 > ng the ray gets reflected to produce a horizontal ray
at height F,, — 1 — ny. This ray goes left, gets reflected back at the y-axis to re-enter
the first quadrant, and produces in turn vertical rays (by going initially downward,
then bouncing back up on the x-axis). The resulting vertical rays sit at the x-values
Fn—1—(F,—1—ng) for each F,,—1 > F,—1—ng. The process continues to produce
vertical rays at x = v{, X = V5, X = V3, ... and horizontal rays at y = hy, y = hy,
y = hs,.... By renumbering, we may assume v; < v;_; and h; < h;_;. Observe that a
vertical ray entering at any v; (or created at any point with abscissa v;) must generate
the original ray, since by reflexions on the axes, all rays retrace themselves in both
directions.

When ny € A, it follows from Proposition 2 that all rays are placed at A-positions,
eg.,vi€Aand h; € Aforeachi = 1,2,3,.... Similarly, for ny € B, we getv;, h; €B
for all i = 1,2,3,.... Hence the final configuration of rays is, at any rate, a subset of
what the theorem states.

We now show that v = h; = 1 or v{ = h; = 2. First, if ng 2 3 then we can find
nwithng+2 < F, £ 2ng+ 1. Hence ny = F, — 1 — ng < ny and therefore there is a
horizontal ray at y = n; < ng. If n; 2 3, the same argument shows that there is a verti-
cal ray at x = ny < ny. This continues until we reach 1 or 2, either as horizontal or verti
cal positions. But the mirror x +y =2 = F4 — 1 (resp. x +y = 4 = F5 — 1) produces
vertical and horizontal reflexions of 1 (resp. 2) into itself, and our claim is proved.

In view of these remarks, it suffices to analyse the cases np = 1, and nop = 2.
Assume ny = 1. Then v; = h; = 1 and by symmetry v; = h; for all i = 1,2,...,
since the configuration can be generated either by the vertical ray entering at (1, 0)
or by its reflexion at x +y = 2, the horizontal ray entering at (0, 1). Easy calculations
reveal the values 3, 4, 6, and 8 among the v;. We prove that {v; 2, 2 A as follows.
Suppose by contradiction that a(j) is the smallest member of A not listed in {v;}2,,
and let F, satisfy F, — 1 < a(j) < F,.; — 1. Set | = F,, —j. Observe that a(l) < a(}).
In fact, from Proposition 2, a(l) = F,+1.— 1 —a(j) so the reverse inequality a(l) Z a(j)
would imply Fpy — 1 2 2a(j), whence 2(F, — 1) = F,,; — 1 and this fails for n 2 5.
Therefore a(l) is in {v;}?2,, by the minimality of a(j). However this implies that
a(l) = Fpy1 — 1 —a(j) is an A&;, hence a v;, and a contradiction follows. The proof
for vi = 2 is similar. And by symmetry, the case of a horizontal incoming ray also
follows. This proves the theorem.

If any mirror x +y = r with » 2 3, but r + 1 not a Fibonacci number, is added to
our system of mirrors, then the final configuration of light rays consists of all vertical
half lines at x = v and all horizontal half lines at y = #, where v, h € Z* are arbitrary.
This follows immediately from Proposition 3.

To determine what happens when mirrors are removed seems considerably more
involved. Here we shall restrict our attention to the case in which the ray entering
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the first quadrant is x = 1, the mirror x + y = 2 is retained (this insures symmetry),
and only a finite number of mirrors are removed. We show that the conclusion of the
theorem remains valid.

Let K denote the set of all integers k such that x +y = k is a mirror in the array
under consideration, and call (1,m,my,...,m;) a K-mirror sequence if 1 +m,m; +
my,...,m;—1 +m; all belong to K. Then the set of all m such that the ray x = m
(resp. y = m) is part of the final configuration is exactly the set of all elements of all
K-mirror sequences. We show that if m occurs in a mirror sequence ¢ that uses the
x +y = F;_y — 1 mirror, it also occurs in a sequence that uses only larger mirrors.
Say ¢ has consecutive elements m;, m;,; with m; +m;,; = F,_; — 1. If in o we replace
mi,miy; by m;, Fgoy — 1 —my, Fgoy — 1 —myyy, myy; we are rid of this occurrence of
the x +y = Fy_| — 1 mirror. We still have a K-mirror sequence since the sum of the
two additional elements is

Fog+Fe+F  —2—(m+myy) = Fop — 1.
The claim follows upon sufficiently many such replacements.

5. Remarks. An attempt at providing a reasonably complete bibliography of the
mathematics of Beatty sequences such as A and B was made in [33], and this was
soon updated by [15]. However, these sources do not mention Lord Rayleigh, whose
treatise [30] contains the first formulation of the «~!+3~! = 1 result on complementary
sequences (see pages 119-123). The authors learned of Rayleigh’s work from [34],
Chapter 4. In recent times the literature has become exceedingly large, so we shall not
attempt a full updating of [33]. The published proceedings of a recent conference on
quasicrystallography [16] has over 500 pages of often tersely written notes. Moreover,
it is quite possible [5] that much of the voluminous literature on almost periodic
functions is bound up with the subject. Hence we shall for now refer the reader to
the following papers for connections of our subject with other topics: [17], [21], [25]
for quasicrystallography and Penrose tilings, [35] for automatic sequences, [4] for
deterministic games, [30] for mechanical vibrations (here Chapter 5 of Arnold’s book
[2], which involves the Courant-Fisher characterization of eigenvalues (see also [3],
[19]), helps to clarify Lord Rayleigh’s approach), [26], [27], [28], [29] for semigroups,
and to the present paper for the connection with elementary optics. The bibliography
of [33] did refer to the connection with geodesics on certain 2-manifolds via two
papers of H. Cohn, but missed the interesting nineteenth century precursors [8] and
[32]. For the details and more references on this topic see [31].
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