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Abstract We prove the compactness of critical Sobolev embeddings with applications to nonlinear
singular Schrödinger equations and provide a unified treatment in dimensions N > 2 and N = 2,
based on a somewhat unexpectedly broad array of parallel properties between spaces D1,2(RN ) and
H1

0 of the unit disc. These properties include Leray inequality for N = 2 as a counterpart of Hardy
inequality for N > 2, pointwise estimates by ground states r(2−N)/2 and

√
log(1/r) of the respective

Hardy-type inequalities, as well as compactness of the limiting Sobolev embeddings once the Sobolev
norm is appended by a potential term whose growth at singularities exceeds that of the corresponding
Hardy-type potential.
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1. Introduction

The goal of the present work is to address questions of compactness for Schrödinger type
equations in dimensions N � 2. It is well known that two-dimensional problems differ
from higher-dimensional ones in several ways, such as critical rates of growth, energy
spaces and corresponding embeddings into Lebesgue-type spaces.

The starting point of our study is the Schrödinger operator

L = −∆ + V (x) (1.1)

on a domain Ω ⊂ R
N , N � 2, where V is a continuous function away from the origin. The

idea is to present a unified approach where the differences between dimensions N = 2
and N > 2 can be understood as a realization of common phenomena. For that, when
N = 2 we shall pick Ω = B (the unit ball, rather than Ω = R

2) as the closest counterpart
of Ω = R

N when N > 2.
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A reason for this apparent dichotomy lies in the fact that the kinetic energy∫
RN

|∇u|2 dx

does not define a bona fide functional space when N = 2. Namely, the completion of
C∞

0 (R2) under the kinetic energy norm lacks a continuous embedding even into the
space of distributions (note that the zero element in the completion space consists of the
class of all constant functions). Indeed, the affinity between the unit ball in R

2 and the
whole space R

N for N > 2 becomes transparent when we consider the Hardy inequality,∫
RN

|∇u|2 dx � CN

∫
RN

u2

r2 dx, u ∈ C∞
0 (RN ), (1.2)

where the optimal constant CN = ( 1
2 (N − 2))2 expresses the optimal coercivity of the

energy space D1,2(RN ) in terms of weighted L2-norms (and the uncertainty principle, for
that matter). The mentioned optimality means that no larger weight can replace CN/r2

(cf. [6]). On the other hand, when N = 2 and CN = 0 (yielding incompatibility with the
uncertainty principle), one can reestablish the following Hardy-type inequality on the
unit ball B = B1(0) ⊂ R

2:∫
B

|∇u|2 dx � 1
4

∫
B

u2

r2(log(1/r))2
dx, u ∈ C∞

0 (B) (1.3)

(cf. [5]), where again the weight 1/4r2(log(1/r))2 cannot be improved.
Going back to the Schrödinger operator L in (1.1), the above discussion suggests the

use of radial potentials V which exceed the optimal threshold const./r2 when N > 2 or
const./r2(log(1/r))2 when N = 2, thus inducing energy spaces which are smaller than
D1,2 for N > 2 or H1

0 (B) for N = 2. So, we shall be considering the following hypotheses:

(VN) V (r) + (µH − α)VH(r) � 0, V (r)/VH(r) → +∞ when r → 0 or r → ∞, for N > 2,

(V2) V (r) + (µH − α)VH(r) � 0, V (r)/VH(r) → +∞ when r → 0 or r → 1, for N = 2,

where α > 0,

VH(r) :=

⎧⎪⎨
⎪⎩

1
r2 for N > 2,

1
r2(log(1/r))2

for N = 2,

and

µH :=

⎧⎪⎨
⎪⎩

(
N − 2

2

)2

for N > 2,

1
4 for N = 2.

Typical potentials satisfying the above conditions are

V (r) :=

⎧⎪⎪⎨
⎪⎪⎩

| log r|
r2 for N > 2,

log log(1/r)
r2(log(1/r))2

for N = 2.
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In the case N > 2, related results have been considered by Su et al . in [11,12] by a dif-
ferent method with assumptions yielding compactness on embedding of weighted radial
Sobolev spaces. Our focus in this paper is not on compactness for weighted Sobolev
inequalities in general as in [11,12], but rather on appropriate, and more refined, condi-
tions that yield weak continuity of the standard (i.e. with weight 1) critical nonlinearities.
Our approach also extends to the case N = 2 and, as mentioned at the start of this sec-
tion, aims at presenting a unified view of both cases N > 2 and N = 2.

From now on, the energy space EV is defined as the subspace of radially symmetric
functions in the completion of C∞

0 (Ω) with respect to the norm

‖u‖ :=
[ ∫

Ω

(|∇u|2 + V (r)u2) dx

]1/2

,

where Ω = R
N for N > 2 and Ω = B for N = 2. It follows from (VN) and (V2) that

EV is continuously embedded into E0, which stands for the radial subspace of D1,2(RN )
when N > 2 and for the radial subspace of H1

0 (B) when N = 2, endowed with the norm
‖∇u‖2.

We recall two standard inequalities characterizing integrability of functions in Sobolev
spaces, namely, the limiting Sobolev inequality for N > 2,

sup
‖∇u‖2=1

Φ(u) < ∞, where Φ(u) =
∫

RN

|u|2∗
dx, 2∗ =

2N

N − 2
, (1.4)

and the Trudinger–Moser inequality for N = 2 (cf. [7,14]),

sup
‖∇u‖2=1

Φ(u) < ∞, where Φ(u) =
∫

B

e4πu2
dx, (1.5)

with 4π being the best such constant. We point out that, while for N > 2 the limiting
Sobolev inequality defines a continuous embedding of E0 into L2∗

, the Trudinger–Moser
inequality defines a continuous embedding of E0 into the Orlicz space exp L2 induced
by the functional Φ (for the sake of comparison, we remind the reader that D1,2(R2)
lacks continuous embedding even into D′). The radial subspace expL2

rad of expL2 can
be endowed with an equivalent norm (for details, we refer the reader to [3]):

‖u‖ = sup
r

|u(r)|√
log(1/r)

. (1.6)

Neither the embedding E0 ↪→ L2∗
for N > 2 nor the embedding E0 ↪→ exp L2 for N = 2

is compact. However, if instead of E0 we consider EV with a potential V satisfying (VN)
and (V2), then the corresponding embeddings become compact. Our main results are
Theorems 2.4, 2.6, 3.2 and 3.4. The last two results are applications to critical growth
Schrödinger equations of the compact embedding theorems (Theorems 2.4 and 2.6). An
illustrative consequence of the latter is the following theorem.

Theorem 1.1. Let Φ : EV → R be as in (1.4) (respectively, (1.5)). If V satisfies (VN)
(respectively, (V2)), then the embedding of EV into L2∗

(respectively, exp L2) is compact
and the functional Φ defined by (1.4) (respectively, (1.5)) is weakly continuous.
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Remark 1.2. Conditions of Theorem 1.1 are sharp in the following sense.

• If V/VH is bounded near one of the endpoints in (VN) and (V2), then the cor-
responding embedding is not compact. The lack of compactness is verified on
sequences gtn

u, where u ∈ C∞
0 is fixed,

gtu(r) :=

{
t(N−2)/2u(tr) for N > 2,

t1/2u(r1/t) for N = 2,
t > 0, (1.7)

with tn going in a direction related to the endpoint in question (e.g. for N = 2,
e−1/tn converges to 0 and 1, respectively).

• If we have equality in the first condition of (VN) and (V2) and α = 0, the operator
(1.1) is no longer positive definite. In this case the operator (1.1) for N > 2 corre-
sponds to the Hardy inequality that has the generalized ground state r(2−N)/2, and
for N = 2 it corresponds to the Leray inequality that has the generalized ground
state

√
log(1/r).

• The theorem is false if the restriction to the subspace of radial functions is omitted.
In particular, if N > 2, u ∈ C∞

0 (RN ) and supr�1 |V (r)| < ∞, then uy := u(·−y) ⇀

0 in EV as |y| → ∞, but ∫
RN

|uy|2∗
dx =

∫
RN

|u|2∗
dx.

For N = 2 a counter-example is given by a sequence concentrating (by means of
logarithmic dilations (1.7)) at a point bounded away from both the origin and ∂B.

2. Critical nonlinearities in EV

In this section we prove Theorem 1.1 and derive some of its consequences. The main
technical component of the proof will be the operators (1.7), which are isometries on E0

and form a multiplicative group, as can be shown by an easy calculation.
Due to the lack of compactness in the limiting embeddings, a sequence in E0 will

vanish in the target space only if its convergence to zero in E0 is stronger than the weak
convergence. Indeed, we have the following.

Proposition 2.1. If (uk) ⊂ E0 is such that for every tk > 0,

gtk
uk ⇀ 0 in E0, (2.1)

then uk → 0 in L2∗
for N > 2 and uk → 0 in exp L2

rad for N = 2.

Proof. For N = 2, this result is [1, Lemma 3.3]. For N > 2, the result is a restriction
of [9, Theorem 2] to the radial case, once one observes that radiality prevents the forma-
tion of rescaled profiles at any other point but the origin, and condition (2.1) prevents
formation of profiles at the origin as well. For completeness, we include an independent
proof in the appendix. �
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In the terminology of [13], the above proposition states that the embeddings E0 ↪→ L2∗

and E0 ↪→ exp L2
rad are cocompact with respect to the group of transformations (1.7).

Another important embedding of E0 that is cocompact with respect to (1.7) is given by
the inequalities

‖r(N−2)/2u‖∞ � C(N)‖∇u‖2, N > 2, (2.2)

and

‖(log(1/r))−1/2u‖∞ � C(N)‖∇u‖2, N = 2 (2.3)

(see [10] and [7], respectively). In what follows, the notation Lp will refer to the space
Lp(Ω, W dx), p < ∞, the Lebesgue space of Ω with measure W dx, W > 0, with norm

‖u‖W,p =
( ∫

Ω

|u|p dx

)1/p

.

Somewhat inconsistently, we denote by L∞(Ω, W dx) the space of Lebesgue measurable
functions with the norm

‖uW‖∞ = sup
x∈Ω

|u(x)|W (x).

Then, we have the following.

Proposition 2.2. If the sequence uk is as in Proposition 2.1, then ‖r(N−2)/2uk‖∞ → 0
for N > 2 and ‖(log(1/r))−1/2uk‖∞ → 0 for N = 2.

Proof. Note first that the case N = 2 here is identical to the case N = 2 in Proposi-
tion 2.1, since the norm appearing in (2.3) has already been adopted in § 1 (see (1.6)) as
the standard norm for expL2

rad. For N > 2 we have that

r
(N−2)/2
k uk(rk ·) ⇀ 0

for every sequence rk > 0. Let us use the trace value of a function on the unit sphere SN−1,
integrated over this sphere, as a continuous test functional for the weak convergence. This
yields r

(N−2)/2
k uk(rk) → 0, which in turn, since rk is arbitrary, gives ‖r(N−2)/2uk‖∞ →

0. �

We further note that, for N > 2, one has the inequality∫
RN

rαp |u|p dx � C(N, p)‖∇u‖p
2, where αp = 1

2 (p − 2)(N − 2) − 2, p ∈ [2,∞). (2.4)

Indeed, for p = 2 this is the Hardy inequality and for p > 2 it is an elementary conse-
quence of the Hardy inequality and the radial estimate (2.2). Observe that, for p = 2∗,
we have αp = 0, which gives the limiting Sobolev inequality as a consequence of the
Hardy inequality.
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Similarly, for N = 2, as has been observed in [1], the following inequality follows from
Leray inequality (1.3) and the radial estimate (2.3):∫

B

|u|p
r2(log(1/r))βp

dx � C(N, p)‖∇u‖p
2, where βp = 1

2 (p + 2), p ∈ [2,∞). (2.5)

It is now clear that inequalities (2.4) and (2.5) also define cocompact embeddings; namely,
we have the following.

Corollary 2.3. If the sequence uk is as in Proposition 2.1, then∫
RN

rαp |uk|p dx → 0, p ∈ (2,∞), N > 2, (2.6)

and ∫
B

|uk|p
r2(log(1/r))βp

dx → 0, p ∈ (2,∞), N = 2. (2.7)

Unlike embeddings of E0 that are cocompact but not compact, the space EV admits
the following compact embeddings.

Theorem 2.4. For every p ∈ [2,∞) the space EV is compactly embedded into the
space Lp(RN , rαp dx) for N > 2 and into the space

Lp

(
B, r−2

(
log

1
r

)−βp

dx

)
for N = 2.

Proof. Consider first the case p = 2. By (VN) we have, for N > 2,∫
RN

u2
k

r2 dx =
∫

R−1�r�R

u2
k

r2 dx + εR

∫
{r<R−1}∪{r>R}

V u2
k dx

�
∫

R−1�r�R

u2
k

r2 dx + εR‖uk‖2
EV

,

where εR → 0 as R → ∞. If we assume that uk ⇀ 0 and use Sobolev embedding in
bounded domains, it follows that

lim sup
k→∞

∫
RN

u2
k

r2 dx � εR lim sup
k→∞

‖uk‖2
EV

.

Since R is arbitrary, it follows that uk → 0 strongly in L2(RN , 1/r2 dx). Similarly, when
N = 2, we have, by (V2),∫

B

u2
k

r2(log(1/r))2
dx

=
∫

R−1�log(1/r)�R

u2
k

r2(log(1/r))2
dx + εR

∫
{log(1/r)<R−1}∪{log(1/r)>R}

V u2
k dx

�
∫

R−1�log(1/r)�R

u2
k

r2(log(1/r))2
dx + εR‖uk‖2

EV
, (2.8)
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where εR → 0 as R → ∞. If we assume that uk ⇀ 0 and use Sobolev embedding in
bounded domains, it follows that

lim sup
k→∞

∫
B

u2
k

r2(log(1/r))2
dx � εR lim sup

k→∞
‖uk‖2

EV
,

and we conclude similarly that uk → 0 strongly in

L2
(

B,
1

r2(log(1/r))2
dx

)
,

since R is arbitrary.
The case 2 < p < ∞ follows immediately from the case p = 2 and the retrospective

pointwise estimates (2.2) for N > 2 and (2.3) for N = 2. �

As a matter of fact, the case p = ∞ also holds true. Before stating the theorem we
need the following elementary estimate, which follows from the fundamental theorem of
calculus and the Cauchy–Schwarz inequality in a similar manner to (2.2) and (2.3).

Lemma 2.5. Assume that u ∈ C1
0 (B) is a radial function on the unit disc, let λ �= 1

and let

Nλ(u) =
( ∫

B

|∇u|2
(

log
1
r

)λ

dx

)1/2

. (2.9)

Then

sup
r∈(0,1)

|u(r)|
(

log
1
r

)(λ−1)/2

� 1√
2π|λ − 1|

Nλ(u). (2.10)

Theorem 2.6. The space EV is compactly embedded into L∞(RN , r(N−2)/2 dx) for
N > 2 and into the space L∞(B, (log(1/r))−1/2 dx) for N = 2.

Proof. Let uk ⇀ 0 and consider the case N > 2.

Case 1. Assume first that all the uk have support outside the annulus

AR = {x ∈ R | 1/R � |x| � R},

with R > 0. Since r2V (r) → ∞ as r, r−1 → ∞, there exist MR > 0, limR→∞ MR = +∞,
such that V (r) � MR/r2 for all r, r−1 � R. Let λ = λR > 0 be any of the two roots of
the equation

λR(λR + N − 2) = MR. (2.11)

As a matter of convenience we can decrease MR, so that MR still goes to infinity as
R → ∞ but λR is now an integer. It follows that ϕR(r) = rλR solves

−∆ϕ +
MR

r2 ϕ = 0 in R
N \ {0},

and we obtain∫
Ac

R

ϕ2
R|∇(ϕ−1

R uk)|2rN−1 dr =
∫

Ac
R

(
|∇uk|2 +

MR

r2 u2
k

)
rN−1 dr � C,
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where C > 0 is such that
‖uk‖2 � C

for all k ∈ N. Therefore, we have∫
RN

|∇v|2rNR−1 dr � C, (2.12)

where v = r−λRuk and NR = N + 2λR. It follows from the pointwise estimate (2.2) in
D1,2(RNR) that

r(NR−2)/2|v(r)| � const.√
NR − 2

for all r > 0,

or

r(N−2)/2|uk(r)| � const.√
N − 2 + 2λR

= εR, (2.13)

where εR → 0 as R → ∞ (recall that λR → ∞ as R → ∞ because MR does so by (2.11)).

Case 2. The general case, where we do not assume that all uk have support outside
a fixed annulus, can be handled by cut-off functions. Let θR ∈ C∞(R) be a non-negative
function such that

θR(r) =

{
1 for r ∈ [0, R−1] ∪ [R, ∞),

0 for r ∈ [R−1 + 1, R − 1],
(2.14)

with |θ′
R(r)| � 2 for all r. Then, defining vk = θRuk and wk = (1 − θR)uk (where, for

simplicity of notation, we now drop the subscript R), we can write

uk = vk + wk,

where vk has support in the union of BR−1+1 and R
N \ BR−1, and wk has support in

AR−1,R = B̄R \ BR−1 . Now, a straightforward calculation shows that∫
RN

(|∇vk|2 + V v2
k) dx � 2

∫
RN

(|∇uk|2 + V u2
k) dx + 2

∫
AR−1,R∪AR−1,R−1+1

u2
k dx,

where the second term above goes to zero since uk ⇀ 0 as k → ∞. Therefore, the sequence
vk is bounded in EV . This allows us to use Case 1, in order to conclude from (2.13) that

sup
r�0

r(N−2)/2|vk(r)| → 0. (2.15)

An analogous calculation shows that wk has a bounded E0-norm, and thus wk → 0
uniformly on its support in AR−1,R−1 by compactness in the Morrey embedding. Recalling
that uk = vk + wk, we extend the estimate (2.15) to the sequence uk, which proves the
theorem for N > 2.

We now consider uk ⇀ 0 in the case N = 2.
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Case 3. Assume first that all the uk have support outside the annulus Aη = {x ∈ B |
e−1/η � |x| � e−η}, with a fixed small η > 0. Since (log(1/r))2r2V (r) → ∞ as r → 0 or
r → 1, there exists Mη > 0, limη→0 Mη = +∞, such that

V (r) � Mη

r2(log(1/r))2

whenever r ∈ [0, e−1/η] or r ∈ [e−η, 1].
Also, letting λ = λη > 0 be any of the two roots of the equation

λη(λη − 1) = Mη, (2.16)

it follows that ϕη(r) = (log(1/r))λη solves

−∆ϕ +
Mη

r2(log(1/r))2
ϕ = 0 in B \ {0},

and we obtain∫
B

ϕ2
η|∇(ϕ−1

η uk)|2r dr =
∫

B

(
|∇uk|2 +

Mη

r2(log(1/r))2
u2

k

)
r dr � C,

where C > 0 is such that
‖uk‖2 � C

for all k ∈ N. Therefore, we have∫
B

|∇v|2
(

log
1
r

)2λη

r dr � C, (2.17)

where v = (log(1/r))−ληuk. From Lemma 2.5, we have

sup
r∈(0,1)

|v(r)|
(

log
1
r

)λη−1/2

� const.√
|λη − 1|

, (2.18)

or

|uk(r)|
(

log
1
r

)−1/2

� const.√
|λη − 1|

= εη, (2.19)

where εη → 0 as η → 0 (recall that λη → ∞ as η → 0 because Mη does so by (2.16)).

Case 4. The general case for N = 2, where we do not assume that all uk have support
outside a fixed annulus, can be handled by means of cut-off functions.

Let

θη(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for r ∈ [0, e−1/η] ∪ [e−η, 1],

0 for r ∈ [e−1/(2η), e−η/2],

2
η

log
e−η/2

r
for r ∈ (e−η, e−η/2),

2η log
e−1/(2η)

r
for r ∈ (e−1/η, e−1/(2η)),

(2.20)
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and observe that, apart from a set of measure zero,

|θ′
η(r)| �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2η

r
for r ∈ (e−1/η, e−1/(2η)),

2
ηr

for r ∈ (e−η, e−η/2),

0 otherwise.

(2.21)

The choice of the cut-off function involving logarithmic terms is common in optimal cut-
off functions for N = 2 and has been used in the literature (see, for example, [6]). Then,
setting v

(η)
k = θηuk and w

(η)
k = (1 − θη)uk, we can write

uk = v
(η)
k + w

(η)
k ,

and proceed analogously to Case 2, above. Our choice of θη yields a bound on the gradient
norm for both v

(η)
k and w

(η)
k , which is uniform in η. The contribution of v

(η)
k is small by

the estimate (2.19) (similar to (2.13)), while w
(η)
k converges uniformly to zero on the

annulus e−1/η � r � e−η by compactness in the Morrey embedding. �

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. For N = 2, the theorem follows from the corresponding
statement in Theorem 2.6, and the equivalence of the Zygmund norm (1.6) (the same as
L∞(B, (log(1/r))−1/2) dx) and the Orlicz norm of expL2. For N > 2, this is a particular
case of Theorem 2.4 with p = 2∗ corresponding to αp = 0. �

3. Applications

Let f ∈ C(R) and assume that there exists A > 0, such that, for all s ∈ R,

|f(s)| �
{

A|s|2∗−1 for N > 2,

λ|s|eAs2
for N = 2,

(3.1)

where λ > 0 will be specified later. Let

F (s) =
∫ s

0
f(t) dt

and

ψ(u) :=
∫

Ω

F (u(x)) dx. (3.2)

We recall that Ω = R
N if N > 2 and Ω = B if N = 2. Then, clearly, ψ ∈ C1(E0) and

therefore ψ ∈ C1(EV ).

Proposition 3.1. Assume that f satisfies (3.1) and let ψ be the functional (3.2).
Then ψ is weakly continuous on EV and ψ′ is weakly continuous as a map from EV into
E′

V � EV .
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Proof. Let uk ⇀ u. Consider the case N > 2 first. By the compactness given by
Theorem 2.4, uk → u in L2∗

. The assertion then follows from the well-known continuity
of ψ : L2∗ → R and of ψ′ : L2∗ → D1,2.

Now, let N = 2. It suffices to show that f(uk) → f(u) in Lp(B) for any p. This follows
from Lebesgue dominated convergence once we show that |f(uk)|p is bounded by an
L1- function for all k sufficiently large. Indeed, combining an elementary inequality with
Theorem 2.4, we have with some εk → 0,

u2
k � 2u2

k + 2(uk − u)2 � 2u2
k + Cεk log(1/r).

Applying the bound (3.1), we obtain

|f(uk)|p � |uk|p exp(pAu2
k)

� exp(p(A + 1)u2
k)

� exp(p(A + 1)2u2
k) exp(p(A + 1)Cεk log(1/r))

=
exp(2p(A + 1)u2

k)
rp(A+1)Cεk

� exp(2p(A + 1)u2
k)

r
,

where the last inequality holds for all k sufficiently large. �

Let
J(u) = 1

2‖u‖2 − ψ(u)

and define
Φ := {ut ∈ C([0, 1], EV ) : u0 = 0 and J(u1) � 0}.

We recall that the notation of the norm without further specification refers to the
space EV .

Theorem 3.2. Assume that (3.1) holds and that the functional J satisfies the follow-
ing functional-analytic conditions:

Φ �= ∅, (3.3)

for every ρ > 0 sufficiently small, cρ := inf
‖u‖=ρ

J(u) > 0, (3.4)

and

J(uk) → c, J ′(uk) → 0 =⇒ ‖uk‖ is bounded, (3.5)

where
c := inf

ut∈Φ
max
0�t�1

J(ut) > 0. (3.6)

Then there exists u ∈ EV such that J(u) = c, J ′(u) = 0. In particular, u is a weak
solution of

−∆u + V (r)u = f(u). (3.7)
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Moreover, the conditions (3.3)–(3.5) follow, respectively, from the following explicit con-
ditions:

sup
s

F (s) > 0 for N > 2, lim
s→∞

F (s)
s2 = +∞ for N = 2, (3.8)

λ < 4αλ1, (3.9)

where λ is as in (3.1), α is as in (V2), λ1 is the first eigenvalue of the Dirichlet Laplacian
in B and

there exists θ > 2 such that f(s)s � θF (s) for all s ∈ R. (3.10)

Proof. From the standard Mountain Pass Theorem and conditions (3.3), (3.4), it
follows that there exists a sequence (uk) ∈ EV such that J(uk) → c and uk −ψ′(uk) → 0
in EV . By (3.5), uk is bounded in EV and, therefore, for a renumbered subsequence,
uk ⇀ u in EV . Then, by (3.1) and Theorem 1.1, ψ′(uk) → ψ′(u) in EV and thus uk → u

strongly in EV . Consequently, u is a critical point with J(u) = c.
Next, note that (3.5) follows from (3.10) by repeating the classical argument in [2].

So, it remains to derive (3.3) from (3.8), and (3.4) from (3.9).
In the case N = 2 condition (3.3) follows from (3.8) immediately. Now, let N > 2. let

us show that the path ut := u(t−1 ·), for a suitable u ∈ C∞
0 (RN \ {0}), is in the class Φ.

Continuity of the path in D1,2 is shown, for example, in [4]. In order to verify continuity
of the path in L2(RN , V dx), note first that if tk → t > 0, then∫

RN

V (x)u2
tk

dx =
∫

RN

tNk V (tkx)u2 dx →
∫

RN

tNV (tx)u2 dx.

Furthermore, if tk → 0, then, since u has compact support in R
N \ {0}, we have

tNk V (tkx) → 0 uniformly on suppu. Using the change of variables x = ty in
∫

F (ut) dx,
we have

lim
t→∞

tN
∫

RN

F (u(y)) dy = ∞,

once we observe that, by (3.8), the integral above becomes positive for a suitable u.
Finally, since the proof of (3.4) for N > 2 is clear from (3.1), let us then prove (3.4)

for N = 2. From (V2) it follows that

‖u‖2 � 4α‖∇u‖2
2 � 4αλ1

∫
B

u2 dx.

Therefore, the quadratic part of J(u) is non-negative whenever the constant λ in (3.1)
does not exceed 4αλ1. We conclude that, once λ < 4αλ1, one has

J(u) � (4αλ1 − λ)‖u‖2 + o(‖u‖2),

from which (3.4) follows immediately. �

Remark 3.3. It is possible to provide sufficient conditions, alternative to (3.10), by
following an argument based on Pohozhaev identity and similar to that of Jeanjean and
Tanaka [4].
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We note that we have considered only autonomous nonlinearities. Analogous results
based on compact embeddings of EV into appropriate weighted Lp-spaces are also pos-
sible. Due to the pointwise estimates (2.2) and (2.3), a nonlinearity satisfying (3.1) may
be multiplied by h(ur(N−2)/2) when N > 2 or by h(u/

√
log(1/r)) when N = 2, with

a general h, without a major change in the character of the problem. In particular,
this includes nonlinearities of Hénon type (see [8]). We elaborate this case below as an
illustration.

So now let N > 2 and f ∈ C([0,∞) × R). Assume that there exists C > 0, p > 2 and
λ > 0 such that, for all r � 0 and s ∈ R,

|f(r, s)| � Crαp |s|p−1 + λ|s|r−2. (3.11)

As we did for the definitions at the start of this section we set

F (r, s) =
∫ s

0
f(r, t) dt and ψ(u) :=

∫
RN

F (r, u) dx.

Then ψ ∈ C1(D1,2(RN )) by (2.4), and therefore ψ ∈ C1(EV ). Moreover, due to Theo-
rem 2.4, ψ′ : EV → EV is continuous in EV with respect to weak convergence. We will
use the same notation as above for the analogous functional J(u) = 1

2‖u‖2 − ψ(u) and
for the class of paths Φ.

Theorem 3.4. Assume that (3.11) holds and that the functional J satisfies the
functional-analytic conditions (3.3)–(3.5) of Theorem 3.2, where c is given by (3.6). Then
there exists u ∈ EV such that J(u) = c, J ′(u) = 0. In particular, u is a weak solution of

−∆u + V (r)u = f(r, u). (3.12)

Moreover, the conditions (3.3)–(3.5) follow, respectively, from the following explicit con-
ditions:

lim
r→∞

r2F (r, s) = ∞ for 0 < s < s0 with some s0 > 0, (3.13)

the constant λ in (3.11) is less than the constant α in (VN) (3.14)

and

there exists θ > 2 such that f(r, s)s � θF (r, s) for all r > 0, s ∈ R. (3.15)

Proof. The assertion of the theorem follows from the same argument as in Theo-
rem 3.2, with reference to (3.11) and Theorem 2.4. Moreover, (3.5) follows from (3.10)
by repeating the classical argument in [2]. It only remains to verify the functional-analytic
conditions (3.3), (3.4) from (3.13) and (3.14).

To prove (3.3), we use the same path ut := u(t−1 ·) as in Theorem 3.2. Then, with
tk → 0, taking u that vanishes near the origin, we have tNk V (tkx) → 0 uniformly on
suppu. Therefore, (3.3) will follow once we prove (after using the change of variables
y = tx) that

lim
t→∞

tN
∫

RN

F (ty, u(y)) dy = ∞,

which in turn is immediate from (3.13) once we require that 0 � u � s0.
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We turn now to (3.4). From (3.11) it follows that

J(u) � ‖u‖2

2
− λ

2

∫
RN

|u|2
r2 dx − C

p

∫
RN

rαp |u|p dx.

Note that γ := λ/α < 1 in view of (3.9), so that, by Hardy’s inequality and by (VN), we
obtain

J(u) � 1 − γ

2
‖u‖2 − Cp

∫
RN

rαp |u|p dx.

Therefore, (3.4) is immediate in view of Theorem 2.4. �

Appendix A. Proof of Proposition 2.1 for N > 2

By one-dimensional Morrey embedding, noting that the weights under the integrals are
bounded and bounded away from zero, we have

∫
r∈[1,2]

|u|2∗
dx � C

∫
r∈[1,2]

(|∇u|2 + r−2u2) dx

( ∫
r∈[1,2]

|u|2∗
dx

)1−(2/2∗)

.

Applying this inequality to 2(N−2)j/2uk(2jx), j ∈ Z, and rescaling the variables of inte-
gration, we obtain

∫
r∈[2j ,2j+1]

|uk|2∗
dx � C

∫
r∈[2j ,2j+1]

(|∇uk|2 + r−2u2
k) dx

( ∫
r∈[2j ,2j+1]

|u|2∗
dx

)1−(2/2∗)

.

Summation over j ∈ Z gives

∫
RN

|uk|2∗
dx � C

∫
RN

(|∇uk|2 + r−2u2
k) dx sup

j∈Z

( ∫
r∈[2j ,2j+1]

|uk|2∗
dx

)1−(2/2∗)

.

With suitable jk ∈ Z, we arrive at

∫
RN

|uk|2∗
dx � C

( ∫
r∈[1,2]

|2−(N−2)jk/2uk(2−jkx)|2∗
dx

)1−(2/2∗)

,

where the last term converges to zero by the one-dimensional Morrey embedding.
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