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Abstract

This paper gives an explicit version of Selberg’s mean-value estimate for the prime number theorem
in intervals, assuming the Riemann hypothesis [25]. Two applications are given to short-interval results
for primes and for Goldbach numbers. Under the Riemann hypothesis, we show there exists a prime in
(y, y + 32 277 log2 y] for at least half the y ∈ [x, 2x] for all x ≥ 2, and at least one Goldbach number in
(x, x + 9696 log2 x] for all x ≥ 2.

1. Introduction

Selberg’s 1943 paper [25] features conditional and unconditional estimates for the
asymptotic behaviour of the prime number theorem (PNT) in short intervals (x, x + h]
with h = o(x). They are reached via the relationship between Chebyshev’s prime
counting functions, θ(x) and ψ(x), and the Riemann zeta function, ζ(s). A notable
waypoint in Selberg’s method is an estimate for

J(x, δ) =
∫ x

1
|θ(y + δy) − θ(y) − δy|2 dy

for δ ∈ (0, 1], to gauge the mean value of θ(x) in short intervals. There has been much
interest in this integral since Selberg’s paper, for its connection to the prime number
theorem and prime gaps, and for estimates on the zeros of ζ(s) and Montgomery’s
pair-correlation function.

Assuming the Riemann hypothesis (RH), the best estimate for J(x, δ) is

J(x, δ) � δx2 log2 x, (1-1)

for all δ ∈ [1/x, 1], from Selberg [25]. This estimate is given in the second display
equation on page 172 of [25]. Saffari and Vaughan gave a similar result in Lemma
5 of [24], but used an averaging technique with the Riemann–von Mangoldt explicit
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formula. Unconditionally, one of the best results for J(x, δ) to date is from Zaccagnini
[30] of J(x, δ) � x3δ2 for δ ∈ [x−5/6−ε(x), 1] with ε(x)→ 0 as x→ ∞.

Selberg’s result (1-1) is actually deduced from an estimate for a similar integral
from 1 to δ−1: see equation (13) in [25]. This integral has itself been separately studied,
in part because it allows a better illustration of the relationship between the size of the
interval and the asymptotic behaviour of the integral. For more details on this see, for
example, the introduction to [2]. Another useful reference is Zaccagnini’s review paper
[31], which gives a survey of the literature surrounding J(x, δ). Also see Goldston et al.
[9] for a version of Selberg’s proof of (1-1) for ψ(x).

The primary goal of this paper is to prove the following explicit version of (1-1).

THEOREM 1.1. Assuming the RH, for all x ≥ 108 and any δ ∈ (0, 10−8] we have∫ x

1
|θ(y + δy) − θ(y) − δy|2 dy < 202δx2 log2 x.

Estimates for J(x, δ) can be used to comment on the measure of intervals that
contain primes. It is usually said that an estimate holds for ‘almost all’ y ∈ [x, 2x]
if the exceptional set has measure o(x) (see footnote 4 on page 161 of [25] for
Selberg’s definition). Under the RH, Selberg’s estimate implies that almost all
intervals [x, x + h] contain a prime for any positive increasing function h = o(x) with
h/ log2 x→ ∞ (stated in [29, Corollary 2]). For comparison, the best unconditional
result is from Jia [13], of primes in almost all intervals of the form [x, x + x(1/20)+ε], for
any ε > 0.

With an explicit estimate for J(x, δ), we can explicitly determine the density of
prime-containing intervals in some range. Moreover, Theorem 1.1 allows us to do so
for any interval wider than O(log y). To demonstrate how this can be done, we prove
the following corollary in Section 3.

COROLLARY 1.2. Assuming the RH, the set of y ∈ [x, 2x] for which there is at least
one prime in (y, y + 32 277 log2 y] has a measure of at least x/2 for all x ≥ 2.

Similar statements to Corollary 1.2 can be made with other short intervals. We
chose this particular interval to make a comparison with a conjecture of Cramér
[3], that the upper bound on gaps between consecutive primes, pn+1 − pn, should be
O(log2 pn). Although the basis for this conjecture has been called into question, it is
still considered likely that Cramér’s conjecture is true for powers of log pn above 2: see
[12, page 23] and [23]. This would predict Corollary 1.2 to be true for all y ∈ [x, 2x].
Another comparison can be made with the result of Goldston et al. [10, Theorem
1], that for any fixed η > 0 there is a positive proportion of y ∈ [x, 2x] for which
(y, y + η log y] contains a prime as x→ ∞.

Selberg’s result can also be used to deduce interval results for Goldbach numbers.
A Goldbach number is defined as the sum of two odd primes. We have estimates for
the number of Goldbach numbers in intervals, and for the smallest interval containing
a Goldbach number. See Languasco [16] for a survey. Linnik [19] first used Hardy
and Littlewood’s circle method to prove, under the RH, that there exist Goldbach

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788723000113
Downloaded from https://www.cambridge.org/core. IP address: 3.144.118.11, on 01 Oct 2024 at 19:22:01, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446788723000113
https://www.cambridge.org/core


[3] An explicit mean-value estimate for the PNT in intervals 3

numbers in [x, x + H] with H = O(log3+ε x) for any ε > 0. Kátai [15] refined this to
H = O(log2 x) using methods from [25]. Montgomery and Vaughan [21, Theorem 2]
also proved this result, but used (1-1). This result has also been proved in [8] and
[18, Corollary 1] using other techniques. Going a step further, Goldston [8] showed
that under the RH and Montgomery’s pair-correlation conjecture [20] we can take
H = O(log x), and under the same assumptions Languasco [17] proved that there is a
positive proportion of Goldbach numbers in this interval. For more recent work on the
average number of Goldbach numbers in intervals, see [11].

We prove the following version of Montgomery and Vaughan’s result in Section 2.

THEOREM 1.3. Assuming the RH, there exists a Goldbach number in the interval
(x, x + 9696 log2 x] for all x ≥ 2.

2. An explicit version of Selberg’s result

2.1. Preliminary lemmas. In this section we prove a number of lemmas needed to
prove Theorem 1.1. Here and hereafter, let s = σ + it and let ρ = β + iγ denote any
non-trivial zero of ζ(s). Selberg’s proof of (1-1) requires a mean-value estimate for the
logarithmic derivative of ζ(s) under the RH. In particular, Lemma 4 of [25] states that
for sufficiently large T and σ ∈ (1/2, 3/4],

∫ T

0

∣∣∣∣∣ζ′ζ (σ + it)
∣∣∣∣∣2 dt = O

( T
(σ − 1/2)2

)
. (2-1)

There does not appear to be an explicit version of (2-1), but Selberg’s proof is effective.
See also an estimate for a similar integral from Farmer [7, Lemma 2]. There are explicit
estimates for ζ′(s)/ζ(s) in the critical strip, such as in [27, Corollary 1(b)] of the order
O((log t)2(1−σ)(log log t)2), or Lemma 2.8 of [6] of O(log2 t), but these would not give
an estimate of the form (2-1). We make (2-1) explicit in Lemma 2.4, by way of an
explicit version of [25, Lemma 3] in Lemma 2.3. The latter will need Lemmas 2.1
and 2.2.

LEMMA 2.1 (Karatsuba and Korolëv [14, Lemma 2]). For |σ| ≤ 2 and |t| ≥ 10,∣∣∣∣∣ζ′ζ (s) −
∑
ρ

1
s − ρ

∣∣∣∣∣ ≤ 1
2

log|t| + 3. (2-2)

LEMMA 2.2 (Selberg [25, Lemma 2]). For x > 1, and Λ(n) denoting the von Mangoldt
function,

Λx(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Λ(n), 1 ≤ n ≤ x

Λ(n)
log(x2/n)

log x
, x ≤ n ≤ x2.
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Then, for any s � 1 not a zero of ζ(s),

−ζ
′

ζ
(s) =

∑
n<x2

Λx(n)
ns +

x1−s − x2(1−s)

(1 − s)2 log x
− 1

log x

∞∑
q=1

x−2q−s − x−2(2q+s)

(2q + s)2 (2-3)

− 1
log x

∑
ρ

xρ−s − x2(ρ−s)

(s − ρ)2 .

LEMMA 2.3. Assume the RH. For x ≥ x0 ≥ 3, |t| ≥ 10, 1
2 + (α/log x) ≤ σ ≤ 1, and

α ≥ 0.722,∣∣∣∣∣ζ′ζ (s)
∣∣∣∣∣ ≤ A2

∣∣∣∣∣∑
n<x2

Λx(n)
ns

∣∣∣∣∣ + A1A2(log|t| + 6)

2(σ − 1
2 ) log x

+
A1A2x
t2 log x

+
A2c1e−α

t2x5/2 log x

where A1 = e−α + e−2α, A2 = (α/α − A1), and c1 = 5/4 for all x ≥ 3.

PROOF. We assume the RH throughout, so ρ = 1
2 + iγ. Starting with Lemma 2.2, let

Zi for i = 1, 2, 3 denote the last three terms on the right-hand side of (2-3). For interest,
we follow a similar proof to that of Lemma 2 in [26]. Using (2-3), we denote

F(s, x) =
∣∣∣∣∣ζ′ζ (s) +

∑
n<x2

Λx(n)
ns

∣∣∣∣∣ ≤ |Z1| + |Z2| + |Z3| (2-4)

for x > 1, 1/2 < σ ≤ 1, and |t| > 0. We have

|Z1| =
∣∣∣∣∣ x1−s − x2(1−s)

(1 − s)2 log x

∣∣∣∣∣ ≤ x2−2σ + x1−σ

t2 log x
,

and, using the sum of a geometric series,

|Z2| =
∣∣∣∣∣ 1
log x

∞∑
q=1

x−(2q+s) − x−2(2q+s)

(2q + s)2

∣∣∣∣∣
≤ 1

log x

(x−(2+σ) + x−2(2+σ)

t2 + 4
+

1
t2 + 16

∞∑
q=2

(
x−(2q+σ) + x−2(2q+σ)

))

≤ c1

(t2 + 4)x2+σ log x
,

where c1 = 1 + 2/(x2
0 − 1) for x ≥ x0 ≥ 3. For Z3 we use Lemma 2.1 and

Re
{ 1

s − ρ

}
=

σ − 1
2

(σ − 1
2 )2 + (t − γ)2

.
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To begin,

|Z3| =
∣∣∣∣∣ 1
log x

∑
ρ

xρ−s − x2(ρ−s)

(s − ρ)2

∣∣∣∣∣
≤ x1/2−σ + x1−2σ

log x

∑
γ

1
(σ − 1

2 )2 + (t − γ)2
.

Since (2-2) implies that for |t| ≥ 10,∑
ρ

Re
{ 1

s − ρ

}
≤ Re

{
ζ′

ζ
(s)
}
+

1
2

log|t| + 3,

and Re(s) ≤ |s| for all s, we have

|Z3| ≤
x1/2−σ + x1−2σ

(σ − 1
2 ) log x

(∣∣∣∣∣ζ′ζ (s)
∣∣∣∣∣ + 1

2
log|t| + 3

)
.

Substituting these bounds into (2-4), we have

F(s, x) ≤ x2−2σ + x1−σ

t2 log x
+

c1

(t2 + 4)x2+σ log x
+

x1/2−σ + x1−2σ

(σ − 1
2 ) log x

(∣∣∣∣∣ζ′ζ (s)
∣∣∣∣∣ + 1

2
log|t| + 3

)

for x ≥ x0, 1
2 < σ ≤ 1, and |t| ≥ 10. If we further impose σ ≥ 1

2 + (α/log x) with some
α > 0, the bound simplifies to

F(s, x) ≤ e−2αx + e−α
√

x
t2 log x

+
c1e−α

(t2 + 4)x5/2 log x
+

e−α + e−2α

(σ − 1
2 ) log x

(∣∣∣∣∣ζ′ζ (s)
∣∣∣∣∣ + 1

2
log|t| + 3

)
.

Let A1 = e−α + e−2α and A2 = (α/α − A1). Assuming α > A1, which is satisfied for
α ≥ 0.722, the above can be rearranged and simplified to∣∣∣∣∣ζ′ζ (s)

∣∣∣∣∣ ≤ A2

∣∣∣∣∣∑
n<x2

Λx(n)
ns

∣∣∣∣∣ + A1A2
(
log|t| + 6

)
2(σ − 1

2 ) log x
+

A1A2x
t2 log x

+
A2c1e−α

t2x5/2 log x
. �

LEMMA 2.4. Assume the RH. For T ≥ T0, 1
2 + (α/log T) ≤ σ ≤ 3

4 , and α ≥ 0.722,∫ T

0

∣∣∣∣∣ζ′ζ (σ + it)
∣∣∣∣∣2 dt ≤ A4T

(σ − 1/2)2 , (2-5)

where A4 is dependent on α, and given in (2-9). For T0 = 103 we can take A4 = 0.576
with α = 37, or for T0 = 108 we can take A4 = 0.535 with α = 26.

PROOF. Using the Cauchy–Schwarz inequality, Lemma 2.3 implies∣∣∣∣∣ζ′ζ (σ + it)
∣∣∣∣∣2 ≤ 2A2

2

∣∣∣∣∣∑
n<x2

Λx(n)
ns

∣∣∣∣∣2 + 2A2
1A2

2(log|t| + 6)2

(σ − 1
2 )2 log2 x

+
8A2

1A2
2x2

t4 log2 x
+

8A2
2c2

1e−2α

t4x5 log2 x
, (2-6)
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over the same range of variables and with the same constants as defined in Lemma 2.3.
As (2-6) holds over |t| ≥ 10, it can be integrated over t ∈ [10, T], for some T > 10. For
the first term,∫ T

10

∣∣∣∣∣∑
n<x2

Λx(n)
ns

∣∣∣∣∣2 dt = (T − 10)
∑
n<x2

Λx(n)2

n2σ +
∑

m,n<x2

m�n

Λx(m)Λx(n)
(mn)σ

∫ T

10

( n
m

)it
dt

< T
∑
n<x2

Λx(n)2

n2σ + 2
∑

m,n<x2

m�n

Λx(m)Λx(n)
(mn)σ|log(m/n)| . (2-7)

The first sum in (2-7) can be bounded with∑
n<x2

Λx(n)2

n2σ <

∞∑
n=1

Λ(n) log n
n2σ =

d
ds

[
ζ′

ζ
(s)
]

s=2σ
.

For non-trivial zeros ρ, and all s ∈ C, it is known that (see, for example, (8) and (9) in
[4, page 80])

d
ds

(
ζ′(s)
ζ(s)

)
=

1
(s − 1)2 −

∞∑
n=1

1
(s + 2n)2 −

∑
ρ

1
(s − ρ)2 . (2-8)

Thus, for σ > 1
2 ,

∑
n<x2

Λx(n)2

n2σ <
1

(2σ − 1)2 +

∞∑
n=1

1
(2σ + 2n)2 +

∑
γ

1
|2σ − 1/2 + iγ|2

≤ 1
4(σ − 1/2)2 +

π2

8
− 1 +

∑
γ

1
γ2 ,

where
∑
γ 1/γ2 < c0 = 0.046 21, computed in [1, Corollary 1].

For the second sum in (2-7) we can use log λ > 1 − λ−1 over λ > 1, so for σ > 1/2,∑
m,n<x2

m�n

Λx(m)Λx(n)
(mn)σ|log(m/n)| < log2 x

∑
m,n<x2

m�n

( 1
√

mn
+

1
|m − n|

)
.

Note that the bound on |log(m/n)| holds for both m > n and n > m because of the
symmetry in the resulting expression. For x ≥ 1, partial summation gives∑

n<x2

1
√

n
< 2x,

and the Euler–Maclaurin formula gives∑
m,n<x2

m�n

1
|m − n| = 2

∑
m<x2

∑
n<m

1
m − n

< 2
∑
m<x2

∑
k<x2

1
k
< 4x2 log x + 2γx2 + 1,
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[7] An explicit mean-value estimate for the PNT in intervals 7

whence we have∑
m,n<x2

m�n

Λx(m)Λx(n)
(mn)σ|log(m/n)| < 4x2 log3 x + (4 + 2γ)x2 log2 x + log2 x.

Returning to (2-7), we have∫ T

10

∣∣∣∣∣∑
n<x2

Λx(n)
ns

∣∣∣∣∣2 dt < T
( 1
4(σ − 1/2)2 + A3

)
+ 8c2x2 log3 x,

where A3 = π
2/8 − 1 + c0 and c2 = 2.25 for x ≥ 3. Using this in (2-6) gives

1
A2

2

∫ T

10

∣∣∣∣∣ζ′ζ (σ + it)
∣∣∣∣∣2 dt

≤ T
2(σ − 1

2 )2
+ 2A3T + 16c2x2 log3 x

+
2A2

1

(σ − 1
2 )2 log2 x

∫ T

10
(log t + 6)2 dt + 8

( A2
1x2

log2 x
+

c2
1e−2α

x5 log2 x

) ∫ T

10

1
t4 dt

≤ T
2(σ − 1

2 )2
+ 2A3T + 16c2x2 log3 x +

2A2
1c3T log2 T

(σ − 1
2 )2 log2 x

+
1

375

( A2
1x2

log2 x
+

c2
1e−2α

x5 log2 x

)
,

where we can take c3 = 1 + 10
log T0

+ 26
log2 T0

for any T0 > 10. Also note that the 1/375
comes from estimating the second integral over t. We now take x = Tν for any
ν ≥ log x0/logT0, as it will be used for x ≥ x0 and T ≥ T0. The previous bound becomes

1
A2

2

∫ T

10

∣∣∣∣∣ζ′ζ (σ + it)
∣∣∣∣∣2 dt ≤

(1
2
+

2A2
1c3

ν2

) T
(σ − 1

2 )2
+ 2A3T + 16c2ν

3T2ν log3 T

+
A2

1T2ν

375ν2 log2 T
+

c2
1T1−5ν

375e2αν2 log2 T
.

It remains to estimate the integral over t ∈ [0, 10]. By the maximum modulus
principle, ∣∣∣∣∣ζ′ζ (s)

∣∣∣∣∣ ≤ max
z∈δS

∣∣∣∣∣ζ′ζ (z)
∣∣∣∣∣,

where δS is the boundary of S := {z ∈ C : 1
2 < σ ≤

3
4 , 0 ≤ t ≤ 10}. This implies∫ 10

0

∣∣∣∣∣ζ′ζ (σ + it)
∣∣∣∣∣2 dt ≤ 10 · 4.72 < 215.
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8 M. Cully-Hugill and A. W. Dudek [8]

Therefore, for all T ≥ T0 and 1/2 < σ ≤ 3/4 we have∫ T

0

∣∣∣∣∣ζ′ζ (σ + it)
∣∣∣∣∣2 dt ≤ A4T

(σ − 1
2 )2

,

where

A4 = A2
2

(1
2
+

2A2
1c3

ν2 +
A3

8
+

(
c2ν

3 log3 T0 +
A2

1/6000

ν2 log2 T0

) 1
T1−2ν

0

+
c2

1e−2α/6000

ν2T5ν
0 log2 T0

)
+

215
16T0

,

(2-9)

for any ν ∈ [log x0/ log T0, 1/2) and T0 ≥ exp(3/(1 − 2ν)). The latter condition is
needed to ensure the T2ν−1 log3 T term is decreasing for all T ≥ T0. Optimising ν and
α with x0 = 3 and T0 = 103, we can take A4 = 0.576 with ν = 0.1591 and α = 37. This
constant A4 approaches its limit relatively quickly as T0 increases, so for T0 = 108 we
can take A4 = 0.535 with ν = 0.0597 and α = 26. �

For any choice of T0 ≥ 108, A4 is within 10−6 of its limit. Larger x0 also do not
reduce A4. In fact, we see the opposite. Smaller x0 allow smaller admissible ν, which
reduces the terms containing a factor of Tν. As a result, the optimal value of ν in both
cases is its lower limit. One of the most direct ways to reduce A4 would be the use of a
smaller upper bound on σ.

2.2. Proof of Theorem 1.1. To begin, let

θ0(x) = 1
2 lim
ε→0

(θ(x + ε) + θ(x − ε)),

so θ0(x) = θ(x) except when x is prime, and let G(y, δ) = θ(y + δy) − θ(y) − δy for any
δ ∈ (0, 1]. By Perron’s formula, we can write, for x > 1, s = σ + it, and prime p,

θ0(x) =
1

2πi

∫ 2+i∞

2−i∞

xs

s

⎛⎜⎜⎜⎜⎜⎜⎝∑
p

log p
ps

⎞⎟⎟⎟⎟⎟⎟⎠ ds. (2-10)

As the integral is over σ ≥ 2, the sum can be rewritten as

∑
p

log p
ps =

∞∑
n=2

Λ(n)
ns −

∞∑
r=2

∑
p

log p
prs = −

ζ′(s)
ζ(s)

− g(s).

As g(s) is convergent for σ > 1/2, it can be bounded over this region with

|g(s)| =
∣∣∣∣∣∑

p

log p
ps(ps − 1)

∣∣∣∣∣ ≤∑
p

log p
pσ(pσ − 1)

≤ c4

∑
p≥19

log p

p2σ +
∑

2≤p<19

log p
pσ(pσ − 1)

≤ c4

∞∑
n=2

Λ(n)
n2σ +

∑
2≤p<19

( log p
pσ(pσ − 1)

− c4 log p

p2σ

)
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[9] An explicit mean-value estimate for the PNT in intervals 9

where c4 =
√

19/(
√

19 − 1) ≈ 1.2978. This simplifies to

|g(s)| < −c4
ζ′(2σ)
ζ(2σ)

+ 1.4255.

By Delange’s theorem [5], and the second display equation on page 334 of [5], we
have

−ζ
′(σ)
ζ(σ)

<
1

σ − 1

for all σ > 1. Hence, for σ ∈ (1/2, 3/4] and c5 = 1.0053 we can use

|g(s)| < c4

2σ − 1
+ 1.4255 <

c5

σ − 1
2

.

Returning to (2-10), we move the line of integration to some σ ∈ (1/2, 3/4]. Part
of this process involves evaluating a closed contour integral of the integrand in (2-10)
over at most 1/2 < Re(s) ≤ 2 and all t. The only pole of the integrand in this region is
at s = 1. Therefore, by Cauchy’s residue theorem,

θ0(x) − x = − 1
2π

∫ ∞
−∞

xs

s

{
ζ′(s)
ζ(s)

+ g(s)
}

dt. (2-11)

We use (2-11) to set up an expression for the error term of θ(x) in intervals. Let κ be
defined such that eκ = 1 + δ, meaning 0 < κ ≤ log 2. For τ > 0, (2-11) implies

θ0(eκ+τ) − θ0(eτ) − δeτ
eστ

= − 1
2π

∫ ∞
−∞

eκs − 1
s

eitτ
(
ζ′

ζ
(s) + g(s)

)
dt.

By Plancherel’s theorem (see, for example, [28, Theorem 2, page 69]),∫ ∞
−∞

∣∣∣∣∣θ0(eκ+τ) − θ0(eτ) − δeτ
eστ

∣∣∣∣∣2dτ =
1

2π

∫ ∞
−∞

∣∣∣∣∣eκs − 1
s

∣∣∣∣∣2
∣∣∣∣∣ζ′ζ (s) + g(s)

∣∣∣∣∣2 dt. (2-12)

Since θ0(x) = θ(x) almost everywhere, this statement is equally true for θ(x). As
|z|2 = zz for any complex z, the integrals in (2-12) are symmetric around 0, which
implies∫ ∞

0

∣∣∣∣∣G(eτ, δ)
eστ

∣∣∣∣∣2dτ <
1
π

∫ ∞
0

∣∣∣∣∣eκs − 1
s

∣∣∣∣∣2
(∣∣∣∣∣ζ′(s)
ζ(s)

∣∣∣∣∣2 + |g(s)|2
)

dt

=
1
π

∞∑
k=0

∫ (2k+1−1)/δ

(2k−1)/δ

∣∣∣∣∣eκs − 1
s

∣∣∣∣∣2
(∣∣∣∣∣ζ′(s)
ζ(s)

∣∣∣∣∣2 + |g(s)|2
)

dt. (2-13)

The first factor in the integrand can be bounded in two different ways. The first uses
the Taylor series for ex, and is valid for all σ ≤ 3/4:∣∣∣∣∣eκs − 1

s

∣∣∣∣∣ =
∣∣∣∣∣1s

∞∑
n=1

(κs)n

n!

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=0

κn+1sn

(n + 1)!

∣∣∣∣∣ ≤ κ
∣∣∣∣∣
∞∑

n=0

(κs)n

n!

∣∣∣∣∣ ≤ e3/4κκ. (2-14)
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10 M. Cully-Hugill and A. W. Dudek [10]

The second is more direct, and valid for all σ ∈ (1/2, 3/4]:∣∣∣∣∣eκs − 1
s

∣∣∣∣∣ ≤ eκσ + 1
|s| ≤ e3/4κ + 1

t
. (2-15)

We use (2-14) for the k = 0 term in (2-13), and (2-15) for the other terms, so as to have
a convergent sum. Incorporating Lemma 2.4, we have∫ ∞

0

∣∣∣∣∣G(eτ, δ)
eστ

∣∣∣∣∣2dτ <
(A4 + c2

5)e3/2κκ2

πδ(σ − 1
2 )2

+
(e3/4κ + 1)2δ

π(σ − 1
2 )2

∞∑
k=1

A4(2k+1 − 1) + c2
5 · 2

k

(2k − 1)2

≤
(
(1 + 10−3)(A4 + c2

5) + (4 + 10−2)(A4A5 + c2
5A6)
)

δ

π(σ − 1
2 )2

(2-16)

for δ ≤ T−1
0 ≤ 10−3, where A5 = 4.35 . . . and A6 = 2.74 . . . are the two convergent sums

in (2-16). In using Lemma 2.4 we assumed (2k+1 − 1)/δ ≥ T0, which is true over k ≥ 0
with δ ≤ T−1

0 .
We can now choose σ to minimise the final bound. By the upper bound on σ in

Lemma 2.4, we can take σ = 1
2 + (α/log(1/δ)) for δ ≤ min(e−4α, T−1

0 ) and α defined as
in Lemma 2.4. Also, to simplify the integral of interest, let y = eτ, so for y > 1 we have∫ ∞

0

∣∣∣∣∣G(eτ, δ)
eστ

∣∣∣∣∣2dτ =
∫ ∞

1

∣∣∣∣∣G(y, δ)

yσ+
1
2

∣∣∣∣∣2dy =
∫ ∞

1

∣∣∣∣∣ G(y, δ)

y1+ α
log(1/δ)

∣∣∣∣∣2dy.

We can now use the bound in (2-16) for a version of the above integral over a finite
range of y. For applications, it is useful if the range of integration is a function of δ.
The parameter δ is important because G(y, δ) is the error in the PNT over an interval
defined by δ. Let b be a positive parameter to write∫ ∞

1

∣∣∣∣∣ G(y, δ)

y1+ α
log(1/δ)

∣∣∣∣∣2dy >
∫ δ−b

1
y2α/log δ

∣∣∣∣∣G(y, δ)
y

∣∣∣∣∣2dy

> δ−2αb/log δ
∫ δ−b

1

∣∣∣∣∣G(y, δ)
y

∣∣∣∣∣2dy =
1

e2αb

∫ δ−b

1

∣∣∣∣∣G(y, δ)
y

∣∣∣∣∣2dy.

Hence, by (2-16) we can conclude∫ δ−b

1

∣∣∣∣∣G(y, δ)
y

∣∣∣∣∣2dy < e2α(b−1)A7δ log2(1/δ) (2-17)

for

A7 =
e2α

α2π
((1 + 10−3)(A4 + c2

5) + (4 + 10−2)(A4A5 + c2
5A6)).

This is an explicit form of (13) in [25]. This result is more precise than Theorem 1.1
for fixed δ, but it is not as simple to use. Theorem 1.1 comes from a slightly different
choice of σ: we instead take σ = 1

2 + (α/log x) in (2-16) for x ≥ max{e4α, T0} (by the
bounds on σ from Lemma 2.4). By the same steps as above, we reach
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[11] An explicit mean-value estimate for the PNT in intervals 11

∫ ∞
0

∣∣∣∣∣G(eτ, δ)
eστ

∣∣∣∣∣2dτ =
∫ ∞

1

∣∣∣∣∣G(y, δ)

y1+ α
log x

∣∣∣∣∣2dy >
1

e2αx2

∫ x

1
|G(y, δ)|2dy,

and hence ∫ x

1
|G(y, δ)|2dy < A7δx2 log2 x (2-18)

for δ ≤ T−1
0 . Using T0 = 108 in (2-9), and optimising over α and ν, we can take

A7 = 202 with α = 2.08 and ν = 0.285, such that (2-18) holds for all x ≥ 108.

3. Primes in some short intervals

Theorem 1.1 can be used to find an explicit estimate for the exceptional set of
primes in short intervals of length h where h/ log y→ ∞. This is demonstrated in
Corollary 1.2.

COROLLARY 1.2. Assuming the RH, the set of y ∈ [x, 2x] for which there is at least
one prime in (y, y + 32 277 log2 y] has a measure of at least x/2 for all x ≥ 2.

PROOF. As before, let G(y, δ) = θ(y + δy) − θ(y) − δy for δ ∈ (0, 1]. Also let
δ1 = (λ log2(2x)/2x) for x > 1 and λ ≥ 1. We use the alternative version of Theorem 1.1
from the previous section, stated in (2-17), which is under the RH. Taking δ = δ1 in
(2-17) gives ∫ δ−b

1

1

∣∣∣∣∣G(y, δ)
y

∣∣∣∣∣2dy < e2α(b−1)A7
λ log2(2x)

2x
log2
( 2x

λ log2(2x)

)
for any b > 0 and all x for which δ1 ≤ min{e−4α, T−1

0 }. The constants T0 and α are
determined by Lemma 2.4, and correspond to the A4 in the definition of A7. Choosing
b > 1 will make δ1 < (2x)−1/b for sufficiently large x, and allows us to write∫ δ−b

1

1

∣∣∣∣∣G(y, δ)
y

∣∣∣∣∣2dy >
∫ 2x

x

∣∣∣∣∣G(y, δ)
y

∣∣∣∣∣2dy.

Imposing this restriction on b thus implies∫ 2x

x
|G(y, δ)|2dy < 2e2α(b−1)A7λx log2(2x) log2 x < 2e2α(b−1)A7λx log4 x

for δ1 < min{e−4α, T−1
0 , (2x)−1/b} and x ≥ 3.

We can use this bound to prove that for a subset of y ∈ [x, 2x] of measure greater
than or equal to (1 − g)x, with g ∈ (0, 1) and sufficiently large x, we have

|G(y, δ)|2 < B log4 y

for some B > 0. To justify this, suppose for a contradiction that there exists a subset I
of y ∈ [x, 2x] of measure greater than or equal to gx for which

|G(y, δ)|2 ≥ B log4 y.
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12 M. Cully-Hugill and A. W. Dudek [12]

This would imply ∫ 2x

x
|G(y, δ)|2dy ≥ B log4 x

∫
I
dy = Bgx log4 x.

This will be a contradiction for B ≥ 2e2α(b−1)A7λ/g. Therefore, choosing the smallest
possible B, we have for x ≤ y ≤ 2x,

θ(y + λ log2 y) − θ(y) ≥ θ
(
y +

λ log2(2x)
2x

y
)
− θ(y) − λ log2(2x)

2x
y +

λ log2(2x)
2x

y

>
(
−
√

B +
λ

2

)
log2 y,

which implies that there will be at least one prime in the interval (y, y + λ log2 y] for

−

√
2e2α(b−1)A7λ

g
+
λ

2
> 0.

We can conclude that, under the assumption of the RH, the set of y ∈ [x, 2x] for which
there are primes in (y, y + λ log2 y] has measure greater than or equal to (1 − g)x for

λ >
8e2α(b−1)A7

g
.

To prove Corollary 1.2, we take g = 1/2 and optimise the lower bound on λ over b.
We aim to find the smallest λ for which the condition on δ1 holds over x ≥ 4 · 1018, as
the computations of Oliveira e Silva et al. [22] can be used to verify Corollary 1.2 for
x < 4 · 1018. We can also reoptimise α, and use a higher T0 in Lemma 2.4 than used to
reach Theorem 1.1, as it just needs to satisfy the condition on δ1.

For T0 = 1.3 · 1011 we find that we can take A7 = 236.72 with α = 1.5295, and
with b = 1.700 423 we have λ = 32 277. This was achieved using a partially manual
optimisation process, in that the lower bound on λ was first minimised over α using an
in-built optimising function and some guess for b. The guess for b was then adjusted
until it satisfied δ1 < min{e−4α, T−1

0 , (2x)−1/b}, which required a guess of an upper
bound for λ. After a valid solution set was found, it was refined computationally in
Python.

The computations in Section 2.2 of [22] confirm that (y, y + 32 277 log2 y] contains
a prime for all 2 ≤ y ≤ 4 · 1018. More specifically, the calculations in Section 2.2.1
of [22] show that there is a prime in (y, y + 2.09 log2 y] for all 2 ≤ y ≤ 4 · 1018. �

The trade-off in this type of result is between the length of the interval, the size of
the exceptional set, and the range for which the result holds. Corollary 1.2 was built first
on the asymptotic length of the interval, then the desired measure of the exceptional
set, and lastly the constant in the interval, which was calculated based on the smallest
x for which we wanted the result to hold. An alternative would have been to first fix
the constant in the interval, then calculate the measure of the exceptional set. It would
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also be possible to consider an asymptotically larger interval than O(log2 y). In this
case, the exceptional set would be asymptotically smaller than x, and could be given
explicitly using Theorem 1.1 and the working in [25, page 11].

4. An explicit bound for Goldbach numbers

A Goldbach number is an even positive integer that can be written as the sum of
two odd primes. With Theorem 1.1 we can prove Theorem 1.3, restated here.

THEOREM 1.3. Assuming the RH, there exists a Goldbach number in the interval
(x, x + 9696 log2 x] for all x ≥ 2.

By Theorem 1.1 and the RH, we can state that for x ≥ 108, δ ∈ (0, 10−8], and any
a ∈ [10−8, 1), ∫ x

ax
|θ(t + δt) − θ(t) − δt|2 dt ≤ 202δx2 log2 x. (4-1)

To prove Theorem 1.3 we largely follow the proof of Montgomery and Vaughan’s
Theorem 2 in [21, Section 9], and use the above bound. We also optimise a few choices
in the proof.

Suppose the interval (x, x + h] contains no sum of two primes for 1 ≤ h ≤ x. Then,
for any y, at least one of the two intervals

(y, y + 1
2 h], (x − y, x − y + 1

2 h] (4-2)

will not contain a prime number. Both of these intervals can be represented by( x
2
+

kh
2

,
x
2
+

(k + 1)h
2

]
,

and for any choice of k ∈ K = [(2a − 1)xh−1 + 1, (1 − 2a)xh−1 − 1] with a ∈ (0, 1/2],
which defines one of the intervals in (4-2), there exists another k ∈ K that defines the
other interval such that both intervals lie in (ax, x − ax]. Each of these pairs of intervals
lies symmetrically around the midpoint of (ax, x − ax], so it is possible to completely
cover (ax, x − ax] with at most (1 − 2a)x/h pairs of the form (4-2). Therefore, at least
(1 − 2a)x/h of these intervals covering (ax, x − ax] do not contain a prime.

As these intervals span h/2, we can write that for δ = δ(x) ≤ h/2x,

|θ(t + δt) − θ(t) − δt| = δt

on a set I of t ∈ (ax, x − ax] of measure ( 1
2 − a)x. Note that the condition on δ is a result

of requiring δt ≤ h/2 for all t. Therefore, we have∫ x

ax
|θ(t + δt) − θ(t) − δt|2 dt >

∫
I
|θ(t + δt) − θ(t) − δt|2 dt = δ2

∫
I
t2 dt

> δ2
∫ x/2

ax
t2 dt =

δ2x3

3

(1
8
− a3
)
.
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14 M. Cully-Hugill and A. W. Dudek [14]

Taking δ = h/2x with h = C log2 x, this bound contradicts (4-1) for

C ≥ 6 · 202
1
8 − a3

and all x satisfying

log2 x
x
≤ 2

108C
.

The lower bound on C is minimised at the smallest a = 10−8, meaning we can take
C = 9696. Therefore, there must exist at least one Goldbach number in the interval
(x, x + 9696 log2 x] for all x ≥ 6 · 1014. The computation in [22] confirms the Goldbach
conjecture up to 4 · 1018, so this interval must also contain a Goldbach number for all
x ≥ 2.
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