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A one-dimensional mechanism of deflagration to detonation transition is identified and
investigated by an asymptotic analysis in the double limit of large activation energy and
small Mach number of the laminar flame velocity. The unsteady analysis concerns the
self-accelerating tip of an elongated flame in a smooth walled tube. The flame on the
tip, considered as plane and orthogonal to the tube axis, is pushed from behind by the
longitudinal flow resulting from the cumulative effect of the radial flows of burned gas
issued from the lateral flame of the finger-like front (called backflow in the following). The
analysis of the one-dimensional dynamics is performed by coupling the flame structure
with the downstream-running compression waves propagating in the external flows. A
critical elongation is identified from which the slightest increase in elongation leads to a
pressure runaway producing the flame blow-off. The dynamics of the inner structure of the
laminar flame on the tip which is accelerated by the self-induced backflow is characterized
by a finite-time singularity of the reacting flow in the form of a dynamical saddle-node
bifurcation.

Key words: detonation waves, bifurcation

1. Introduction

Deflagration-to-detonation transition (DDT) is observed in tubes filled with energetic
gaseous mixtures such as stoichiometric hydrogen–oxygen or acetylene–oxygen mixtures.
Deflagration-to-detonation transition is a fascinating phenomenon of abrupt transition
(in less than a microsecond) between two opposite regimes of propagation, a markedly
subsonic flame and a supersonic combustion wave. A detonation is a supersonic wave
consisting in a smooth front of a strong inert shock followed by a thin reaction zone
(including induction) across which viscosity, heat conduction and molecular diffusion of
species are negligible. The overpressure is large, the pressure ratio ranging from 15 to 50.
By comparison, each surface element of the brush of a turbulent flame is a quasi-isobaric
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reaction–diffusion wave whose velocity relative to the gas (laminar flame velocity) is much
smaller than the sound speed, typically by a factor 10−2. However, due to the increase in
surface area of the wrinkled front, the speed of the flame brush (measured in the laboratory
frame) becomes large, not far from the sound speed near the transition.

The pioneering experiments of Urtiew & Oppenheim (1966) have shown that the DDT
onset is a local phenomenon occurring in a local explosion centre either on a surface
element of the flame brush or in the viscous boundary layer ahead of the flame. We will
not consider the latter case for which the DDT is more likely due to the gradient mechanism
of Zeldovich (1980) reinforced by compressional heating, as discussed p. 260 in Clavin &
Searby (2016) and observed in sub-millimetre tubes by the numerical simulation of Houim,
Ozgen & Oran (2016). In the following, the attention is focused on the first case for which
the explosion centre is on the flame outside the boundary layer. The origin and nature of
the explosion centres remained unexplained. After more than a century of experimental
works and decades of numerical studies, DDT is not yet understood, see Lee (2008) and
Clavin & Searby (2016). Despite various attempts, there is no fundamental mechanism
that is generally agreed upon as being universal. Neither the role of turbulence mentioned
by Shchelkin & Troshin (1965) nor the gradient of induction time of Zeldovich (1980)
are involved in the experiments and numerical simulations of Liberman et al. (2010),
Kuznetsov, Liberman & Matsukov (2010) and Ivanov, Kiverin & Liberman (2011). These
seminal works concern DDT of flames propagating in smooth walled tubes in which the
induced flow of unburned gas is laminar in the bulk, the 3 mm boundary layer staying
stuck at the wall near the flame, see p. 692 in Liberman et al. (2010). The detonation onset
in these experiments is a local and sudden phenomenon occurring in a ‘small explosion
centre’ on the flame front outside the boundary layer without any reflected shock (long
tubes). Therefore the transition appears to be an intrinsic mechanism of a laminar flame
accelerated by a self-induced flow. The DDT was also observed by Wu et al. (2007) and Wu
& Wang (2011) in micro-scale tubes (0.5 mm radius) in which the transition concerns very
elongated fronts of laminar flame. Kuznetsov et al. (2010), Ivanov et al. (2011) and Bykov
et al. (2022) mentioned that the shocks formed in the immediate proximity ahead of the
self-accelerating flame are suddenly overtaken by the reaction front. A striking observation
is that the Mach number of these shocks is not larger than 2.5 so that the temperature of
the compressed gas is not large enough for self-igniting the reactive mixture, ruling out
the DDT mechanisms of Shchelkin & Troshin (1965) and of Zeldovich (1980).

A key mechanism underlying the DDT was identified long ago by Deshaies & Joulin
(1989). Treating a turbulent flame brush as a planar discontinuity propagating at a subsonic
velocity equal to the laminar flame velocity multiplied by a wrinkling factor σ , Deshaies
& Joulin (1989) investigated the self-similar solutions characterized by a constant velocity
of the weak shock ahead of the flame. They showed that, due to a laminar flame velocity
highly sensitive to temperature changes, the self-similar solutions no longer exist above
a critical value of σ close to ten. The assumption of a weak shock used by Deshaies
& Joulin (1989) can be easily removed without modifying qualitatively the result. The
turning point of the curve ‘self-similar solution vs σ ’ is due to a nonlinear thermal
feedback loop: the laminar flame velocity is a function of the temperature which increases
with the strength of the lead shock, the latter increasing in turn with the flame velocity.
This pioneering analysis was overlooked by the combustion community during more than
twenty years. A weaknesses of the self-similar solutions is the steady and uniform state
of unburned-gas flow between the flame and the lead shock. A basic ingredient of the
DDT is overlooked, namely the unsteady flow of the compression waves generated by
the accelerating flame. The role of the flame acceleration has been invoked in the past

974 A46-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.751


One-dimensional mechanism of gaseous DDT

but with no connection to the turning point of Deshaies & Joulin (1989). However, in a
series of articles starting nearly 10 years ago, Kagan & Sivashinsky (2017), motivated by
the work of Deshaies & Joulin (1989), have investigated numerically the one-dimensional
propagation of a laminar flame ignited at the closed end of a tube and sustained by a
reaction rate which is increased artificially by a factor σ 2. For values of σ above a critical
value close to 10, namely close to the critical condition of Deshaies & Joulin (1989), the
numerical results of Kagan & Sivashinsky (2017) show a sharp transition to detonation
shortly after a quasi-isobaric ignition. An exothermic reaction rate which is a hundred
times larger than the inelastic collision frequency of molecules associated with a large
activation energy cannot describe real flames. Nevertheless, the numerical findings of
Kagan & Sivashinsky (2017) are useful for improving our understanding of DDT: they
suggest a runaway of the one-dimensional structure of ‘fast’ laminar flames, still markedly
subsonic, resulting from the strong interaction near the turning point of Deshaies & Joulin
(1989) between the acceleration-induced compression waves and the reaction–diffusion
mechanisms sustaining a quasi-isobaric combustion wave.

The objective of the present paper is an attempt to describe theoretically such a
one-dimensional DDT mechanism on the tip of a self-accelerating elongated flame using
a combustion rate compatible with the kinetic theory of gas for a one-step Arrhenius law
with a large activation energy. In order to enlighten the essential features, the problem
will be over-simplified, keeping only the key mechanisms responsible for the spontaneous
transition. The one-dimensional model is inspired by the schematic analysis of Clanet &
Searby (1996) who treat the tip of the elongated front as a planar flame orthogonal to the
tube axis while the side of the finger-like flame is quasi-parallel to the adiabatic tube wall.
An essential ingredient for the DDT on the tip is the longitudinal backflow of burned gas
generated by the cumulative effects of the combustion of the lateral side of the elongated
flame front, see figure 1. This flow hits the flame on the tip from the burned-gas side with a
flow velocity ub proportional to the flame elongation and also to the laminar flame velocity
Ub. If the flame on the tip is treated as a discontinuity, the self-similar solutions present a
turning point similar to that of Deshaies & Joulin (1989) for a turbulent wrinkled flame,
the elongation of the finger front playing the role of the wrinkling factor σ . According to
Clavin & Tofaili (2021), the critical condition is in good agreement with the DDT observed
in the experiments of Liberman et al. (2010) and Kuznetsov et al. (2010). The backflow
ub increasing with the elongation of the finger-like flame, the speed of the tip relative to
the tube UP = ub + Ub increases also. Therefore, the flame acting as a semi-transparent
piston, compression waves are generated in the unburned gas. Still considering the flame as
a discontinuity, the analysis has been recently extended beyond self-similarity to take into
account the acceleration-induced transient flow in the unburned gas, see Clavin (2022)
and Clavin & Champion (2022). A singularity of the flow gradient appears suddenly
on the flame front when the elongation reaches the critical value while the velocity of
the flame front, the pressure and the flame temperature remain finite. Even though no
runaway of temperature and/or pressure is described by these preliminary analyses, the
finite-time singularity of the flow gradient on the flame front suggests the existence of
a fundamental DDT mechanism. In the present article, the analysis is further extended
to the inner structure of the laminar flame by coupling the unsteady reaction–diffusion
mechanisms controlling the flame structure to the downstream-running compression waves
in the external flows. The solution demonstrates that a one-dimensional DDT mechanism
exists in the form of a finite-time singularity of the reacting flow leading to blow off
the inner structure of the laminar flame on the tip. More precisely, the singularity
takes the form of a dynamical saddle-node bifurcation presented in classical textbooks
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ub
Tongues of unburned gas

Unburned gas

uu

Backflow

UP = Ub + ub

UL

LH

u = 0

Plane compression wave

Burned gas

Figure 1. Sketch of the burned-gas flow in an elongated flame. The curved flame front propagating without
deformation in a tube is characterized by dL/dt ≈ 0 and dH/dt ≈ Up. The planar lead shock associated with
the constant unburned-gas flow uu is far away from the flame tip. Downstream-running compression waves
are launched in the unburned gas by the accelerating front as soon as the elongation increases so that the
gas temperature is increased on the flame by adiabatic compression. Due to the nonlinear thermal feedback
mentioned in the text, a drastic effect is produced at the critical flame velocity UP = U∗

P because the flame
acceleration dUP/dt|UP=U∗

P
diverges even when the elongation rate is small dL/dt � U∗

p . It is shown in this
article that a finite-time singularity of the reacting flow occurs on the tip for UP(t) slightly larger than U∗

p .

of applied mathematics such as Binder & Orszag (1984) or Strogatz (1994). The key
physical mechanism turns out to be the divergence of the flame acceleration that occurs
systematically at the turning point for a small elongation rate as tiny as it may be. The
turning point being associated with the nonlinear thermal feedback mentioned earlier, the
critical condition has nothing to do with the Chapman–Jouguet (CJ) deflagration (sonic
condition in the burned-gas flow) mentioned in the DDT literature for turbulent flames in
tubes filled with obstacles. Such a sonic condition can never exist on the burned-gas side
of laminar flames constituting the turbulent flame brush.

Unfortunately from a theoretical point of view, there is no satisfactory theory for
the unsteady curved flow of burned gas sketched in figure 1. Hopefully a detailed
analysis of the bunt gas flow is not needed for understanding the finite-time singularity.
In the following, a small elongation rate is prescribed and a crude model for the
unsteady backflow is used. In this context, an asymptotic analysis of the dynamics of
the quasi-planar flame on the tip is then performed in the distinguished limit of large
activation energy, small Mach number of the laminar flame and small elongation rate
(smaller than the inverse of the transit time of fluid particles across the inner structure
of the flame), the elongation having the same order of magnitude as the wrinkling factor
in Deshaies & Joulin (1989). A similar analytical study can also be performed with a
multiple-step chemical network representative of gaseous combustion if the production of
the main radical is located in a thin reaction zone inside the inner flame structure, as it is
usually the case. The essential point is the strong thermal sensitivity of the laminar flame
velocity (T/Ub) dUb/dT � 1 (T is the temperature). Considering an elongated flame as a
constitutive element of cellular flames, the DDT scenario could be relevant for wrinkled
flames in tubes as well as for unstable flames expanding freely in open space.

The basic equations are recalled in § 2. The formulation of the problem in presented
in § 3 where the backflow models are introduced. The asymptotic method is presented
in § 4. Matching the quasi-isobaric flow in the flame structure (small length scale) with
the external compressible flows is performed in § 5 where a general relation is obtained
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One-dimensional mechanism of gaseous DDT

linking the flow in an unsteady flame structure, the pressure and the flame temperature. The
normal form of a dynamical saddle-node bifurcation describing the finite-time runaway of
pressure and flame temperature is first derived in § 6 for a flame structure in steady state.
A similar result is obtained in the more technical analysis of § 7 taking into account the
unsteady inner structure of the laminar flame. Discussion and conclusion are presented in
§ 8.

2. The basic equations

A one-dimensional time-dependent combustion flow of an ideal gas is considered in a
planar geometry with x denoting the coordinate in the flow direction and t the time. The
propagation is from left to right.

2.1. Conservative form
The equations for mass and momentum are

∂ρ

∂t
= −∂(ρu)

∂x
,

∂(ρu)

∂t
= −∂

[
p + ρu2 − μ∂u∂x

]
∂x

, (2.1a,b)

where ρ, p and u are respectively the density, the pressure and the velocity of the flow in
the laboratory frame and μ is the viscosity. For the sake of simplicity we will consider
an irreversible one-step exothermal reaction. This simplification can be removed and the
fundamental result does not depend qualitatively on a detailed chemical scheme provided
the laminar flame velocity is highly sensitive to the temperature. Introducing the progress
variable Y , namely the mass fraction of products, Y = 0 in the unburned mixture and
Y = 1 in the burned gas, the chemical heat release per unit mass qm, the heat conductivity
λ and the diffusion coefficient D, the equation for energy, written in conservative form, is

∂
[
ρ(cvT + u2/2 − qmY)

]
∂t

= −∂
[
ρu
(
cvT + p/ρ + u2/2 − qmY

)− λ∂T/∂x − μu∂u/∂x + qmρD∂Y/∂x
]

∂x
,

(2.2)

with the perfect gas law, p = cv(γ − 1)ρT = nkBT in which kB is the Boltzmann constant
and n the molecular density. The ratio of specific heats γ ≡ cp/cv is assumed constant for
simplicity. The conservation equation of species for a one-step reaction, written in terms
of the progress variable, Y ∈ [0, 1] reads

∂(ρY)

∂t
= −∂

[
ρuY − ρD∂Y/∂x

]
∂x

+ ρW(Y, T), (2.3)

with a reaction rate in the form of an Arrhenius law for a large activation energy E � kBT ,
proportional to the frequency of binary collisions 1/tcoll

W(Y, T) = B
tcoll

(1 − Y)2 exp(−E/kBT). (2.4)

These macroscopic equations are solutions of the Boltzmann equation in the
hydrodynamic limit (macroscopic length scales larger than the mean free path and time
larger than tcoll, respectively). The solution shows how the frequency of binary collisions
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1/tcoll, the diffusion coefficient D and the sound speed a = √
γ p/ρ are related in a perfect

gas p = nkBT

D = 1
6
√

γ nr2
o

a,
D

tcoll
= 8

√
π

3γ
a2, (2.5a,b)

ro being the radius of the molecules. The parameter B, usually called the pre-factor, is the
reduced activation energy times the initial molecular dilution of reactant yi

B = yi
E

kBT
⇒ B

D
tcoll

= 8
√

π

3
yi
E
m

. (2.6)

Equations (2.5a,b) and (2.6) are useful to express the laminar flame velocity in terms of
the flame temperature. For the sake of simplicity the molecules of reactants, products and
diluent are assumed to have the same mass m (ρ = nm) and the same radius ro.

According to the asymptotic analysis of Zeldovich–Frank–Kamenetskii (ZFK), in the
limit of large activation energy E/kBTb � 1, the laminar flame velocity Ub(Tb) relative to
the burned gas denoted by the subscript b (Tb is the flame temperature) takes the form

Ub(Tb) = 1

β̃
3/2
b

√
8Bb

Db

tcollb
exp(−E/kBTb), where β̃b ≡ qm

cpTb

E
kBTb

, (2.7)

showing how small is the Mach number of the laminar flame velocity

ε ≡ Ub

ab
=
√

2! 16π1/2

3γ
yi

1

β̃
3/2
b

√
E

kBTb
exp(−E/2kBTb); (2.8)

see a didactic presentation in Clavin & Searby (2016). Typical orders of magnitude in
real flames are Ub/ab ≈ 10−3–10−2. Equation (2.8) leads to similar values ε ≈ 10−3 for
E/kBTb ≈ 10, qm/cpTb ≈ 0.8 and ε ≈ 10−2 for smaller values of E/kBTb in energetic
mixtures. According to (2.5a,b)–(2.8), the ratio of the laminar flame velocity for two
flames with different temperatures takes the form

Ub(Tb1)

Ub(Tb2)
=
(

Tb1

Tb2

)3

exp − E
2kB

(
1

Tb1
− 1

Tb2

)
. (2.9)

The main effect of a complex network of chemical kinetics is to modify the power law in
the Arrhenius pre-factor and to introduce a temperature cutoff Tc ∈ [850–1200 K] below
which the combustion cannot proceed. In addition, the activation energy E varies with
the temperature for T > Tc. For a large activation energy E/(kBTb) � 1 and far from
the chemical quenching Tb > Tc, the temperature variation of E can be neglected in a
limited range of flame temperature �Tb � E/(dE/dTb). The upper bound of �Tb/Tb for
the validity of this inequality is not small when the relative variation of the activation
energy is smaller than the reduced activation energy (Tb/E) dE/dTb < E/kBTb. In such
conditions, (2.9) is reduced to an Arrhenius law

β � 1,
E

kBTb2

(
Tb1

Tb2
− 1

)
= O(1) :

Ub(Tb1)

Ub(Tb2)
≈ exp

[ E/2
kBTb2

(
Tb1

Tb2
− 1

)]
. (2.10)

However in highly reactive mixtures (stoichiometric H2 or C2H4 mixtures in pure oxygen)
the flame temperature is large and the reduced activation energy is of order unity so that
the power law (Tb1/Tb2)

3 in (2.9) cannot be ignored.
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One-dimensional mechanism of gaseous DDT

2.2. Non-dimensional equations in the Lagrangian form
From now on, the reference state used in the non-dimensional equations is the burned gas
of the steady flame at the initial condition (labelled i). The latter is a self-similar solution
with the lead shock at infinity. Denoting by Tui and ρbi respectively the temperature of
the unburned gas and the density of the burned gas in the initial state, the reference
temperature, velocity, density and pressure are

Tref = Tbi = Tui + qm/cp, Uref = Ub(Tbi), ρref = ρbi, pref = (cp − cv)ρref Tref .
(2.11a–d)

Using the corresponding flame thickness and transit time dref = Dref /Uref and tref =
dref /Uref = Dref /U2

ref , where Dref is the molecular diffusion coefficient in the reference
state, the following non-dimensional variables are introduced:

τ ≡ t/tref , ξ ≡ (x − XP)/dref , where tref ≡ dref /Uref = Dref /U2
ref , (2.12)

r ≡ ρ

ρref
, v ≡ u

Uref
, π ≡ p

pref
, θ ≡ T

Tref
, vP ≡ UP

Uref
, (2.13a–e)

where x = XP(t) is the instantaneous position of the flame (for example, the maximum
of reaction rate), u(x, t) and UP(t) ≡ dXP/dt are respectively the flow velocity and the
propagation speed of the flame in the laboratory frame (not to be confused with the
laminar flame velocity Ub). The non-dimensional mass flux across the flame m ≡ ρ(UP −
u)/ρref Uref takes the form

m(ξ, τ ) = r [vP(τ ) − v(ξ, τ )] > 0, r ≡ π/θ. (2.14)

Introducing the Mach number of the laminar flame, the reduced heat release and the
reduced activation energy

ε ≡ Uref

aref
≈ 10−2, q ≡ qm

cpTref
≈ 0.7, β ≡ E

kBTref
= 4–8, (2.15a–c)

and using the relations 1/(ρref cpTref ) = (γ − 1)/(γ pref ) = (γ − 1)/(ρref a2
ref ) and

Dref = λ/(ρref cp) = μ/ρref (Le = 1 for simplicity), the non-dimensional Lagrangian
form of (2.1a,b)–(2.4), written in the frame moving with the flame tref ∂/∂t → ∂/∂τ −
vP∂/∂ξ , reads

∂r
∂τ

= ∂m
∂ξ

, r = π/θ (2.16)

∂v

∂τ
− m

∂v

∂ξ
= − 1

γ ε2
∂π

∂ξ
+ ∂2v

∂ξ2 (2.17)[
r

∂

∂τ
− m

∂

∂ξ

]
Y − ∂2Y

∂ξ2 = w(θ, Y) (2.18)[
r

∂

∂τ
− m

∂

∂ξ

]
θ − (γ − 1)

γ

[
∂

∂τ
+ [v − vP]

∂

∂ξ

]
π = ∂2θ

∂ξ2 + (γ − 1)ε2
(

∂v

∂ξ

)2

+ qw.

(2.19)
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For a large activation energy, the non-dimensional reaction rate takes the form

w(θ, Y) ≡ tref w =
β3

ref

8
πb

θb
(1 − Y)2 exp

[ E
kBTref

(θ − 1)

]
, βref ≡ qm

cpTref

E
kBTref

,

(2.20a,b)

the subscript b denoting the burned gas. Eliminating the density by using the perfect gas
law r = π/θ , the four equations (2.16)–(2.19) concern four fields v(ξ, τ ), π(ξ, τ ), Y(ξ, τ )

and θ(ξ, τ ) plus an unknown function vP(τ ) appearing in the mass flux m(ξ, τ ) (2.14).

2.3. Mass-weighted coordinate
The analysis of the unsteady flame structure is more easily performed using the
mass-weighted coordinate z and the reduced mass flux at the origin (z = 0) m(τ ) ≡ m(z =
0, τ ) with, according to (2.14)

m(τ ) = r(0, τ ) [vP(τ ) − v(0, τ )] = π(0, τ )

θ(0, τ )
[vP(τ ) − v(0, τ )] > 0. (2.21)

Introducing the change of variables (ξ, τ ) → (z, τ )

z ≡
∫ ξ

0
r(ξ ′, τ ) dξ ′,

∂

∂ξ
= r

∂

∂z
= π

θ

∂

∂z
, (2.22a,b)

∂

∂τ

∣∣∣∣
ξ

= ∂

∂τ

∣∣∣∣
z
+
[∫ ξ

0

∂r(ξ ′, τ )

∂τ
dξ ′
]

∂

∂z
= ∂

∂τ

∣∣∣∣
z
+ [m(ξ, τ ) − m(τ )]

∂

∂z
, (2.23)

(v − vP(τ ))
∂

∂ξ
= −m(ξ, τ )

∂

∂z
⇒ ∂

∂τ

∣∣∣∣
ξ

+ (v − vP(τ ))
∂

∂ξ
= ∂

∂τ

∣∣∣∣
z
− m(τ )

∂

∂z
, (2.24)

where the function m(τ ) in front of the derivative with respect to z depends only on the
time. Continuity (2.16) written with the variables (z, τ )

r
∂m(z, τ )

∂z
= ∂r(z, τ )

∂τ
+ [m(z, τ ) − m(τ )]

∂r
∂z

, (2.25)

yields after multiplication by 1/r2

1
r

∂m(z, τ )

∂z
= −∂(1/r)

∂τ

∣∣∣∣
z
− [m(z, τ ) − m(τ )]

∂(1/r)
∂z

, (2.26)

to give, using (2.14) m(z, τ ) = −r(z, τ )[v(z, τ ) − vP(τ )] > 0,

∂m(z, τ )

∂z
= − [v(z, τ ) − vP(τ )]

∂r
∂z

− r
∂v

∂z
⇒ ∂v

∂z
= ∂(1/r)

∂τ

∣∣∣∣
z
− m(τ )

∂(1/r)
∂z

,

(2.27)

yielding the gradient of the flow in terms of 1/r = θ(z, τ )/π(z, τ ). For simplicity,
the diffusion coefficient D is assumed to verify ρ2D= constant, ∂(ρD∂/∂x)/∂x →
974 A46-8
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One-dimensional mechanism of gaseous DDT

(ρ2D/ρ2
ref Dref )r∂2/∂z2 = r∂2/∂z2. Then, (2.16)–(2.19) yield

∂v

∂z
=
[

∂

∂τ
− m(τ )

∂

∂z

]
θ

π
,

= 1
π

[
∂

∂τ
− m(τ )

∂

∂z

]
θ − θ

π2

[
∂

∂τ
− m(τ )

∂

∂z

]
π (2.28)[

∂v

∂τ
− m(τ )

∂v

∂z
− ∂2v

∂z2

]
= − 1

γ ε2
∂π

∂z
(2.29)[

∂Y
∂τ

− m(τ )
∂Y
∂z

− ∂2Y
∂z2

]
= w(θ, Y), Y(z, τ ) ∈ [0, 1] (2.30)[

∂θ

∂τ
− m(τ )

∂θ

∂z
− ∂2θ

∂z2

]
= qw(θ, Y) + (γ − 1)

γ

θ

π

[
∂π

∂τ
− m(τ )

∂π

∂z

]
+(γ − 1)ε2

(
∂v

∂z

)2

, (2.31)

where the perfect gas law r = π/θ has been used to eliminate the density. When the
dissipative terms (heat conduction, viscosity and reaction rate) are neglected, equation
for energy (2.31) takes the form of the entropy wave in an inert gas

1
θ

[
∂θ

∂τ
− m(τ )

∂θ

∂z

]
− (γ − 1)

γ

1
π

[
∂π

∂τ
− m(τ )

∂π

∂z

]
= 0. (2.32)

3. Formulation of the problem

Ignited at the closed end of a smooth walled tube, a laminar flame takes an elongated
shape with a curved flow of burned gas striking the flame on the tip from behind
(backflow) sketched in figure 1. The attention is focused soon after the formation of the
tulip flame when the finger shaped flame front is recovered and evolves slowly. Two basic
mechanisms are involved in the DDT on the tip of the elongated flame: firstly the increase
of the backflow of burned gas on the tip ub(t) with both the elongation and the laminar
flame velocity, and secondly the increase of the laminar flame velocity with the flame
temperature. In the following, the elongation of the finger flame S(τ ) is a given increasing
function of the time dS(τ )/dτ > 0 starting at τ = 0 from a self-similar solution whose
elongation is Si ≡ S(0) � 1. The increase rate is assumed smaller than the inverse of the
transit time of a fluid particle across the flame structure

S(τ ) = [1 + ετ ]Si, with ε � ε � 1. (3.1)

The relation ε � ε is useful to take into account unsteady effects while neglecting the
terms of order ε2. As we shall see, a finite-time singularity of the flow is predicted for
any ε > 0, as small it can be. Under the condition (3.1), the curvature of the flame is
negligible and the compression waves are quasi-planar if the tube radius R is in the range
ε(R/d) = O(1).

3.1. Backflow models
The flame on the tip is treated as planar and orthogonal to the propagation axis. Following
Clanet & Searby (1996), the longitudinal gradient of burned-gas flow on the tube axis
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P. Clavin

u(x, t) is roughly modelled by a source term of mass whose origin is the burning of
the lateral flame parallel to the wall. Denoting the laminar flame velocity (relative to the
burned gas) of this lateral flame Ubw(x, t), the gradient of the flow on the tube axis u(x, t)
is approximated by a one-dimensional mass conservation in an incompressible flow

∂u
∂x

= 2
R

Ubw(x, t), (3.2)

where R is the radius of the tube. The longitudinal backflow ub(t) impinging the tip from
behind is obtained by integration along the axis of the finger flame. For a closed-end tube
on the burned-gas side, assuming that the incompressible flow of burned gas is at rest
behind the elongated flame, one gets

ub(t) ≡ u(x = Xp(t), t) = 2
R

∫ XP

XP−L
Ubw(x, t) d x, (3.3)

where Xp(t) is the position of the tip and L(t) the length of the elongated flame. Neglecting
both the heat loss on the wall and the unsteadiness of the burned-gas flow treated as
incompressible, Ubw is uniform along the lateral flame and equal to the laminar flame
speed on the tip at the same time Ubw = Ub(t). Moreover, if the unsteadiness of the inner
flame structure is negligible, Ub(t) is given by (2.7)–(2.10) Ub(t) = Ub(Tb(t)). Under these
approximations, the backflow takes the form introduced by Clavin & Tofaili (2021)

instantaneous backflow model: ub(t) = S(t) Ub(t), Ub(t) ≡ Ub (Tb(t)) , (3.4)

where S is the elongation of the finger flame (S = 2L/R in cylindrical geometry) and
Tb(t) = Tu(t) + Q/cp where Tu(t) is the temperature of the fresh mixture just ahead of
the flame.

Unsteadiness of the flow of burned gas in an elongated flame is too complicated to
be described analytically. Hopefully a detailed study is not useful in the following. This
unsteady effect will be roughly modelled by a delay �t(XP − x) for transferring to the tip
the flow of burned gas issued from the lateral flame at a distance Xp − x from the tip

ub(t) ≈ 2
R

∫ XP

XP−L
Ub (t − �t(XP − x)) d x. (3.5)

Assuming a slow evolution of the laminar flame velocity Ub/(dUb/dt) � �t(L) �
�t(XP − x), a Taylor expansion yields

ub(t) ≈ 2L(t)
R

Ub(t) − 2
R

dUb

dt

∫ XP

XP−L
�t(XP − x) d x. (3.6)

Assuming that the variation of the radial burned gas out of the lateral flames is propagated
by the downstream-running compression waves with a quasi-constant sound speed a,
�t(XP − x) ≈ (XP − x)/a, ∫ XP

XP−L
�t(XP − x) d x ≈ L2/2a, (3.7)

equation (3.6) yields, after introducing the overall delay �tw ≈ (1/2)L/a,

delayed model of backflow: ub(t) ≈ S(t)
[

Ub(t) − �tw
dUb

dt

]
≈ S(t) Ub(t − �tw),

(3.8)

in which the variation with the time of �tw is a negligible second-order effect.

974 A46-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.751


One-dimensional mechanism of gaseous DDT

3.2. Limit of large activation energy
The ZFK analysis in the limit of large activation energy has been extended more than
forty years ago to unsteady structure of flames, see Clavin & Searby (2016) for a didactic
presentation. Choosing the instantaneous position of the reaction sheet as the origin on the
z-axis and introducing the notation

β ≡ E/kBTref , θb(τ ) ≡ Tb(t)/Tref , (3.9a,b)

for the reduced activation energy and the reduced flame temperature, the jump conditions
on the reaction sheet take the form

z � 0 : Y = 1,

z = 0 : Y = 1, θ = θb(τ ), (θb − 1) = O(1/β),

}
(3.10)

β � 1, β(θb − 1) = O(1) :
∂θ

∂z

∣∣∣∣
z=0+

= −q exp
[
β

2
(θb − 1)

]
+ O(1/β), (3.11)

∂θ

∂z

∣∣∣∣
z=0−

= ∂θ

∂z

∣∣∣∣
z=0+

− q
∂Y
∂z

∣∣∣∣
z=0+

+ O(1/β2), (3.12)

with z = 0+ and z = 0− denoting the preheated zone side of the reaction zone and the exit
on the burned-gas side, respectively. Equation (3.11) is valid to order unity while (3.12) is
valid up to first order 1/β � 1 (included). The backflow of burned gas is applied on the
reaction sheet so that a boundary condition concerning the flow velocity is added

z = 0 τ > 0 : v = vb(τ ), (3.13)

τ � 0 : v = vb(0) = Si. (3.14)

To leading order in the limit β � 1, the variation of flame temperature is retained in the
Arrhenius factor of (2.10) only. Therefore, when the inner flame structure is in steady state
(denoted by an overbar), the laminar flame velocity reads

β � 1, β(θ̄b − 1) = O(1) : Ūb(Tb)/Uref = m̄ = exp
[
β
(
θ̄b − 1

)
/2
]+ O(1/β),

(3.15)

where θ̄b(τ ) = θu(τ ) + q is the flame temperature and θu(τ ) = Tu(τ )/Tref the
instantaneous temperature of unburned gas just ahead of the flame. The instantaneous
backflow (3.4), written in non-dimensional form, then yields

v̄b(τ ) = S(τ )m̄ = [1 + ετ ]Si exp
(
β
[
θu(τ ) + q − 1

]
/2
)
, (3.16)

and the delayed backflow model (3.8) reads

β � 1, τ � 0 : vb(τ ) = v̄b(τ )

[
1 − (β/2)

�tw
tref

dθu

dτ

]
, �tw ≈ L

2a
. (3.17a–c)

When the unsteadiness of the inner structure of the flame (studied in § 7) is taken into
account, the mass flux m̄ in (3.17a–c) is replaced by its unsteady version m(τ ) = m̄ + δm,
v̄b = S(τ )m̄ → S(τ )m(τ ), the reduced backflow including the two unsteady effects (in the
burned gas and in the inner flame structure) takes the form,

β � 1, τ � 0 : vb(τ ) = S(τ ) exp(β[θ̄b(τ ) − 1]/2)

[
1 + δm(τ )

m̄(τ )

] [
1 − (β/2)

�tw
tref

dθu

dτ

]
.

(3.18a,b)

Here, δm(τ ) is computed by the unsteady analysis of the inner structure.
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3.3. Initial condition
Before the elongation starts to increase, the initial condition is a self-similar solution
(constant elongation, steady flame structure, θb(0) = 1) with a constant backflow (3.14)
vb(0) = Si and a uniform flow ahead of the flame θ = 1 − q, v = vb(0) + q, the lead shock
far ahead from the flame front being considered at infinity. The problem being hyperbolic
in the unburned gas outside the flame structure, the downstream boundary condition far
away from the flame for solving the unsteady problem is given by the initial solution

z → ∞ : π ≈ 1 + O(ε2), Y = 0, θ = 1 − q + O(ε2),

v = Si + q + O(ε2).

}
(3.19)

The neglected terms are of the same order of magnitude as the pressure jump across a
laminar flame δp/p = O(ε2), according to the steady-state version of (2.29).

4. Asymptotic method

The problem is solved in the double limit of large activation energy β � 1 and small
Mach number of the laminar flame ε � 1. A first quick look to the compressible flow of
unburned gas ahead of the accelerating flame enlightens the multiple length-scale problem.

4.1. Preliminary insights into the unburned-gas flow ahead of the flame
When the flame accelerates the flame acts a semi-transparent piston so that simple
compression waves are sent in the unburned gas. The dissipative mechanisms being
negligible in this external flow, the entropy wave (2.32) propagates from right to left in the
reference frame attached to the flame since the flame runs from left to right faster than the
flow in the laboratory flame, m(τ ) > 0. Therefore, as long as no new shock wave is formed
on the leading edge of the compression wave, the entropy is constant ahead of the flame
and equal to the downstream entropy (z → ∞). The isentropic condition π = θ γ/(γ−1)

for small pressure variations, θ = θi(z) + δθ , π = 1 + δπ, limz→∞ θi = 1 − q, yields

δπ � 1 : δθ/θi(z) = [(γ − 1)/γ ]δπ, (4.1)

the subscript i denoting the initial unperturbed flow τ = 0 : πi = 1. Anyway, in the limit
of small Mach number of the laminar flame ε � 1, the shocks that could be produced
by the accelerating flame are weak so that the small entropy jump across the shock is
of order of magnitude ε3 and thus is negligible when the analysis is limited to ε-term.
Then, according to continuity, (2.28),

δπ = O(ε), z � 1 :
∂v

∂z
=
[

∂

∂τ
− m(τ )

∂

∂z

]
[δθ − θiδπ] = −θi

1
γ

[
∂

∂τ
− m(τ )

∂

∂z

]
δπ.

(4.2a,b)

The viscosity being negligible ahead of the flame, (2.29) yields

δπ � 1 :
[

∂

∂τ
− m(τ )

∂

∂z

]
v = − 1

γ ε2
∂δπ

∂z
. (4.3)

The flow v(z, τ ) can be eliminated from (4.2a,b) and (4.3) to give in the linear
approximation

(1 − q)

π2

[
∂

∂τ
− m(τ )

∂

∂z

]2

δπ = 1
ε2

∂2

∂z2 δπ. (4.4)
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One-dimensional mechanism of gaseous DDT

Therefore, considering a time scale of the order of the transit time of fluid particles across
the flame, ∂/∂τ = O(1), the pressure varies in space with a length scale larger than the
flame thickness by a factor of order 1/ε

∂δπ/∂z
∂δπ/∂τ

= O(ε). (4.5)

The unsteady term of (4.4) balances the second derivative with respect to space on the
right-hand side since the term [m∂π/∂z] is negligible in front of [(1/ε)∂π/∂z] for m =
O(1). Therefore, the pressure fluctuation satisfies the linear wave equation

ε � 1 :
∂2δπ

∂τ 2 = (1 − q)

ε2
∂2δπ

∂z2 ; a2 = θa2
ref ⇒ ∂2δπ

∂t2
≈ a2

i
∂2δπ

∂x2 , (4.6a,b)

written in the original variables using (2.12) and (2.22a,b). Therefore, in the limit ε � 1,
the external flow of unburned gas ahead of the flame is governed by the linear acoustics
with a negligible Doppler effect m(∂δπ/∂z)/(∂δπ/∂τ) = O(ε) leading to the scalings

τ = O(1) ⇒ εz = O(1). (4.7)

According to the continuity equation (4.2a,b), ∂v/∂z is of order ∂δπ/∂τ . Anticipating
that the change in flow velocity is of order Si times the laminar flame velocity δv = O(Si),
δv and the pressure vary on the large length scale ∂v/∂z = O(εSi), the variation of the
non-dimensional pressure δπ in the external zone is of order εSi. In the external zone
ahead of the flame, the pressure takes the form

π = 1 + επ1(εz, τ ), π1 = O(Si). (4.8a,b)

The nonlinear solution of the compression wave obtained by Clavin & Champion (2022)
confirms that the limit ε � 1 leads to the linear wave (4.6a,b)–(4.8a,b).

4.2. Distinguished limit
According to (4.8a,b), the spatial variation of pressure in the external flow δπ = επ1 =
O(εSi), is larger than in the inner structure of the flame by a factor 1/ε since πu − πb =
γ ε2(vu − vb) m where the subscript u denotes the unburned state just ahead of the flame.
Neglecting terms of order ε2, the pressure is treated as uniform inside the preheated
zone of the flame structure z = O(1) : 1 − π = O(ε2). This is also the case in the thin
reaction zone z = O(1/β) across which the gradient of the flow velocity varies of order
unity so that, according to (2.29), ∂2v/∂z2 ≈ (∂π/∂z)/γ ε2 ⇒ ∂v/∂z|0+

0− ≈ π|0+
0−/γ ε2 =

O(1) ⇒ π|0+
0− = O(ε2). According to (3.15) in the limit of large activation energy β � 1,

the compressional heating (4.1) influences the laminar flame velocity and the flame
structure as soon as the compression-induced increase of the flame temperature is of the
same order of magnitude as the inverse of the activation energy (γ − 1) δπ = O(1/β)

⇒ (γ − 1) εδSi = O(1/β). Therefore, as in the previous analysis of Clavin (2022), the
distinguished limit to be considered in the DDT study is similar to that in Deshaies &
Joulin (1989)

ε → 0, β → ∞ : (γ − 1) βε Si = O(1). (4.9)

The comparison with the ZFK expression (2.8) of ε yields the order of magnitude of Si,
typically between 5 and 10.
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4.3. Equations in the limit ε � 1
According to (4.8a,b), the pressure disturbance is small and varies in space on the rescaled
coordinate z1 ≡ εz = O(1)

∂π/∂z = O(ε2Si), π = 1 + επ1(z1, τ ), π1 = O(Si), z1 ≡ εz. (4.10a–d)

Outside the thin reaction sheet, neglecting second-order terms O(ε2), (2.28)–(2.31) take
the form

π = 1 + επ1 :
∂v

∂z
=
[

∂

∂τ
− m(τ )

∂

∂z

]
θ

1 + επ1
,

ε � 1 :
∂v

∂z
= [1 − επ1]

[
∂

∂τ
− m(τ )

∂

∂z

]
θ − εθ

[
∂π1

∂τ
− m(τ )

∂π1

∂z

]
+ O(ε2),

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.11)[

∂v

∂τ
− m(τ )

∂v

∂z
− ∂2v

∂z2

]
= − 1

γ

1
ε

∂π1

∂z
(4.12)[

∂Y
∂τ

− m(τ )
∂Y
∂z

− ∂2Y
∂z2

]
= 0, Y(z, τ ) ∈ [0, 1] (4.13)[

∂θ

∂τ
− m(τ )

∂θ

∂z
− ∂2θ

∂z2

]
= ε

(γ − 1)

γ
θ

[
∂π1

∂τ
− m(τ )

∂π1

∂z

]
+ O(ε2). (4.14)

Equation (4.14) shows how the effect of compressional heating in the unburned gas outside
the flame thickness (z � 1: [1/θ ]∂θ/∂τ = ε[(γ − 1)/γ ]∂π1/∂τ ) is transmitted to the
reaction sheet (z = 0) by the entropy wave, as it is modified by the heat conduction inside
the preheated zone (second derivative on the left-hand side). According to (4.10a–d), the
terms involving ∂π1/∂z = O(ε) in (4.11) and (4.14) are negligible in the inner structure of
the flame (of order ε2)

∂v

∂z
= [1 − επ1]

[
∂

∂τ
− m(τ )

∂

∂z

]
θ − εθ

∂π1

∂τ
+ O(ε2), (4.15)[

∂θ

∂τ
− m(τ )

∂θ

∂z
− ∂2θ

∂z2

]
= ε

(γ − 1)

γ
θ
∂π1

∂τ
+ O(ε2). (4.16)

Introducing (4.16) into (4.15), the flow gradient inside the flame structure is expressed in
terms of the heat flux and the time derivative of the pressure

∂v

∂z
= [1 − επ1]

∂2θ

∂z2 − ε
1
γ

θ
∂π1

∂τ
+ O(ε2). (4.17)

To summarize, in the distinguished limit (4.9), the problem consists in solving (4.12),
(4.13), (4.16) and (4.17) with the jump conditions (3.10)–(3.16) on the reaction sheet and
the boundary conditions (3.19) at infinity.

Here the problem is solved analytically in the frame attached to the reaction sheet
by an asymptotic method. The corresponding one-dimensional numerical analysis to be
performed later for the purpose of comparison is not straightforward. Solving the basic
equations for a reaction rate given W(Y, T) as an initial value problem would require to
apply a boundary condition at the exit of the moving reaction zone, which is not so usual,
see the text below (7.16).
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5. Matching conditions. Flow in the unsteady flame structure

5.1. Back to the external flow ahead of the flame
Denoting the external flow ahead of the flame by the subscript ext+ the initial condition
takes the form

τ = 0 : θext+ = 1 − q, vext+ = Si + q, π = 1, (π1 = 0). (5.1a–d)

Using the rescaled coordinate z1 = εz in (4.10a–d), (4.1) and (4.8a,b)

θext+(z1, τ ) = (1 − q)

[
1 + ε

γ − 1
γ

π1(z1, τ )

]
+ O(ε2), (5.2)

equation (4.17) takes the form

∂vext+
∂z

= [1 − επ1]
[

∂

∂τ
− m(τ )

∂

∂z

]
θext+ − εθext+

∂π1

∂τ
+ O(ε2)

yielding
∂vext+(z1, τ )

∂z1
= −(1 − q)

1
γ

∂π1(z1, τ )

∂τ
+ O(ε)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (5.3)

Combined with the leading order of (4.12) in the external flow

∂vext+(z, τ )

∂τ
= − 1

γ

∂π1(z1, τ )

∂z1
+ O(ε), (5.4)

the derivative of (5.3) with respect to τ , after elimination of vext+ , leads to the wave
equation (4.6a,b) for the pressure

ε � 1 :
∂2π1(z1, τ )

∂τ 2 = 1
1 − q

∂2π1(z1, τ )

∂z2
1

+ O(ε), (5.5)

where, in the mass-weighted coordinates, the non-dimensional sound speed in the external
zone is 1/

√
1 − q. This is easily confirmed as follows:

z1 = εz = [Uref /aref ][ρ/ρref ]x/[Uref tref ], (5.6)

using τ = t/tref , the ratio z1/τ takes the form z1/τ = [x/at]ρa/[ρref aref ] to give,
using ρa/[ρref aref ] = [p/pref ]

√
Tref /T , (z1/τ) = [(x/at)/

√
θ ][1 + O(ε)] with, according

to (5.2), θ = 1 − q + O(ε).
The flow of unburned gas being uniform and steady far ahead from the flame, the

external flow is a downstream-running compression wave (propagating in the same
direction as the flame) with a leading edge in the form of a weak singularity propagating
with the sound speed relative to the flow. Then, according to (5.5), π1(z1, τ ) and
vext+(z1, τ ) = Si + q + δvext+(z1, τ ) are functions of a single variable τ − √

1 − q z1

z1 � τ/
√

1 − q : π1 = πu(τ −
√

1 − q z1), δvext+ = Φ(τ −
√

1 − q z1),

with πu(τ ) ≡ π1|z1=0, πu(0) = 0, Φ(τ) ≡ δvext+|z1=0, Φ(0) = 0

}
, (5.7)

so that the quasi-uniform pressure in the flame structure is 1 + επu(τ ). Using (5.7) in the
form ∂vext+/∂z1 = −√

1 − q ∂vext+/∂τ , (5.4) yields

∂vext+
∂z1

=
√

1 − q
γ

∂π1

∂z1
+ O(ε), (5.8)

in agreement with the linear relation δp ≈ ρ̄ ā δu of an acoustic wave propagating from
left to right. The flow field vext+(z1, τ ) is obtained by integrating (5.8) from the leading

974 A46-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.751


P. Clavin

edge of the compression wave where, to leading order, the boundary conditions (3.19)
vext+ = Si + q and π1 = 0 hold

vext+(z1, τ ) − (Si + q) =
√

1 − q
γ

π1(z1, τ ) + O(ε), δvext+ ≈
√

1 − q
γ

π1(z1, τ ).

(5.9a,b)
According to (5.7) and (5.9a,b), the relation linking the flow to the pressure just ahead of
the flame (z1 = 0) takes the form

vext+(z1 = 0, τ ) = Si + q +
√

1 − q
γ

πu(τ ) + O(ε) (5.10)

∂π1

∂z1

∣∣∣∣
z1=0

= −
√

1 − q
dπu(τ )

dτ
⇒ ∂vext+

∂z1

∣∣∣∣
z1=0

= −(1 − q)

γ

dπu(τ )

dτ
+ O(ε), (5.11)

in agreement with (5.3). These relations are useful for matching the flow of the inner
structure with the external flow of unburned gas in § 5.3.

5.2. Matching the temperature
From now on, the superscript (i) denotes the solution in the preheated zone of the flame
structure (z > 0). Inside the flame structure, the spatial variation of pressure introduces
a negligible term of order ε2 so that ∂π1/∂τ in (4.16) and (4.17) can be replaced by the
function dπu(τ )/dτ ≡ ∂π1/∂τ |z1=0 describing the coupling of the flame structure with
the external solution on the cold gas. Therefore, (4.16) can be written as

z � 0 :

[
∂θ(i)

∂τ
− m(τ )

∂θ(i)

∂z
− ∂2θ(i)

∂z2

]
= ε

(γ − 1)

γ
θ(i)(z, τ )

dπu(τ )

dτ
+ O(ε2), (5.12)

where πu(τ ) ≡ π1|z1=0. The boundary condition at infinity on the cold gas side of the
preheated zone (z = O(1), z → ∞) is obtained by matching the preheated zone θ(i)(z, τ )

and the external flow θext+(z1, τ )

lim
z→∞ θ(i)(z, τ ) = θext+(z1, τ )|z1=0, lim

z→∞ ∂θ(i)/∂z = ε∂θext+/∂z1|z1=0 = O(ε2),

(5.13a,b)

where, according to (5.2) θext+ = (1 − q) + ε(1 − q)[(γ − 1)/γ ]π1(z1, τ ) + O(ε2),
∂θext+/∂z1 = O(ε) so that limz→∞ ∂θ(i)/∂z = O(ε2) is negligible to first order in a
perturbation analysis for small ε

lim
z→∞ θ(i)(z, τ ) − (1 − q) ≈ ε(1 − q)

γ − 1
γ

πu(τ ), lim
z→∞ ∂θ(i)/∂z ≈ 0. (5.14a,b)

Equations (4.13) and (5.12) have to be solved using (5.14a,b) and the boundary conditions
(3.10)–(3.12) on the reaction sheet (z = 0) in the distinguished limit (4.9). Equation
(3.11) involves the flame temperature θb(τ ) − 1 ≡ θ(i)(z, τ )|z=0 − 1 = O(1/β) which is
a time-dependent eigenvalue of the problem, obtained by the jump condition (3.12). In the
fully unsteady problem, the solution in the burned-gas side of the reaction sheet z < 0 is
required in (3.12). We will come back to this question later.
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5.3. Matching the flow velocity
Matching the flow velocity in the preheated zone with the external flow of cold gas yields

lim
z→∞ v(i)(z, τ ) = vext+(z1, τ )|z1=0 = Si + q +

√
1 − q
γ

πu(τ ) + O(ε), (5.15)

lim
z→∞

∂v(i)

∂z
= ε

∂vext+
∂z1

∣∣∣∣
z1=0

= −ε
(1 − q)

γ

dπu(τ )

dτ
+ O(ε2) (5.16)

where (5.10) and (5.11) have been used. Equations (5.15) and (5.16) yield

lim
z→∞ v(i)(z, τ ) → Si + q +

√
1 − q
γ

πu(τ ) − εz
(1 − q)

γ

dπu(τ )

dτ
+ O(ε2). (5.17)

Integration of (4.17), written in the preheated zone in the form

∂v(i)

∂z
= [1 − επu(τ )]

∂2θ(i)

∂z2 − ε
1
γ

[
θ(i) − (1 − q)

] dπu(τ )

dτ

− ε(1 − q)
1
γ

dπu(τ )

dτ
+ O(ε2), (5.18)

from the reaction sheet z = 0 : v(i) = vb(τ ) yields

z = O(1) : v(i)(z, τ ) − vb(τ ) = [1 − επu(τ )]

(
∂θ(i)

∂z
− ∂θ(i)

∂z

∣∣∣∣∣
z=0+

)

−ε
1
γ

dπu(τ )

dτ

∫ z

0

[
θ(i) − (1 − q)

]
dz − εz(1 − q)

1
γ

dπu(τ )

dτ
+ O(ε2).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.19)

Thanks to (5.14a,b) limz→∞ θ(i)(z, τ ) = (1 − q) + O(ε), the leading order of the integral
on the right-hand side of (5.19) is well defined in the limit z → ∞ and is of order unity.
Then, using (5.17), the limit z → ∞ of (5.19) yields

vb(τ ) −
[

Si + q +
√

1 − q
γ

πu(τ )

]

= [1 − επu(τ )]
∂θ(i)

∂z

∣∣∣∣∣
z=0+

+ ε
1
γ

dπu(τ )

dτ

∫ +∞

0
[θ(i) − (1 − q)] dz + O(ε2), (5.20)

where the thermal flux out of the reaction sheet ∂θ(i)/∂z|z=0+ is obtained in terms of the
flame temperature θb by the jump condition (3.11). The integral term on the right-hand
side of (5.20) is meaningful as soon as dπu(τ )/dτ < ε.

5.4. Master equation
Using the jump relation (3.11), (5.20) yields

vb(τ ) −
[

Si + q +
√

1 − q
γ

πu(τ )

]
= −q [1 − επu(τ )] exp

[
β

2
(θb − 1)

]
+ ε

1
γ

dπu(τ )

dτ

∫ +∞

0
[θ(i) − (1 − q)] dz + O(ε2).

(5.21)

974 A46-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.751


P. Clavin

Anticipating that β(θb − 1) is of order unity in the distinguished limit (4.9) and neglecting
ε terms, (5.21) gives a general equation of order unity, called the master equation

vb(τ ) −
[

Si + q +
√

1 − q
γ

πu(τ )

]
= −q exp

(
β

2
[θb(τ ) − 1]

)
+ O(ε). (5.22)

This equation is valid for the ZFK model of flames even if the inner structure is
unsteady. Under the quasi-steady approximation, (5.22) can be obtained more directly
by the conservation of mass across the flame Ūb/ŪL = T̄b/Tu combined with the
relation between the laminar flame velocities Ūb and ŪL and the flows in the unburned
mixture ahead of the flame uu and in the burned gas ūb, uu − ūb = Ūb − ŪL = [(T̄b −
Tu)/T̄b]Ūb. The latter expression takes the form uu − ūb = q Ūb[1 + O(1/β)] in the limit
of large activation energy, the relative variation of the flame temperature T̄b(τ )/T̄b(0) − 1
being of order 1/β. Using (5.15) uu(τ ) = Si + q + [

√
1 − q/γ ]πu(τ ) and (2.9) Ūb ≈

Ub(0) exp(β(θ̄b − 1)/2), (5.22) is recovered. Although the laminar flame velocity Ūb
(2.9) is no longer valid for an unsteady flame structure, (5.22) is still valid when the
unsteady flame temperature θb(τ ) computed from the unsteady flame structure is used
on the right-hand side.

6. Pressure and flame temperature runaway

In this section the inner structure of the flame is assumed in steady state. The essential
mechanism of the pressure runaway is more easily revealed under this approximation. The
latter is removed in § 7 leading to the same phenomenology as in § 6.3.

6.1. Quasi-steady inner structure
If the inner structure of the flame is in steady state (denoted by an overbar), the terms
∂θ(i)/∂τ and ε dπu(τ )/dτ are neglected in (5.12) leading to

z � 0 : Ȳ = e−m̄z, θ̄ (i)(z, τ ) = [
θ̄b − θu

]
e−m̄ z + θu,

z � 0 : Ȳ = 1, θ̄ (i) = θ̄b(τ )

}
, (6.1)

where the short notation

θu(τ ) ≡ (1 − q)

[
1 + ε

γ − 1
γ

πu(τ )

]
, (6.2)

has been introduced for the gas temperature just ahead of the flame as it is modified by
the downstream-running acoustic wave in the unburned gas, see (5.14a,b). Introducing the
parameter b of order unity in the distinguished limit (4.9)

b ≡ βε

2
(1 − q)

(γ − 1)

γ
, ε → 0, β → ∞ : bSi = O(1), (6.3)

the jump conditions acrosss the reaction sheet (3.11) and (3.12) yield

θ̄b(τ ) = θu + q, θ̄b − 1 = ε(1 − q)
γ − 1

γ
πu + O(ε2), (6.4a,b)

β(θ̄b − 1)/2 = β
[
θu + q − 1

]
/2 = bπu, m̄ = ebπu + O(1/β), (6.5a,b)

θ̄ (i)(z, τ ) = qe−m̄ z + (1 − q)

[
1 + ε

γ − 1
γ

πu(τ )

]
. (6.6)
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6.2. Backflow
In the quasi-steady approximation, the backflow reduces to the instantaneous model (3.16)

vb(τ ) = S m̄ = S(τ ) exp(bπu(τ )). (6.7)

Introducing (6.7) into the master equation (5.22) yields the same transcendental
equation for the flame pressure πu = π1|z1=0 = [p/pref |z1=0 − 1]/ε = O(1) (or the flame
temperature) as obtained when the flame is considered as a discontinuity, see Clavin (2022)

(S + q)ebπu = Si + q + (
√

1 − q/γ )πu. (6.8)

6.2.1. Turning point
Introducing the notation

ϑ ≡ bπu = O(1), ζ ≡ S + q, ζ(τ ) = (1 + ετ)Si + q, (6.9a–c)

b̃ ≡ bγ /
√

1 − q = (βε/2)(γ − 1)
√

1 − q = O(1/Si) (6.10)

(6.8) takes the reduced form

ζeϑ − ζi − ϑ/b̃ = 0; τ = 0 : ζ = ζi ≡ Si + q, ϑ = 0. (6.11a–c)

The solution yields the pressure in terms of the elongation ϑ(ζ ). The solution depends
on the initial elongation ζi and involves a single parameter b̃. Using the elongation vs
the time in (3.1) S(τ ) = [1 + ετ ]Si, the solution ϑ(ζ ) provides us with the dynamics of
the pressure and/or the flame temperature. The graph of the inverse function ζ(ϑ) is a
bell-shaped curve sketched in figure 2, the maximum of which corresponds to ζ = ζ ∗ and
ϑ = ϑ∗

dζ

dϑ

∣∣∣∣
ϑ=ϑ∗

= 0 : ζ ∗eϑ∗ = 1

b̃
, ϑ∗ = 1 − ζi b̃ > 0,

ζ ∗

ζi
= e[b̃ζi−1]

b̃ζi
� 1, (6.12a–c)

the inequality ζ ∗/ζi � 1 being valid for all the reactive gaseous mixtures (0 < b̃ζi � 1),
see Clavin (2022). The dynamics of the flame is represented by the C-shaped curve ϑ(ζ )

with a turning point at the critical elongation S∗, ζ ∗ = S∗ + q, dϑ/dζ |ζ=ζ ∗ = ∞. There is
no more solution to (6.11a–c) for ζ > ζ ∗, For ζ < ζ ∗, there are two branches of solutions
ϑ̄± = ϑ∗ ± √

2(ζ ∗ − ζ )/ζ ∗, ϑ̄− − ϑ∗ < 0 < ϑ̄+ − ϑ∗, dϑ̄−/dζ > 0 and dϑ̄+/dζ < 0
for the other, see figure 2. According to the thermodynamics law, the temperature increases
during an adiabatic compression so that the physical branch of solutions is ϑ̄−(ζ ).

As noticed in Clavin (2022), the limiting case ζi = ζ ∗, S = S∗
max corresponds to a

universal critical Mach number u∗
u/a∗

u = 2/[β(γ − 1)] characterizing the pre-conditioned
flow of unburned gas just before the DDT onset. This critical Mach number of the cold flow
is typically u∗

u/a∗
u ≈ 0.65 for ordinary flames (β ≈ 8) and becomes slightly supersonic

u∗
u/a∗

u > 1 for a very energetic mixture (β � 4) while the laminar flame velocity remains
very subsonic U∗

b/a∗
b ≈ 0.05, in agreement with the experiments of Kuznetsov et al. (2010)

and the numerics of Liberman et al. (2010) and Ivanov et al. (2011).

6.2.2. Finite-time singularity of the flow gradient
According to (6.12a–c) dζ/dτ = εSi, the elongation and the flame velocity m̄ = eϑ

(ϑ ≡ bπu) increase first slowly with the time dm̄/dτ = O(εSi), and, according to
(6.12a–c), the flame acceleration diverges abruptly dϑ/dζ |ζ=ζ ∗ = ∞, dm̄/dτ |τ=τ∗ =
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ζ = S + q

ζ∗

ζi

ϑ = bπuϑ∗ϑi

ϑ̄−(ζ) ϑ̄+(ζ)

ϑ(ζ)

ζc

Figure 2. Sketch of the solutions ‘elongation ζ vs pressure ϑ’ (not to scale). The two branches ϑ̄±(ζ ) of
solutions of the quasi-steady equation (6.11a–c) in thick line show the critical elongation ζ ∗, above which no
quasi-steady solutions (ϑ̄− is the physical solution) exist. The horizontal arrows in broken line indicate the
direction of the trajectories of (6.26) for ε̃w > 0 showing the stability of the branch of physical solutions of
(6.11a–c), see Strogatz (1994). They are in the opposite direction for ε̃w < 0. The solution of the dynamical
equation (6.26) ϑ(ζ ) in thin red line shows the finite-time divergence of the pressure at the elongation ζc > ζ ∗,
lim(ζ−ζc)→0− ϑ = ∞. The red arrows indicate the direction of increasing time for an elongation increasing with
the time. According to (6.30a,b), the relative difference in critical elongations is small for a small elongation
rate (3.1) ε � 1: (ζc − ζ ∗)/ζ ∗ = O((εSi/ζ

∗)2/3).

εSim̄∗dϑ/dζ |ζ=ζ ∗ = ∞ when the elongation reaches S∗, namely when the flame velocity
reaches the critical value m̄∗ = eϑ∗

which is finite (ϑ∗ < 1). As in the piston problem
considered in Clavin & Tofaili (2021), (6.11a–c) takes a generic form near the critical
point dζ/dϑ |ϑ=ϑ∗ = 0,

d2ζ

dϑ2

∣∣∣∣∣
ϑ=ϑ∗

= −ζ ∗ ⇒ ζ ∗ − ζ

ζ ∗ � 1 :
ζ ∗ − ζ

ζ ∗ ≈ 1
2
(ϑ∗ − ϑ)2 (6.13)

ϑ∗ − ϑ ≈
√

2

√
ζ ∗ − ζ

ζ ∗ , b(π∗
u − πu) ≈

√
(S∗ − S)

(S∗ + q)/2
, (6.14a,b)

obtained by a Taylor expansion. The dynamics of flame pressure and flame temperature
near the critical condition at τ = τ ∗ takes the form

ϑ∗ − ϑ(τ) ≈ κ
√

τ ∗ − τ where κ ≡
√

2ε
Si

S∗ + q
= O(

√
ε), (6.15)

exhibiting the finite-time singularity of the flame acceleration

τ/τ ∗ − 1 → 0− : ϑ → ϑ∗ = 1 − ζi b̃ > 0, πu → π∗
u = ϑ∗/b, m̄ → m̄∗ = eϑ∗

(6.16a–c)

dϑ

dτ
≈ κ/2√

τ ∗ − τ
,

dπu

dτ
≈ κ/2b√

τ ∗ − τ
,

1
m̄

dm̄
dτ

≈ κ/2√
τ ∗ − τ

. (6.17a–c)
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According to (5.3)–(5.11) and (6.15)–(6.17a–c)

τ/τ ∗ − 1 → 0− :
∂vext+(z1, τ )

∂z1
≈ −(1 − q)

γ

κ/2
b

1√
τ ∗ − τ + z1

√
1 − q

,

∂vext+(z1, τ )

∂τ
≈

√
1 − q
γ

κ/2
b

1√
τ ∗ − τ + z1

√
1 − q

,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.18)

the gradient and acceleration of the external unburned flow diverge on the flame

τ → τ ∗ :
∂vext+
∂z1

∣∣∣∣
z1=0

≈ (1 − q)

γ

κ/2
b

1√
τ ∗ − τ

,

∂vext+
∂τ

∣∣∣∣
z1=0

≈
√

1 − q
γ

κ/2
b

1√
τ ∗ − τ

. (6.19a,b)

This suggests a finite-time singularity of the flow gradient leading to the formation of a
shock inside the quasi-isobaric flame structure. The DDT mechanism is associated with
an even more violent phenomenon: a catastrophic behaviour of the flame structure is
predicted below by the delayed backflow model.

6.3. Delayed backflow model. Catastrophic dynamics
The unsteady flow behind the tip of the elongated flame is a too complex problem
for an analytical study. Equation (3.17a–c) is a simplified model for studying the main
consequence of this unsteadiness, a detailed expression of the delay �tw is not useful
in the following. Only the order of magnitude of �tw matters for a clear understanding
of the phenomenon. Still assuming the inner structure of the flame in steady state m̄ =
ebπu(τ ), dm̄/dτ ≈ m̄ b dπu/dτ the delayed backflow model (3.17a–c) reads

vb = Si(1 + ετ) m̄
[

1 − �tw
tref

b
dπu

dτ
+ . . .

]
(6.20)

vb ≈ Siebπu(τ ) + ετ Siebπ∗
u − Si ebπ∗

u
�tw
tref

b
dπu

dτ
+ . . . , (6.21)

where, considering �tw/tref of order unity and dπu/dτ of order ε < 1, the ebπu term in
the second and third terms on the right-hand side has been considered as constant nearby
the turning point for simplicity.

6.3.1. Dynamical equation for the pressure and the flame temperature
Introducing (6.5a,b) and (6.21) into the master equation (5.22) yields an ordinary
differential equation (ODE) of first order for πu(τ )

Siebπu(τ ) + ετSiebπ∗
u − Siebπ∗

u
�tw
tref

b
dπu

dτ
−
[

Si + q +
√

1 − q
γ

πu(τ )

]
= −qebπu(τ ),

(6.22)
which can be written in the form[

Si(1 + ετ) + q
]

ebπu(τ ) −
[

Si + q +
√

1 − q
γ

πu(τ )

]
= Kwb

dπu(τ )

dτ
. (6.23)

where Kw ≡ Siebπ∗
u
�tw
tref

> 0. (6.24)
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Written with the notation (6.10) and (6.11a–c), a nonlinear ODE for ϑ(ζ ) = bπu(ζ ) is
obtained

ζ exp ϑ − ζi − ϑ/b̃ = K̃w
dϑ

dζ
, where K̃w ≡ εSi Kw and b̃ ≡ bγ /

√
1 − q. (6.25)

The roots of the left hand-side of the first equation (6.25) are the quasi-steady solutions
(6.11a–c) of the instantaneous backflow model ϑ±(ζ ) shown in figure 2. Focusing our
attention on the vicinity of the turning point, following (6.15), a power expansion in (ϑ −
ϑ∗) limited to the quadratic terms yields

(ζ − ζ ∗)
ζ ∗ + (ϑ∗ − ϑ)2

2
= ε̃w

dϑ

dζ
, where ε̃w ≡ b̃K̃w = ε

S2
i

ζ ∗
�tw
tref

. (6.26)

For ζ < ζ ∗, the sign of the left-hand side of (6.26) is positive for ϑ < ϑ̄− and for ϑ >

ϑ̄+ (negative for ϑ̄− < ϑ < ϑ̄+). The trajectories in the phase space of (6.26) show that
the physical branch ϑ̄−(ζ ) is stable since ε̃w > 0. The other branch ϑ̄+(ζ ) is unstable. A
finite-time singularity of the solution of (6.26) occurs around the turning point, as shown
now.

6.3.2. Dynamical saddle-node bifurcation
Equation (6.26) describes the dynamics nearby a saddle-node bifurcation. Such an
equation was extensively used for sharp transitions in different problems of physics
or biophysics. The theory of catastrophic events based on this equation has been recently
revisited and extended by Peters, Le Berre & Pomeau (2012). Conveniently rescaled

(1/22/3)(ζ ∗/ε̃w)1/3(ϑ − ϑ∗) → y′, (1/21/3)(ζ ∗/ε̃w)2/3(ζ − ζ ∗)/ζ ∗ → t′, (6.27a,b)

equation (6.26), after multiplication by (ζ ∗/
√

2ε̃w)2/3, takes a generic normal form

dy′(t′)
dt′

= t′ + y′2, (6.28)

with two fixed points for t′ < 0, the stable one corresponding to the negative root y′ =
−√−t′ (physical branch of solutions). The fixed points collapse at t′ = 0 and there is
no more fixed point for t′ > 0 (saddle-node bifurcation). Considering an initial condition

on the stable branch t′ = t′i < 0 : y′ = −
√

−t′i for −t′i/t′c = y′2
i /t′c larger than unity, the

asymptotic solution of (6.28) is obtained in terms of the Airy function to give

lim
t→t′c

y′(t′) = 1
t′c − t′

− t′c
3

(t′c − t′) + . . . where t′c ≈ 2.338 . . . ; (6.29)

see the references in Peters et al. (2012). The finite-time singularity (6.29) is of the same
type as the solution of the Riccati equation dy′/dt′ = y′2. According to (6.29), the pressure
and the flame temperature ϑ ≡ bπu(τ ) blow up at time τ = τc for a finite elongation
ζc = Si(1 + ετc) + q, (ζc − ζ ∗) = (τc − τ ∗)εSi

ζc − ζ ∗

(2ζ ∗ε̃2
w)1/3 = 2.338 . . . , b(πu − π∗

u) ≡ ϑ − ϑ∗ ≈ 2ε̃

ζc − ζ
= 2bγ√

1 − q
Kw

τc − τ
.

(6.30a,b)

The solution to (6.26) increases above the critical elongation ϑ(τ) > ϑ∗ and diverges
like Kw/(τc − τ) where τc − τ ∗ ∝ K2/3

w /(εSi)
1/3, see figure 2. The smaller the elongation
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rate ε < 1, the closer to the turning point S∗ the pressure blowup, limε→0(Sc − S∗)/Si ∝
(εSiKw)2/3.

To summarize, unsteadiness of the burned-gas flow which is modelled by a delay in the
backflow in § 6.3 has a drastic effect on the dynamics, more drastic than the instantaneous
backflow in § 6.2: the flame structure is blown off as a whole in finite time when the
elongation increases slowly. A strong increase in pressure and flame temperature occurs
abruptly with a sudden shrinking of the flame thickness for an elongation slightly larger
than the critical elongation of the instantaneous backflow model.

7. Unsteadiness of the flame structure

Due to the singularity of the flame acceleration, the quasi-steady approximation of the
inner structure of the flame on the tip is doubtful at the end of the process. The objective
of this section is to get rid of this assumption.

7.1. Unsteady inner structure of the flame
Introducing the decomposition w = w̄ + δw where w denotes the quasi-steady
approximation of the inner structure, a perturbation analysis of (4.13) and (4.16) is
performed in the distinguished limit (4.9)

ε � ε � 1, dπu/dτ = O(ε), β � 1, (γ − 1)βεSi = O(1), (7.1a–d)

retaining unsteady terms of order ε dπu/dτ = O(εε) in these equation and neglecting
smaller terms, namely those of order ε(dπu/dτ)2 and ε2. First-order terms are sufficient
to draw a final conclusion concerning the finite-time singularity.

7.1.1. Preheated zone (z � 0)
Anticipating that β(θb − θ̄b) ∝ dπu/dτ and θ(i) − θ̄ (i) ∝ θ̄ (i) dπu/dτ , the temperature θ(i)

can be replaced by θ̄ (i) in front of the pressure term on the right-hand side of (5.12)

z � 0 :

[
∂θ(i)

∂τ
− m(τ )

∂θ(i)

∂z
− ∂2θ(i)

∂z2

]
≈ (γ − 1)

γ

[
qe−m̄ z + (1 − q)

]
ε

dπu

dτ
, (7.2)

lim
z→∞ θ(i)(z, τ ) = (1 − q)

[
1 + ε

γ − 1
γ

πu(τ )

]
, lim

z→∞
∂θ(i)

∂z
= 0, (7.3a,b)

where the ε2-terms have been neglected in the boundary conditions (5.14a,b). Introducing
the decomposition

θ(i)(z, τ ) = θ̄ (i) + δθ(i), m(τ ) = m̄ + δm, m̄ = ebπu, (7.4a–c)

with, according to (6.6),

z � 0 :
∂θ̄ (i)

∂τ
= −qze−m̄ z dm̄

dτ
+ ε(1 − q)

(γ − 1)

γ

dπu

dτ
,

1
m̄

dm̄
dτ

= b
dπu

dτ
, (7.5a,b)
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equation (7.2) reads after subtracting ∂θ̄ (i)/∂τ and −δm∂θ̄ (i)/∂z = qm̄e−m̄zδm

z � 0 :

[
∂δθ(i)

∂τ
− m̄

∂δθ(i)

∂z
− ∂2δθ(i)

∂z2

]
≈ −q m̄ e−m̄ zδm

+ q
[

b m̄ z e−m̄z + ε
(γ − 1)

γ
e−m̄ z

]
dπu

dτ
,

(7.6)

with, according to the boundary conditions (7.3a,b),

lim
z→∞ δθ(i) = 0, lim

z→∞ dδθ(i)/dz = O(ε2). (7.7a,b)

Introducing the decomposition Y = Ȳ + δY into (4.13) using Ȳ = e−m̄z, −δm ∂Ȳ/∂z =
m̄e−m̄zδm and ∂Ȳ/∂τ = −m̄ z e−m̄zb dπu/dτ yields[

∂δY
∂τ

− m̄
∂δY
∂z

− ∂2δY
∂z2

]
≈ −m̄e−m̄ zδm + m̄ z e−m̄zb

dπu

dτ
, lim

z→∞ δY = 0. (7.8a,b)

The equation for δZ ≡ δθ(i) − qδY is free from the term δm(τ )

z � 0 :
[
∂δZ
∂τ

− m̄
∂δZ
∂z

− ∂2δZ
∂z2

]
≈ ε q

(γ − 1)

γ
e−m̄z dπu

dτ
, lim

z→∞ δZ = 0. (7.9a,b)

Anticipating that δZ is of order ε dπu/dτ , neglecting terms of order ε (dπu/dτ)2, the
reduced laminar flame speed m̄ = ebπu + O(1/β) is treated as constant in (7.9a,b). The
unsteady term ∂δZ/∂τ < δZ can be neglected in front of ∂δZ/∂z and ∂2δZ/∂z2 since
∂/∂z = O(1). After integration

∫∞
z dz, this yields

z � 0 : m̄ δZ + ∂δZ
∂z

= εq
(γ − 1)

γ

1
m̄

e−m̄ z dπu

dτ

⇒ m̄δθb + ∂δZ
∂z

∣∣∣∣
z=0+

= εq
(γ − 1)

γ

1
m̄

dπu

dτ
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.10)

where the boundary conditions z = 0+ : δY = 0, δZ = δθb(τ ) ≡ δθ(i)(z = 0, τ ) have
been used. Equation (7.10) can be checked by the small frequency limit of the Fourier
transform of (7.9a,b). Using the relations ∂θ̄ (i)/∂z|z=0− = 0 and Y|z=0− = 0 on the
burned-gas side, the jump condition (3.12) takes the form

∂θ(i)

∂z

∣∣∣∣∣
z=0−

= ∂θ(i)

∂z

∣∣∣∣∣
z=0+

− q
∂Y
∂z

∣∣∣∣
z=0+

⇒ ∂δθ(i)

∂z

∣∣∣∣∣
z=0−

= ∂δZ
∂z

∣∣∣∣
z=0+

. (7.11)

According to (7.10) and (7.11), the unsteadiness-induced modification of flame temperature
δθb, θb = θ̄b + δθb, is expressed in terms of the temperature gradient on the burned-gas
side of the reaction sheet

m̄ δθb + ∂δθ(i)

∂z

∣∣∣∣∣
z=0−

= εq
(γ − 1)

γ

1
m̄

dπu

dτ
. (7.12)

The right-hand side of (7.12) is part of the perturbation of the flame temperature. The
first-order correction to β(θb − 1) requires the investigation of the temperature in the
burned-gas flow (z < 0) for computing ∂δθ(i)/∂z|z=0− .
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One-dimensional mechanism of gaseous DDT

7.1.2. Burned gas z � 0
For the analysis of the burned gas, one has to be back to (4.14). According to (6.1) and
(6.5a,b), θ̄ (i) − 1 = O(επu) can be neglected in the factor of the pressure term on the
right-hand side of (4.14)

z � 0 :

[
∂θ(i)

∂τ
− m(τ )

∂θ(i)

∂z
− ∂2θ(i)

∂z2

]
= ε

(γ − 1)

γ

[
∂π1

∂τ
− m(τ )

∂π1

∂z

]
[1 + O(ε)]

(7.13)

lim
z→−∞ θ(i)(z, τ ) = 1, lim

z→−∞ π1(z, τ ) = 0, (7.14a,b)

where the boundary conditions (7.14a,b) at infinity on the burned-gas side are given by
the initial condition (hyperbolic problem). Neglecting ε∂2π1/∂z2 in the burned gas, the
energy equation (7.13) and (7.14a,b) can be written as an entropy equation

z � 0 :
[

∂

∂τ
− m̄

∂

∂z
− ∂2

∂z2

]
s ≈ 0, s ≡

[
θ(i) − (γ − 1)

γ
επ1

]
, lim

z→−∞ s = 1.

(7.15a–c)

Anticipating that the unsteadiness-induced disturbances are of order ε dπu/dτ , the mass
flux m has been replaced by its unperturbed expression m̄ on the left-hand side of (7.15a–c)
since the attention is limited to the leading order. Equation (7.15a–c) shows how the
entropy which is generated across the flame structure during the flame acceleration

sb(τ ) ≡ s(z = 0, τ ) = θ̄b(τ ) + δθb(τ ) − (γ − 1)επu(τ )/γ, (7.16)

escapes the reaction zone from the hot side (m > 0). This leakage of entropy is the main
difference between a flame pushed from behind by a flow of burned gas and an adiabatic
(and impermeable) piston. The upstream boundary condition limz→−∞ s = 1 can also be
viewed as resulting from the damping of the transient variation of entropy by the heat
conduction in the (inert) burned gas. The solution to (7.15a–c) is easily obtained using the
Fourier transform s − 1 = eiωτ s̃ω(z) and the two relations (6.4a,b) θ̄b − 1 = ε(1 − q)(γ −
1)πu/γ and (7.16), sb − 1 = δθb − q(γ − 1)πu/γ

z � 0 : s̃ω(z) =
[
δ̃θb − q

γ − 1
γ

επ̃u

]
exp k̃ z, (7.17)

k̃(ω) ≡ 1
2

[
−m̄ +

√
m̄2 + 4iω

]
≈ iω

m̄
+ ω2

m̄3 + . . . , (7.18)

to give on the reaction sheet, using ∂ s̃ω/∂z|z=0− → k̃[δ̃θb − q(γ − 1/γ )επ̃u] and, in the
low frequency limit, k̃ → (1/m̄) d/dτ

∂s
∂z

∣∣∣∣
z=0−

= ∂δθ(i)

∂z

∣∣∣∣∣
z=0−

− q
(γ − 1)

γ
ε

∂π1

∂z

∣∣∣∣
z=0−

≈ 1
m̄

dδθb

dτ
− q

(γ − 1)

γ

1
m̄

ε
dπu

dτ
. (7.19)

This low frequency result corresponds to the undamped transport by the entropy wave
∂s/∂τ − m̄∂s/∂z ≈ 0. The conduction-induced damping rate is of next order in the limit of
small frequency. This is similar to freely propagating acoustic waves in planar geometry. In
the limit ε � 1, the pressure gradient in the burned gas is negligible, the dominant effect
being through the increase rate in pressure (time derivative). To avoid any cumulative
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effect that could induce acoustical instabilities reviewed in Clavin & Searby (2016), the
ends of the tube have been assumed sufficiently far away from the flame. Therefore,
neglecting ε∂π1/∂z|z=0− , (7.19) reads

burned gas:
∂δθ(i)

∂z

∣∣∣∣∣
z=0−

≈ 1
m̄

dδθb

dτ
− q

(γ − 1)

γ

1
m̄

ε
dπu

dτ
. (7.20)

7.1.3. Unsteady modification to the flame temperature
Introducing (7.20) into (7.12) leads to

m̄ δθb + 1
m̄

dδθb

dτ
≈ 2q

(γ − 1)

γ

1
m̄

ε
dπu

dτ
. (7.21)

To first order, the time derivative on the left-hand side of (7.21) is negligible

δθb ≈ 2q
(γ − 1)

γ

1
m̄2 ε

dπu

dτ
= 2q

(γ − 1)

γ
exp[−2bπu]ε

dπu

dτ
. (7.22)

This can be checked in the low frequency limit of the Fourier transform of (7.21)

δ̃θb ≈ 2q
(γ − 1)

γ

1
m̄2

iω
1 + iω/m̄2 επ̃u ≈ 2q

(γ − 1)

γ

1
m̄2 εiω π̃u

[
1 − 1

m̄2 iω + O(ω2)

]
.

(7.23)

Thanks to the minus sign in front of iω in the bracket, (7.23) describes a causal response
of the flame temperature to the time derivative of pressure. However, the causality link
between the flame temperature θb(τ ) = θ̄b(τ ) + δθb(τ ) and the pressure πu(τ ) is the
reverse

θb(τ ) = 1 + ε(1 − q)
γ − 1

γ
πu(τ ) + 2ε, q

(γ − 1)

γ
exp[−2bπu]

dπu

dτ
+ O(ε2), (7.24)

β(θb − 1)/2 = b
[
πu(τ ) + (�τθ ) dπu(τ )/dτ + . . .

] ≈ bπu(τ + �τθ), (7.25)

exp(β(θb − 1)/2) ≈ exp(bπu(τ ))

[
1 + (�τθ )b

dπu(τ )

dτ
+ . . .

]
,

�τθ = 2q
1 − q

exp(−2bπu) > 0,

⎫⎪⎪⎬⎪⎪⎭ (7.26)

where, according to (6.3), b ≡ βε(1 − q)(γ − 1)/2γ = O(1) and the τ -variation of πu in
the coefficient exp(−2bπu) in front of dπu/dτ on the right-hand side of (7.24) is negligible
since it introduces a correction of following order. Focusing attention near the turning
point, the time delay is quasi-constant

�τθ ≈ 2q
1 − q

e−2bπ∗
u = O(1). (7.27)

Equations (7.24)–(7.26) show that the flame temperature and the reaction rate at time τ

are related to the pressure at a later time τ + �τθ , �τθ > 0. As we shall see later, this
promotes an instability of the physical branch of the C-shaped curve ‘flame velocity vs
elongation’.
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7.1.4. Unsteady modification to the mass flux
Anticipating that δY is of order ε dπu/dτ � 1, the unsteady term on the left-hand side of
(7.8a,b) can be neglected to first order

− m̄
∂δY
∂z

− ∂2δY
∂z2 ≈ −m̄e−m̄ zδm + m̄ z e−m̄zb

dπu

dτ
. (7.28)

Integration with the two boundary conditions z = 0 : δY = 0 and limz→∞ δY = 0 yields

δY = −e−m̄z zδm +
[

e−m̄z z2

2
+ 1

m̄
e−m̄z z

]
b

dπu

dτ
, (7.29)

dδY
dz

∣∣∣∣
z=0+

= −δm + 1
m̄

b
dπu

dτ
. (7.30)

According to the jump (3.11) and (3.12), the gradients on the flame sheet take the form

∂θ(i)

∂z

∣∣∣∣∣
z=0+

= −qebπu

[
1 + β

2
δθb + . . .

]
,

∂δθ(i)

∂z

∣∣∣∣∣
z=0+

≈ −qebπu
β

2
δθb (7.31a,b)

∂δθ(i)

∂z

∣∣∣∣∣
z=0+

= q
∂δY
∂z

∣∣∣∣
z=0+

+ O(1/β). (7.32)

After simplification by q, (7.31a,b) and (7.32) read

− ebπu
β

2
δθb = ∂δY

∂z

∣∣∣∣
z=0+

+ O(1/β). (7.33)

Introducing (7.25) into (7.33) and using (7.30) leads to the unsteady modification to the
mass flux across the reaction sheet defining the instantaneous laminar flame velocity
relative to the burned gas Ub(τ )

− ebπu�τθ b
dπu

dτ
≈ −δm + 1

m̄
b

dπu

dτ
⇒ δm ≈ e−bπu

1 + q
1 − q

b
dπu

dτ
. (7.34)

The modification of mass flux can be used to compute the variation of the speed of the
reaction sheet UP(t) when the backflow ub(t) and the flame temperature are known.

7.2. Dynamical effect of the unsteadiness of the inner structure
The dynamics is governed by the ODE for πu(τ ) when the expressions of vb and β(θb − 1)

in terms of πu are introduced into the master equation (5.22). The main difference with the
previous analysis of § 6 is that the unsteady flame temperature on the right-hand side of
(5.22) is no longer the temperature of the unburned gas simply shifted by the heat release
as in a steady laminar flame.

7.2.1. Instantaneous backflow model
In a first step, assume for simplicity that the lateral flame (quasi-parallel to the lateral
wall) are quasi-steady, the unsteadiness being limited to the flame structure on the tip of
the elongated front. Neglecting heat loss at the wall, the temperature in the tongues of
unburned gas engulfed near the wall is assumed to be the same as in the flame on the tip
of the elongated front, this temperature being modified by the longitudinal compression
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wave propagating ahead of the tip. This is an accurate approximation when the elongation
is larger than the acoustic wavelength. Then, the instantaneous backflow (3.4) reads

vb(τ )/Si = (1 + ετ)m̄(τ ) = (1 + ετ)ebπu(τ ) ≈ ebπu(τ ) + ετ ebπ∗
u + . . . . (7.35)

Introducing (7.26) and (7.35) into (5.22) yields

Siebπu(τ ) + ετSiebπ∗
u −

[
Si + q +

√
1 − q
γ

πu(τ )

]
≈ −qebπu(τ ) − e−bπ∗

u
2q

1 − q
b

dπu(τ )

dτ
,

(7.36)
which can be written[

Si(1 + ετ) + q
]

ebπu(τ ) −
[

Si + q +
√

1 − q
γ

πu(τ )

]
= −e−bπ∗

u
2q

1 − q
b

dπu(τ )

dτ
,

(7.37)
and, using the notation (6.10) and (6.11a–c),

ζ exp ϑ − ζi − ϑ/b̃ = −K̃θ

dϑ

dζ
, where K̃θ ≡ εSi e−bπ∗

u
2q

1 − q
> 0 (7.38)

(ζ − ζ ∗)
ζ ∗ + (ϑ∗ − ϑ)2

2
= −ε̃θ

dϑ

dζ
, where ε̃θ ≡ b̃K̃θ . (7.39)

The difference with (6.25) and (6.26) is the sign on the right-hand side. The negative
sign obtained for the instantaneous backflow shows that, according to the trajectories in the
phase space of (7.38) and (7.39), the unsteadiness of the inner flame structure promotes an
instability of the physical branch ϑ̄−(ζ ) of the quasi-steady solutions discussed in § 6.2.1.
This would be unfortunate for the study of the DDT when the elongation increases since
the physical branch of quasi-steady solutions could not be followed up to the vicinity of
the turning point. Hopefully, the delay in the backflow restores the stability as shown now.

7.2.2. Delayed backflow model
Still assuming that the lateral flames are in steady state, the non-dimensional expression
of the delayed backflow is the same as (6.21). Introducing (7.26) and (6.21) into the master
equation (5.22) yields a non-dimensional ODE similar to (6.26)

(ζ − ζ ∗)
ζ ∗ + (ϑ∗ − ϑ)2

2
= ε̃

dϑ

dζ
, where ε̃ ≡ b̃(K̃w − K̃θ ), (7.40)

so that the phenomenology is the same as in § 6.3.2 provided K̃w > K̃θ which is typically
the case, see the text below (7.43).

7.2.3. Unsteady structure of the lateral flames
If the inner flame structure of the lateral flames is not in steady state, a delay is involved
in the radial flow of burned gas Ub feeding the longitudinal backflow on the axis of the
elongated flame front. The unsteady laminar flame velocity Ub of the lateral flames is
computed with the first-order disturbance of the mass rate across the reaction sheet m(τ )

in (7.34). The additional delay in the backflow pushing the flame tip takes the form

vb/Si ≈ ebπu(τ ) + ετ ebπ∗
u + e−bπ∗

u
1 + q
1 − q

b
dπu

dτ
+ . . . . (7.41)

Introducing (7.26) and (7.41) into the master equation (5.22) yields an ODE for ϑ = bπu,
namely for the pressure and/or the flame temperature similar to (7.40) but involving an
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additional destabilizing term K̃f

ε̃ ≡ b̃(K̃w − K̃θ − K̃f ), K̃f ≡ εS2
i e−bπu

1 + q
1 − q

. (7.42a,b)

The same equation as (6.26) is obtained in which Kw is replaced by Kw − (Kθ + Kf ) > 0.
The same finite-time singularity as that described at the end of § 6.3.2 is obtained, provided
the delays satisfy the following condition:

K̃w > K̃θ + K̃f ⇒ L/aref

dref /Uref
> e−2bπ∗

u

[
1
Si

2q
1 − q

+ 1 + q
1 − q

]
, (7.43)

which is verified for a length of the finger-like flame sufficiently elongated compared to
the flame thickness L/dref > e−2bπ∗

u/ε. This is already the case for ε ≈ 10−2 and a flame
elongation larger than a cell size of a few centimetres (tube diameter).

8. Discussion of the results and conclusion

Starting with a small growth rate of elongation from a self-similar solution (quasi-steady
solution for a constant elongation), the flame structure is suddenly blown off as a whole
in finite time. This occurs for an elongation slightly larger than the critical elongation
S∗ of the quasi-steady solutions (burned-gas flow and flame structure in steady state).
In contrast to the solutions retaining only unsteadiness of the compression waves in
the unburned gas, for which the singularity concerns the flow gradients only, a violent
increase in pressure and flame temperature develops suddenly while the flame thickness
shrinks to zero. The corresponding finite-time singularity is characterized by a dynamical
saddle-node bifurcation and develops independently of the precise expression of the delays
involved in the unsteady flows provided the condition (7.43) is satisfied.

The finite-time singularity is a consequence of a nonlinear thermal feedback
loop between the inner structure of the flame and the compressional heating by
the downstream-running compression waves generated in the unburned gas by the
accelerating flame acting as a semi-transparent piston. The acceleration is produced
by the elongation-induced increase of the self-generated flow. The singularity appears
systematically in the vicinity of the turning point whatever the elongation rate, as small as
it may be. This is because the flame acceleration of the quasi-steady solution diverges at
the turning point. The pre-conditioned state of unburned gas just ahead of the flame and
just before the abrupt transition is characterized by a universal critical Mach number of the
induced flow of unburned gas which is close to unity, in accordance with the experiments
and direct numerical simulations. This critical condition is all the easier to achieve in very
energetic mixtures for an elongation which is not much larger than the tube radius. This
could well be the case for the cellular structure of Rayleigh–Taylor unstable flame fronts
of very energetic mixtures as those involved in supernovae SNIa.

The DDT mechanism is related to the finite-time singularity (6.29) of the solution to
(6.28). This equation which is the normal form of a dynamic saddle-node bifurcation has
been obtained here by an expansion around the turning point. Therefore, the asymptotic
behaviour (6.30a,b) is not guaranteed for the exact solution of (4.11)–(4.14) satisfying
the boundary conditions (3.8)–(3.14). Nevertheless, the onset of a finite-time singularity
is not doubtful because unsteady terms of higher order than in (6.28) reinforce the
singularity. This is illustrated by the divergence of the acceleration dϑ/dτ ∝ 1/

√
τ ∗ − τ

in (6.15) becoming dϑ/dτ ∝ 1/(τc − τ)2 in (6.29) when unsteadinesses are taken into
account. Moreover the singularity is even stronger when unsteady terms of following
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order are retained. For example, the divergence is sharper if the term dy′/dt′ in (6.28) is
replaced by a second-order unsteady term d2y′/dt′2 (first Painlevé transcendent), dϑ/dτ ∝
1/(τc − τ)3. The numerical analyses of the one-dimensional problem (2.1a,b)–(2.4) for
the backflow models (3.4)–(3.8) to be published soon by Hernández-Sánchez & Denet
confirm the finite-time singularity.

The strong shock generated by the pressure runaway should lead quasi-instantaneously
to the DDT. However, molecular dissipation and nonlinearities of the flow are essential in
this ultimate phase of DDT. As for the formation of inert shock waves, microscopic length
and time scales are involved (mean free path and inverse of the elastic collision frequency).
Consequently this ultimate phase cannot be accurately described by macroscopic equations
(2.1a,b)–(2.4). In particular, the maximum shock intensity of the strong overdriven
detonation appearing suddenly at the transition requires the Boltzmann equation to be
solved. The transverse extension of the explosion should also play a role in that respect.
However, once the overdriven detonation is formed, the subsequent relaxation toward the
CJ regime (controlled by the rarefaction wave in the burned-gas flow) can be described
successfully by the macroscopic equations using the Rankine–Hugoniot jump conditions
across the lead shock treated as a discontinuity since the induction length and the thickness
of the exothermic reaction zone behind the shock are macroscopic lengths. It is worth
stressing once again that the singularity of the flame structure results from the generic
divergence of the flame acceleration at the turning point, occurring for any growth rate of
elongation (or of flame wrinkling) as small as it may be.

To summarize, the DDT mechanism presented in this article concerns a
one-dimensional dynamics of reacting flow characterized by a rate of heat release
highly sensitive to the temperature. Although the origin of the self-induced flow is
multi-dimensional (increase in surface area of the elongated or wrinkled flame front), the
DDT onset is a local process of a one-dimensional nature. This mechanism of transition
concerns also turbulent wrinkled flames and/or unconfined cellular flames, the flame brush
being considered as a chaotic array of elongated flames the tip of which is accelerated by
the self-induced flow associated with the increase in surface area of the flame. In that
sense, the DDT mechanism described here could have a certain degree of universality.
This should be confirmed by direct numerical simulations keeping in mind the present
results.
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