
Collisional Simulations of Isolated Lindblad Resonances 

J. HÄNNINEN and 

H. SALO 

Department of Astronomy, University of Oulu, SF-90570 Oulu, Finland 

and 

J. L U K K A R I 

Computer Services Centre, University of Oulu, SF-90570 Oulu, Finland 

Abstract . 

The influence of the perturbing satellite on the planetary ring at isolated Lindblad resonances 
is studied with numerical computer simulations, combining the Aarseth's force polynomial method 
for orbit integrations with the calculation of particle-particle impacts. Observed angular momen-
tum exchange between the satellite and the dissipative, non-self gravitating ring agrees with the 
Goldreich-Tremaine formula for gravitating ring within 20%, verifying that the exerted torque is 
not sensitive to the details of the dominant physical processes. The theoretically predicted angular 
momentum luminosity reversal was also observed. 

1. Introduction 

Dominant feature of all planetary ring systems is their wealth of radial structure. It 

seems evident that most of the regular density variations are generated by external 

satellites. Also, the location of the inner edge of Cassini Division suggests a close 

connetion with Mimas 2:1 Lindblad resonance. Satellites have also been proposed 

to explain the stability of narrow rings against viscous spreading, as well as many 

azimuthally asymmetric features. 

The strongest interaction between ring and satellites takes place at narrow res-

onance zones. The behaviour of collisional systems in these regions has been ex-

tensively studied by Borderies, Goldreich, and Tremaine in a series of papers (Bor-

deries, Goldreich, and Tremaine, 1982; 1983; 1985; 1986; 1989). For example, they 

have derived expressions for the angular momentum exhange between the ring and 

the satellite, caused by the torque exerted on the satellite-generated spiral density 

wave propagating outward from the resonance due to the ring self-gravity. However, 

self-gravity is not essential in this process (Goldreich and Tremaine, 1982; Meyer-

Vernet and Sicardy, 1986): angular momentum exhange should occur if there is 

any process capable of creating a non-symmetric density response of the ring with 

respect to the rotating satellite potential. In the planetary rings this process can 

be either the self-gravity of the ring particles or just the interparticle collisions. 

In this paper the dynamics of the ring-satellite resonances is studied in terms 

of numerical simulations. Our integration algorithm is based on Aarseth's N-body 

integrator (Aarseth, 1972; 1985), which uses fourth-order force polynomial and in-

dividual time-step schema in the integration of particle orbits. This code is very 

suitable for calculation of arbitrary satellite perturbations, also in the case of strong 

perturbations. Some modifications, taking advantage of the ring-shaped geometry 

have been made, and most importantly, we have included the calculation of particle-

particle impacts. In principle, this can be done with very little extra CPU-time con-

sumption, since in the construction of force polynomials mutual particle distances 

are calculated also in the original code. 
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Fig. 1. The time evolution of the collision al ring at 2:1 resonance with external satellite is 

shown in frames a, b, and c with t — 5 — 25, 95 — 115, 295 — 315 ring periods, respectively. 

The satellite (Ms — 2 . 5 1 0 - 3 M P ) is located at three o'clock. The frame d shows collisionless 

ring as a comparison. 

2. Angular M o m e n t u m Transfer 

Besides affecting particle eccentricities, m:m-l Lindblad resonance perturbations 

lead to the formation of azimuthal density variations with m-fold symmetry, sta-

tionary in the frame co-rotating with the satellite (Fig. 1). In the collisionless case 

the density wave appears symmetric with respect to the satellite, and consists of 

m equally spaced loops (Fig. Id displays the collisionless m = 2 case), following 

from the 180° phase shift in the alignment of particle orbits at various sides of the 

exact resonance radius. In the collisional case the discontinuity in the alignment is 

removed, leading to the gradual formation of trailing spiral density wave appearing 

stationary in the coordinate system corotating with the satellite. This fact makes 

it possible to improve the resolution of the simulation data by averaging over long 

time spans when studying the physical properties of the ring. 

In addition to the stationary density wave there is also noticeable time evolution 

in the radial distribution of particles. The particles orbiting initially outside the 

resonance distance fall inward due to the total effect of satellite perturbations and 

collisions. For example, in Fig. la-c, practically all particles are eventually cleared 

out from the outer parts of the ring, and a sharp outer edge is formed at the 2:1 

resonance radius. On the macroscopic level this infall can be intepreted to be due 

to the torque excerted by the satellite on the non-axisymmetric density response of 

the ring, transferring angular momentum of the ring particles to the satellite (in the 

case of ILR) . In terms of individual particle orbits, conservation of Jacobi constant 

requires that the excitation of eccentrities is connected with a slight decrease in 
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the semi-major axis of the particle. If at least part of the eccentricity is damped by 

impacts, cumulative change of a is obtained (Dermott, 1984). 

The angular momentum exchange between the satellite and the ring in an inner 

2:1 Lindblad resonance has been systematically examined in a series of numerical 

simulations where the initial optical depth of the ring is τ = 0.025. At the beginning 

of the simulations the collisionless and the collisional cases yield the same decrease of 

angular momentum. This transient stage of evolution follows from the " creation" 

of the satellite at time t = 0: the nonstationary evolution of the ring allows the 

satellite to exert net torque on the ring (Meyer-Vernet and Sicardy, 1986). However, 

after the short nonstationary phase the net torque vanishes in the collisionless 

simulations, since the formed density feature is symmetric with respect to satellite 

(see Fig. I d ) . On the other hand, in the case of colliding particles the ring-response 

is non-symmetric with respect to satellite, leading to continuous removal of angular 

momentum from the ring, in a rate (proportional to the square of the mass of 

satellite) which at the beginning of the simulation is approximately constant but 

later decreases. This latter reduction results from the reduced surface density in the 

resonance area during the course of the simulation (see Fig. 1), as the simulation 

system as a whole moves inward. As can be expected, the nonlinearity is largest in 

the case of the most massive satellite. In the linear regime the simulated torque is 

within 20 % of the standard Goldreich-Tremaine formula. 

The oscillations seen in the collisionless case are most probably due to the small 

number of simulation particles. The particles possess several different perturbation 

periods diversing from the angular speed of the resonance pattern, and depending on 

their net orbital stage when approaching and leaving the pattern the instantenous 
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Fig. 2. The relative angular momentum change is plotted for 6 different satellite masses. 

The two dashed curves correspond to collisionless simulation. The ring of 800 identical 

massless particles with radius 5 · 1 0 ~ 3 has an initial width W = 0.4. 
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Fig. 3. The viscous stress tensor components are plotted for 4 different values of nonlin-

earity parameter q. The components are calculated from the collisional 2:1 inner Lindblad 

resonance simulation, except for the value q = 0.0 which has been taken from the perturba-

tionless simulation. They are plotted as a function of Ε', distance from density maximum. 

direction of the exerted torque can vary. The amplitude of the oscillation depends 

on the mass of satellite but it vanishes if the number of particles is increased. 

3 . Perturbed Streamlines 

The ring particle orbits near resonance can be conveniently described by stream-

line formalism (Borderies, Goldreich, and Tremaine, 1982; 1983; 1985; 1986). In 

a cylindrical coordinate system (r, φ) the shape of a streamline can be written as 

r — a[l — e(a) cos (τη(φ + Δ ( α ) ) ) ] , where a is the semimajor axis, e is the eccentricity 

(e < 1) , Δ is a phase angle, and m is azimuthal wavenumber (m > 0) characteriz-

ing the ring-satellite resonance. The coordinate system corotates with the satellite. 

W e use the notation of Borderies, Goldreich, and Tremaine throughout the text in 

order to be able to compare simulations with theoretical results: the symbol Ε ' is 

used for the distance from density maximum along each streamline, and q stands for 

the nonlinearity parameter. In a nonperturbed case q = 0. If q > 1, the streamlines 

intersect which is not possible for a dissipative system with even modest optical 

depths. 

The behaviour of the streamlines was studied in detail for 2:1 ILR simulation 

with Ms = 2.5 · 1 0 " 3 M p . When using 800 ring particles with a radius σ = 0.005, 

the optical depth τ — 0.025 was obtained. This number of particles is still too small 

to give good resolution. However, by collecting data over several orbital periods, 

enough resolution was obtained to enable the accurate fitting of streamlines to the 

particle distribution as well as calculation of velocity ellipsoids and densities along 

. q=0.00 . q = 0.19 : 

: q=0.36/-. . q=0.55 : 
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Fig. 4. The velocity deviation from the Keplerian velocity is shown with a tail attached to 

the ring particle. Also the least square fits of the streamlines are shown with appropriate 

values for nonlinearity parameter q (right edge) and semimajor axis (left edge). Also some 

constant value curves for E' are plotted with dashed lines. The ring is in inner 2:1 Linblad 

resonance with the satellite having mass of Ms = 2.5· 1 0 " 3 M p . 

streamlines. From these fits also non-linearity factors can be derived. 

In the Fig. 3 the azimuthal variation of the components of the viscous stress 

tensor ρ (product of density and velocity dispersion tensor) along a streamline is 

shown for four different values of q, plotted as a function of E 1 ' . The viscous angular 

momentum flux F is the rate at which the particle-particle impacts transport angu-

lar momentum across a unit length of streamline with semimajor axis a at longitude 

φ. It is calculated directly from the non-diagonal component of the viscous stress 

tensor (Borderies, Goldreich, and Tremaine, 1982), F(a,<f>) = αρΓβ(α,φ). 

At q = 0 the component p r o has small positive values around the stream-

line without any significant azimuthal variation. There is only normal outward 

directed collision induced angular momentum transport caused by differential ro-

tation. When satellite perturbations have caused the nonlinearity to increase into 

q =z 0.19 the viscous stress components are clearly increased, and also show strong 

azimuthal variations. Inspection of the non-diagonal component p r o shows the re-

versal of the angular momentum flux at some longitude intervals (compared to Figs. 

3-5 in B G T , 1983). At larger values of q the azimuthal fluctuations are increased, 

and p r e has larger negative values. There are no large differences in the viscous 

stress tensor, when the nonlinearity factor grows from q = 0.36 to q — 0.55 even if 

the perturbation is stronger in the latter case. When the q value is larger, there is 

also larger velocity dispersion, but the density is also smaller because of the larger 
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perturbations. These changes compensate each other, and there is no significant 

differences in viscous stress tensor components. When the along streamline inte-

grated angular momentum flux, the angular momentum luminosity is negative, the 

net angular momentum flow is directed inward, and a gap or sharp edge is formed 

in the ring. This phenomenon has been verified by our simulations. 

The wavy streamlines in the perturbed ring are seen as satellite generated pe-

culiar vélocités of individual particles on the microscopic level. In Figure 4 the least 

square fits to the streamlines are shown with q and some constant values of E'. The 

individual particles are plotted with a tail showing the velocity deviation from the 

Keplerian velocity. Particles with positive tangential velocity difference are plotted 

as open circles. The azimuth of maximum inward directed angular momentum flux 

(at E' ~ — π /2 , see Fig. 3) is seen to correspond to the inner edges of density waves 

in which there are particles with strong inward directed peculiar velocities. 
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Discussion 

P.Goldreich - I have only a comment. This is beautiful work, the first convincing 
particle simulation of the dynamics of sharp edges. 
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