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Abstract
We show the thinness of 7 of the 40 hypergeometric groups having a maximally unipotent monodromy in Sp(6).

1. Introduction

A hypergeometric group �(α, β), associated with the pair of parameters α = (α1, α2, . . . , αn), β =
(β1, β2, . . . , βn) ∈Cn such that αj − βk /∈Z for any 1 ≤ j, k ≤ n, is defined as a subgroup of GLn(C)
generated by the companion matrices A and B of the polynomials

f (x) =
n∏

j=1

(x − e2π iαj ) and g(x) =
n∏

j=1

(x − e2π iβj ).

Levelt (cf. [5, Theorem 3.5]) showed that there exists a basis of the (local) solution space of the
hypergeometric differential equation

D(α, β)u = 0

defined on P1 \ {0, 1, ∞}, where D(α, β) := (θ + β1 − 1) · · · (θ + βn − 1) − z(θ + α1) · · · (θ + αn) and
θ = z d

dz
, with respect to which the monodromy group of the hypergeometric equation is the hypergeo-

metric group �(α, β) defined as above.
Now, we consider the hypergeometric groups �(α, β) for which the associated polynomials f , g are

products of cyclotomic polynomials and form a primitive pair (that is, both of the polynomials are,
simultaneously, not polynomials in xk for any k ≥ 2). Beukers and Heckman [5, Theorem 6.5] show that
in case when the constant terms of both polynomials are 1 (this happens only when n, the degree of
the polynomials f , g, is an even number), the corresponding hypergeometric group �(α, β) preserves a
non-degenerate symplectic form � and �(α, β) is contained inside the integral symplectic group Sp�(Z)
as a Zariski dense subgroup.

If we denote the Zariski closure of the hypergeometric group �(α, β) inside GLn(C) by G and
�(α, β) ⊆ G(Z), then we call the hypergeometric group �(α, β) arithmetic if the index of �(α, β) inside
G(Z) is finite and thin otherwise.

The question of Sarnak [12], to determine the pairs of parameters α, β ∈Qn for which the associated
hypergeometric groups �(α, β) are arithmetic or thin, has been considered by many mathematicians and
some progress on answering this question can be seen in refs. [1, 3, 6–10, 13–16, 18, 19]. The case when
α = (0, 0, 0, 0) has drawn much interest. In this case, there are 14 symplectic hypergeometric groups with
a maximally unipotent monodromy associated with the pairs of polynomials f , g, where f (x) = (x − 1)4

and g(x) are products of cyclotomic polynomials such that g(0) = 1, g(1) �= 0, and the pair f , g forms a
primitive pair. These 14 hypergeometric groups arise as monodromy groups of families of Calabi-Yau
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Table 1. Examples of thin hypergeometric groups in Sp(6)

S.No. β a d c Splitting of �(α, β)
1 (1/2,1/2,1/2,1/2,1/2,1/2) 64 48 12 Z ∗Z

2 (1/2,1/2,1/2,1/2,1/3,2/3) 48 40 11 Z ∗Z

3 (1/2,1/2,1/2,1/2,1/4,3/4) 32 32 10 Z ∗Z

4 (1/2,1/2,1/2,1/2,1/6,5/6) 16 29 9 Z ∗Z

5 (1/2,1/2,1/3,2/3,1/3,2/3) 36 33 10 Z ∗Z

6 (1/2,1/2,1/3,2/3,1/4,3/4) 24 26 9 Z ∗Z

7 (1/2,1/2,1/5,2/5,3/5,4/5) 20 25 9 Z ∗Z

The integers a, d, and c determine the entries of some conjugate of the matrix A (cf. Section 2).

threefolds fibering over P1 \ {0, 1, ∞}. It is now well known that half of these 14 hypergeometric groups
are arithmetic (cf. [13] and [16]) and the other half are thin (cf. [6]).

When n ≥ 6 is an even number, consider f (x) = (x − 1)n and g(x) as described above. Then, one
may ask if the hypergeometric groups associated with these pairs of polynomials also have the same
dichotomy (as having half of them arithmetic and the other half thin) between arithmeticity and thin-
ness that the 14 hypergeometric groups (with a maximally unipotent monodromy) of degree four have.
The first case to consider is n = 6, and in this case, a computation shows that there are 40 symplectic
hypergeometric groups (cf. [1, Table A]) associated with the pairs of polynomials f (x) = (x − 1)6 and
g(x) as described above. In ref. [1], we show that 18 of these 40 symplectic hypergeometric groups are
arithmetic.

Remark 1.1. It may be noted that according to [2, Table 1] the above dichotomy in n = 6 is now
disproved.

In this article, we show the thinness of 7 of the above 40 hypergeometric groups.

Theorem 1.2. The hypergeometric groups �(α, β) associated with the 7 pairs of the parameters α, β
where α = (0, 0, 0, 0, 0, 0) and β is any of the 7 parameters appearing in Table 1 are thin.

We now sketch the proof of the above theorem. It follows from [4, Table 2] and the universal coef-
ficient theorem for cohomology that H2(Sp6(Z), Q) is isomorphic to Q, and hence, the cohomological
dimension of Sp6(Z) over Q is ≥ 2. Since Sp6(Z) has no Q-torsion, that is, the order of every finite
subgroup of Sp6(Z) is a unit in Q, it follows from [17, Theorem 9.2] that if � is a finite index subgroup
of Sp6(Z) then the cohomological dimension of � over Q is also ≥ 2. Therefore, to prove Theorem 1.2 it
is enough to prove that the hypergeometric groups appearing in Theorem 1.2 are free groups or contain
a free subgroup of finite index (free groups have cohomological dimensions 1).

Using the technique of Brav and Thomas [6], we use the following version of the ping-pong lemma
from [11, Proposition III.12.4] to show that the hypergeometric groups �(α, β) appearing in Theorem
1.2 are isomorphic to Z ∗Z.

Theorem 1.3 (Ping-Pong Lemma). Let a group G be generated by two of its subgroups, G1 and G2. Let
e be the identity element of the group G. Suppose at least one of these two subgroups has order greater
than 2 and G acts on a set W. Suppose there are non-empty subsets X and Y of W such that

(i) X and Y are disjoint subsets;
(ii) (G2 \ {e})X ⊆ Y;
(iii) (G1 \ {e})Y ⊆ X;

Then, G = G1 ∗ G2, the free product of G1 and G2.
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For the hypergeometric groups appearing in Table 1, we consider the standard action of �(α, β) on
R6. We apply some change of basis in R6 to make computations simpler. Let K be the change of the basis
matrix. Let U = K−1AK and T = K−1A−1BK, where A and B are the matrices defined at the beginning
of this section. Let R = TU.

The hypergeometric group �(α, β) (with respect to the new basis) is generated by the cyclic sub-
groups G1 = 〈T〉 and G2 = 〈R〉. Since A−1B is a non-trivial unipotent matrix and B has repeated roots in
all the 7 cases of Table 1, G1 and G2 both are isomorphic to Z.

We define the two sets X and Y as

X = ±C+ ∪ ±C− and Y =
⋃

j∈Z\{0}
RjX,

where C+ and C− are some cones in R6. With this setting, we are able to verify the ping-pong conditions
(i), (ii), and (iii) of Theorem 1.3 for the seven cases of Table 1 and conclude that the corresponding
hypergeometric groups �(α, β) are isomorphic to Z ∗Z.

Remark 1.4. Examples 1–7 appearing in Table 1 are, respectively, Examples 1, 2, 3, 4, 5, 6, 10 of [1,
Table A]. While we were trying to get all the thin hypergeometric groups of [1, Table A] one by one,
Bajpai, Dona, and Nitsche announced their article [2] on arXiv in which they also show the thinness of
these examples. In comparison to [2], the added value of the present article is:

1. It demonstrates that the specific method of Brav and Thomas works in higher dimensions with
almost no changes.

2. The brute force input to make the method work consists of only two real numbers appearing in
v (cf. Section 2). Consequently, there is a chance that one can find a pattern in the choices of
those numbers that generalizes to other hypergeometric groups.

2. Notation and strategy

The hypergeometric group �(α, β) with the pair of parameters α = (0, 0, 0, 0, 0, 0) and β as in Table 1,
with respect to the new basis (obtained by using a change of the basis matrix K, for suitable K, provided
in Section 3), is generated by the matrices U, T and R = TU, where U = K−1AK and T = K−1A−1BK.
The matrices U, T , and R have the following form and they preserve a symplectic form J whose matrix
form is as given below:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

−a −a 0 1 0 0

0 d d −1 1 0

0 0 −c 1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 − c 1 −1 1

−a −a 0 1 0 0

0 d d −1 1 0

0 0 −c 1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Observe that in case of the hypergeometric groups appearing in Theorem 1.2, Rm �= I for any m ∈
Z \ {0} as the characteristic polynomial of B has repeated roots.

Following the idea of Brav and Thomas [6], we consider first the matrix

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 −1

0 0 0 −1 0 0

0 −d 0 −1 1 0

0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where d is defined as the (5, 2) entry of the matrix U. It follows that H fixes the subspace V spanned by
its first, third, and fifth column vectors. A computation shows that

H2 = I, HRH = R−1 and HT−1H = T (2.1)

where I is the 6 × 6 identity matrix.
For a 6 × 6 unipotent matrix F, we define

log(F) = (F − I) − 1

2
(F − I)2 + 1

3
(F − I)3 − 1

4
(F − I)4 + 1

5
(F − I)5.

Observe that T−1R and TR−1 are unipotent matrices and define P = log(T−1R) and Q = log(TR−1).
It follows from Equation (2.1) that

H(T−1R)j = (TR−1)jH for all j ∈N

and from this, it follows that HP = QH, and we get

HPj = QjH for all j ∈N. (2.2)

Now, we choose a vector v in V and define

C+ =
{

5∑
j=0

tjP
jv : tj ∈R>0, ∀ 0 ≤ j ≤ 5

}

the open cone generated by the vectors v, Pv, P2v, P3v, P4v, P5v, and

C− =
{

5∑
j=0

tjQ
jv : tj ∈R>0, ∀ 0 ≤ j ≤ 5

}

the open cone generated by the vectors v, Qv, Q2v, Q3v, Q4v, Q5v inside R6. Since HPj = QjH (cf.
Equation (2.2)) and Hv = v, it follows that

C− = HC+ . (2.3)

Now, we are ready to define the subsets X and Y of R6 (with the standard action of the hypergeometric
group �(α, β)) that satisfy the hypotheses of the ping-pong lemma (cf. Theorem 1.3). Let

X = ±C+ ∪ ±C− and Y =
⋃

j∈Z\{0}
RjX . (2.4)

Let M be the matrix whose column vectors are v, Pv, P2v, P3v, P4v, P5v, and let N be the matrix whose
column vectors are v, Qv, Q2v, Q3v, Q4v, Q5v. Observe that N = HM.

Remark 2.1. For the vector v we choose, the matrices M and N both are invertible and the choice of v is
motivated by the analog calculation of [6] in which v is the solution vector of the equation vtJPv = 0 in
V . In [6], the vector v is uniquely determined but in our case the equation vtJPv = 0 has infinitely many
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solution vectors in V and not all solution vectors help in verifying the ping-pong conditions. Based on
computations we choose, for each case in Table 1 separately, a suitable vector v (constructed from the
solution vectors of the equation vtJPv = 0).

The hypergeometric group �(α, β) is generated by its subgroups G1 = 〈T〉 and G2 = 〈R〉. We show
that G1 ∩ G2 = {I}. Observe that Rm = Tn, for some m, n ∈Z, implies that A−1BmA = Cn, where C = A−1B
fixes the standard basis vectors e1, e2, . . . , e5 in R6, and we get A−1BmAej = Cnej = ej for all 1 ≤ j ≤
5. This implies that Bmej = ej for all 2 ≤ j ≤ 6. Also, Be1 = e2 = Bme2 = BmBe1 implies that Bme1 = e1.
It now follows that Bm = I. Since the characteristic polynomials of B associated with the parameters
appearing in Theorem 1.2 have repeated roots, we get that m = 0 = n. Hence, G1 ∩ G2 = {I}.

Now, we need to verify the following conditions of the ping-pong lemma.

(A) X and Y are disjoint subsets.
(B) (G2 \ {I})X ⊆ Y .
(C) (G1 \ {I})Y ⊆ X.

We will verify condition (A) by verifying the following statements.

(A1) RjC+ and RjC− are disjoint from ±C+ for all j ∈Z \ {0}.
(A2) RjC+ and RjC− are also disjoint from ±C− for all j ∈Z \ {0}.

Condition (B) follows from the construction of the subset Y . We will verify condition (C) by verifying
the following statements.

(C1) T−1C+ ⊆ C+.
(C2) TC− ⊆ C−.
(C3) T−1Rj(C+ ∪ C−) ⊆ ±C+ for all j ∈Z \ {0}.
(C4) TRj(C+ ∪ C−) ⊆ ±C− for all j ∈Z \ {0}.
Now, we have the following convention.

Definition 2.2. We call a row vector (ai1, ai2, . . . , ain) of an n × n matrix (aij) non-negative (respectively,
non-positive) if aij ≥ 0 (respectively, aij ≤ 0) for all 1 ≤ j ≤ n. Also, we call an n × n matrix (aij) non-
negative (respectively, non-positive) if aij ≥ 0 (respectively, aij ≤ 0) for all 1 ≤ i, j ≤ n.

Observe that RjC+ ∩ C+ is non-empty exactly if there exist column vectors v1, v2 having all of their
coordinates positive such that RjMv1 = Mv2, that is, M−1RjMv1 = v2. Similarly, RjC− ∩ C+ is non-empty
exactly if there exist column vectors v1, v2 having all of their coordinates positive such that RjNv1 = Mv2,
that is, M−1RjNv1 = v2. Therefore, to verify the statement (A1), it is sufficient to show that the matrices
M−1RjM and M−1RjN, for all j ∈Z \ {0}, have some non-negative and some non-positive rows (as when
this is the case, M−1RjM and M−1RjN map a column vector v1 having all of its coordinates positive to a
column vector v2 having some positive and some negative coordinates).

Since N = HM, H2 = I and HRH = R−1 (cf. Equation (2.1)), we get

N−1RjM = (HM)−1Rj(HN) = M−1H−1RjHN = M−1HRjHN = M−1R−jN (2.5)

N−1RjN = (HM)−1Rj(HM) = M−1H−1RjHM = M−1HRjHM = M−1R−jM. (2.6)

It follows from Equations (2.5) and (2.6) that if the matrices M−1RjM and M−1RjN, for all j ∈Z \ {0},
have some non-negative and some non-positive rows, then the matrices N−1RjN and N−1RjM, for all
j ∈Z \ {0}, also have some non-negative and some non-positive rows. This shows that, for all j ∈Z \ {0},
RjC+ and RjC− both are disjoint from ±C−. Hence, the sufficient criterion for (A1) above also proves
(A2).
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The condition (C) is divided into four parts from (C1) to (C4). Observe that T−1C+ ⊆ C+ if for any
column vector v1 having all of its coordinates some positive real numbers, there exists a column vec-
tor v2 having all of its coordinates some positive real numbers such that T−1Mv1 = Mv2. Thus, (C1) is
equivalent to showing that the matrix M−1T−1M is non-negative (as when this is the case, M−1T−1M
will map a column vector v1 having all of its coordinates positive to a column vector v2 having all of its
coordinates positive).

Similarly, TC− ⊆ C− if for any column vector v1 having all of its coordinates some positive real
numbers, there exists a column vector v2 having all of its coordinates some positive real numbers such
that TNv1 = Nv2. Thus, (C2) is equivalent to showing that the matrix N−1TN is non-negative. Again,
since N = HM, H2 = I and HTH = T−1 (cf. Equation (2.1)), we get

N−1TN = (HM)−1T(HM) = M−1H−1THM = M−1(HTH)M = M−1T−1M (2.7)

and hence the sufficient criterion for (C1) also proves (C2).
By using similar arguments as above, to verify the statement (C3) it is enough to show that both the

matrices M−1T−1RjM and M−1T−1RjN, for all j ∈Z \ {0}, are either non-negative or non-positive.
To show (C4), it is enough to show that both the matrices N−1TRjM and N−1TRjN, for all j ∈Z \ {0},

are either non-negative or non-positive. Again, since N = HM, H2 = I, HRH = R−1, and HTH = T−1 (cf.
Equation (2.1)), we get

N−1TRjM = (HM)−1TRj(HN) = M−1H−1TRjHN = M−1HTRjHN = M−1T−1R−jN (2.8)

N−1TRjN = (HM)−1TRj(HM) = M−1HTRjHM = M−1T−1R−jM (2.9)

and hence the sufficient criterion for (C3) also proves (C4).
In conclusion, to apply the ping-pong lemma to the groups in Table 1 with X and Y obtained as

above from a given v ∈R6, it suffices to check that M has full rank, that M−1RjM and M−1RjN have
both non-positive and non-negative rows for all j �= 0 (A1), that M−1T−1M is non-negative (C1), and
that M−1T−1RjM and M−1T−1RjN are non-negative or non-positive for all j �= 0 (C3).

3. Proof of the freeness of the hypergeometric groups of Table 1

As explained above in Section 2, to show that the hypergeometric groups associated with the parameters
appearing in Table 1 are free groups (using the ping-pong lemma), we need to verify only the statements
(A1), (C1), and (C3) of Section 2 for these groups.

We write below the detailed verification for Example 1 and also for Example 2 as it requires some
different explanations. For other examples, we provide the needed data which helps in verifying the
ping-pong conditions using the methods of Examples 1 and 2. The computations are an adaptation of
the methods in ref. [6] to our setting. The main new ingredient is the choice of v. See Section 2 for the
notations.

3.1. Case 1

α = (0, 0, 0, 0, 0, 0), β = (1/2, 1/2, 1/2, 1/2, 1/2, 1/2).
In this case, the corresponding polynomials f , g are

f (x) = x6 − 6 x5 + 15 x4 − 20 x3 + 15 x2 − 6 x + 1 and

g(x) = x6 + 6 x5 + 15 x4 + 20 x3 + 15 x2 + 6 x + 1

and the corresponding hypergeometric group �(α, β) is generated by the companion matrices A, B of
the polynomials f , g. We first consider the following change of the basis matrix
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K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 48 −12 0 −1 −1

−64 −144 0 −1 4 5

128 208 −40 3 −6 −10

−64 −112 0 −3 4 10

0 0 −12 1 −1 −5

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, U = K−1AK, T = K−1A−1BK and R = TU have the form described in Section 2 with a = 64,
d = 48 and c = 12.

Guided by computer calculations, we pick v = (− 1
10

, 0, 1, 0, − 1162
225

, 0
)

inside the fixed subspace V
of the matrix H. Note that in this case, −R is unipotent and so we can define Z = log(− R). Then, as
required, the resulting matrix M has full rank, and

−R = eZ = I + Z + Z2

2! + Z3

3! + Z4

4! + Z5

5!

Rj = (−1)jejZ = (−1)j

(
I + jZ + j2Z2

2! + j3Z3

3! + j4Z4

4! + j5Z5

5!
)

. (3.1)

To verify (A1), we compute the matrices M−1RjM and M−1RjN, for all j ∈Z \ {0}, and show that they
have some non-negative and some non-positive rows.

Denote Ai = M−1 Zi

i! M, for i = 1, 2, 3, 4, 5. Then,

M−1RjM = (−1)j(I + jA1 + j2A2 + j3A3 + j4A4 + j5A5) . (3.2)

By computation, we get

A5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

98
3375

916
3375

304
225

256
75

64
15

128
15

− 49
3375

− 458
3375

− 152
225

− 128
75

− 32
15

− 64
15

49
16875

458
16875

152
1125

128
375

32
75

64
75

− 49
202500

− 229
101250

− 38
3375

− 32
1125

− 8
225

− 16
225

8477
12150000

39617
6075000

3287
101250

1384
16875

346
3375

692
3375

− 8477
24300000

− 39617
12150000

− 3287
202500

− 692
16875

− 173
3375

− 346
3375

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.3)

Notice that A5 has some non-negative and some non-positive rows. Now, we use the Archimedean
property of the real numbers to show that there exists a positive integer n ∈Z such that the entries of
the first two rows of the matrix M−1RjM, for all j ∈Z \ {0} and |j| ≥ n, have the same sign as that of the
corresponding entries of the matrix sign(j)(−1)|j|A5.

A sufficient n can be computed after writing

(−1)j(I + jA1 + j2A2 + j3A3 + j4A4 + j5A5) = (−1)j(I + j(A1 + j(A2 + j(A3 + j(A4 + jA5))))). (3.4)

By using the Archimedean property of the real numbers on the entries of the matrices A5 and A4, we
get a positive integer k5 such that the entries of the matrix A4 + jA5 have the same sign as that of the
corresponding entries of the matrix A5 for all j ≥ k5. Again using the Archimedean property of the real
numbers on the entries of the matrices A4 + k5A5 and A3, we get a positive integer k4 such that the entries
of the matrix A3 + j(A4 + k5A5) have the same sign as that of the corresponding entries of the matrix
A4 + k5A5 for all j ≥ k4. Repeating this process, we get the positive integers k5, k4, k3, k2, k1 such that for
all j ≥ n = max{k5, k4, k3, k2, k1} the entries of the matrix (−1)j(1 + j(A1 + j(A2 + j(A3 + j(A4 + jA5)))))
have the same sign as that of the corresponding entries of the matrix (−1)jA5.
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In case when j is a negative integer, we take j = −l where l is a positive integer and write the expression
for the matrix M−1RjM as

(−1)j(1 + jA1 + j2A2 + j3A3 + j4A4 + j5A5) = (−1)l(1 + l( − A1 + l(A2 + l( − A3 + l(A4 − lA5)))))
(3.5)

and use the Archimedean property of the real numbers, as it is described above, to get a positive integer
m so that the matrix M−1RjM, for all j ≤ −m ∈Z \ {0}, has some non-negative and some non-positive
rows. In this case, we get that max{n, m} is 5. So, it follows that for |j| ≥ 5, the matrix M−1RjM has some
non-negative and some non-positive rows.

For the remaining values of j ∈Z \ {0}, that is, for j ∈Z with 1 ≤ |j| ≤ 4, we compute the matrices
M−1RjM individually and verify that the matrix M−1RjM, also for 1 ≤ |j| ≤ 4, has some non-negative
and some non-positive rows.

Similarly, we verify that the matrix M−1RjN, for all j ∈Z \ {0}, has some non-negative and some
non-positive rows.

To verify (C1), we need to show that the matrix M−1T−1M is non-negative. By computation we get

M−1T−1M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 458
225

0 128
5

0 64

0 1 0 0 0 0

0 229
1125

1 64
25

0 32
5

0 0 0 1 0 0

0 39617
810000

0 692
1125

1 346
225

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To verify (C3), it is sufficient to show that both the matrices M−1T−1RjM and M−1T−1RjN, for all
j ∈Z \ {0}, are either non-negative or non-positive.

Using Equation (3.1) for the expression of Rj, we get

M−1T−1RjM = (−1)j(M−1T−1M + jD1 + j2D2 + j3D3 + j4D4 + j5D5) (3.6)

M−1T−1RjN = (−1)j(M−1T−1N + jE1 + j2E2 + j3E3 + j4E4 + j5E5) (3.7)

where Di = M−1 T−1Zi

i! M and Ei = M−1 T−1Zi

i! N, for i = 1, 2, 3, 4, 5.
By computation, we get

D5 = E5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 98
3375

− 916
3375

− 304
225

− 256
75

− 64
15

− 128
15

− 49
3375

− 458
3375

− 152
225

− 128
75

− 32
15

− 64
15

− 49
16875

− 458
16875

− 152
1125

− 128
375

− 32
75

− 64
75

− 49
202500

− 229
101250

− 38
3375

− 32
1125

− 8
225

− 16
225

− 8477
12150000

− 39617
6075000

− 3287
101250

− 1384
16875

− 346
3375

− 692
3375

− 8477
24300000

− 39617
12150000

− 3287
202500

− 692
16875

− 173
3375

− 346
3375

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since all entries of the matrices D5 and E5 have the same signs, by using the Archimedean property
of the real numbers, as above, we find that for |j| ≥ 7 the matrices M−1T−1RjM and M−1T−1RjN are
either non-negative or non-positive. We compute that the matrices M−1T−1RjM and M−1T−1RjN, also
for 1 ≤ |j| ≤ 6, are either non-negative or non-positive.

This completes the proof of the freeness of the hypergeometric group.

3.2. Case 2

α = (0, 0, 0, 0, 0, 0), β = (1/2, 1/2, 1/2, 1/2, 1/3, 2/3).
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We consider the change of the basis matrix

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 40 −11 0 −1 −1

−48 −120 4 −1 4 5

96 168 −34 3 −6 −10

−48 −88 4 −3 4 10

0 0 −11 1 −1 −5

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, a = 48, d = 40, c = 11 and v = (− 1
10

, 0, 1, 0, − 631
150

, 0
)
. This time neither R nor −R is

unipotent. But R6 is unipotent, so let Z = log(R6). Note that Z4 = 0. Then,

R6 = eZ = I + Z + Z2

2! + Z3

3! ,

R6n+k = RkR6n = RkenZ = Rk

(
I + nZ + n2Z2

2! + n3Z3

3!
)

. (3.8)

We write j = 6n + k for n ∈N∪ {0} and 0 ≤ k ≤ 5. If we denote Ai,k = M−1 RkZi

i! M and Bi,k = M−1 RkZi

i! N
for i = 1, 2, 3, then

M−1R6n+kM = M−1RkM + nA1,k + n2A2,k + n3A3,k (3.9)

M−1R6n+kN = M−1RkN + nB1,k + n2B2,k + n3B3,k . (3.10)

By denoting Di,k = M−1 T−1RkZi

i! M and Ei,k = M−1 T−1RkZi

i! N for i = 1, 2, 3 and using the above Equation
(3.8), we get

M−1T−1R6n+kM = M−1T−1RkM + nD1,k + n2D2,k + n3D3,k (3.11)

M−1T−1R6n+kN = M−1T−1RkN + nE1,k + n2E2,k + n3E3,k . (3.12)

For each k, we can find a q ∈N such that the signs of the entries of M−1R6n+kM, M−1R6n+kN,
M−1T−1R6n+kM and M−1T−1R6n+kN are the same as that of the entries of A3,k, B3,k, C3,k and D3,k for all
|n| > q, and we verify the ping-pong conditions as in Case 1.

3.3. Case 3

α = (0, 0, 0, 0, 0, 0), β = (1/2, 1/2, 1/2, 1/2, 1/4, 3/4).
We consider the change of the basis matrix

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 32 −10 0 −1 −1

−32 −96 8 −1 4 5

64 128 −28 3 −6 −10

−32 −64 8 −3 4 10

0 0 −10 1 −1 −5

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, a = 32, d = 32, c = 10, v = (− 1
11

, 0, 1, 0, − 277
75

, 0
)

and Z = log(R4).
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3.4. Case 4

α = (0, 0, 0, 0, 0, 0), β = (1/2, 1/2, 1/2, 1/2, 1/6, 5/6).
We consider the change of the basis matrix

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 24 −9 0 −1 −1

−16 −72 12 −1 4 5

32 88 −22 3 −6 −10

−16 −40 12 −3 4 10

0 0 −9 1 −1 −5

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case a = 16, d = 24, c = 9, v = (− 1
10

, 0, 1, 0, − 3041
810

, 0
)

and Z = log(− R3).

3.5. Case 5

α = (0, 0, 0, 0, 0, 0), β = (1/2, 1/2, 1/3, 2/3, 1/3, 2/3).
We consider the change of the basis matrix

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 33 −10 0 −1 −1

−36 −99 7 −1 4 5

72 135 −30 3 −6 −10

−36 −69 7 −3 4 10

0 0 −10 1 −1 −5

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, a = 36, d = 33, c = 10, v = (− 1
6
, 0, 1, 0, − 207

40
, 0

)
and Z = log(R6).

3.6. Case 6

α = (0, 0, 0, 0, 0, 0), β = (1/2, 1/2, 1/3, 2/3, 1/4, 3/4).
We consider the change of the basis matrix

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 26 −9 0 −1 −1

−24 −78 10 −1 4 5

48 102 −26 3 −6 −10

−24 −50 10 −3 4 10

0 0 −9 1 −1 −5

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, a = 24, d = 26, c = 9, v = (− 1
6
, 0, 1, 0, − 472

105
, 0

)
and Z = log(R12).

3.7. Case 7

α = (0, 0, 0, 0, 0, 0), β = (1/2, 1/2, 1/5, 2/5, 3/5, 4/5).
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We consider the change of the basis matrix

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 25 −9 0 −1 −1

−20 −75 11 −1 4 5

40 95 −24 3 −6 −10

−20 −45 11 −3 4 10

0 0 −9 1 −1 −5

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, a = 20, d = 25, c = 9, v = (− 1
10

, 0, 1, 0, − 221
60

, 0
)

and Z = log(R10).
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