
Can. J. Math., Vol. XXX, No. 6, 1978, pp. 1183-1205 

SIMPLE FACTORS IN THE JACOBIAN OF 
A FERMAT CURVE 

NEAL KOBLITZ AND DAVID ROHRLICH 

1. Introduction. Let 

F(N) = {(X, F, Z) e P2(C) : XN + YN = ZN}, N ^ 3, 

denote the iVth Fe rmât curve. F h e period lattice of F(N) is contained with 
finite index in the product of certain lattices LTtS (see [6]), and to this inclusion 
of lattices there corresponds an isogeny of the Jacobian of F(N) onto a product 
of abelian varieties. The purpose of this paper is to determine when two factors 
in this product are isogenous over C, and whether they are absolutely simple. 

Since we shall view abelian varieties as complex tori and shall work exclusive
ly with the lattices L r , , , it will be convenient to say tha t a lattice L is simple 
(rather than tha t Cd/L is simple) or tha t L and L' are isogenous (rather than 
tha t Cd/L and Cd/L' are isogenous). 

We begin by recalling the definition of the lattices LTiS. Given a pair of 
integers (r, s) with 1 ^ r, s and r -{- s ^ N — 1, let i f be the integer defined by 

N/M = g.c.d.(N,r, s). 

Let (a) denote the unique representative of a modulo N between 0 and N — 1, 
and let Hrs be the subset of ( Z / M Z ) * of all elements h such tha t 

(hr) + (hs) ^ N - 1. 

Then Hr>s is a set of coset representatives for { — 1, 1} in (Z/MZ)*. Making 
the usual identification of ( Z / M Z ) * with Gal (Q(e 2 < W M ) /Q) , 

h »-> ah, where ah(e
2iri/M) = e2*hi/M, 

we define LTtS as the lattice in 0 ( M ) / 2 consisting of all vectors 

where z runs through the integers of Q(e27ri/M). 
Observe t ha t 

Hr,s = hH(hr),(hs) 

for any h in Hr>s. Consequently, since we have not prescribed an ordering on 
HTi6, we have 

F<r,s ~ Mftr),<fts>-

Received June 28, 1977. 

1183 

https://doi.org/10.4153/CJM-1978-099-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-099-6


1184 N. KOBLITZ AND D. ROHLRICH 

Now the period lattice of F(N) (relative to a suitable basis for the holo-
morphic differentials) is contained with finite index in the product 

n Lr,s 
[r,s] 

taken over equivalence classes of pairs (r, s) with 1 ^ r, s and r ~\- s ^ N — 1. 
The equivalence relation is 

(r,s) « ((hr), (hs)) 

for h in HTtS. The observation of the preceding paragraph shows that this 
product over equivalence classes is well-defined. In what follows, when we 
consider the simplicity of LTjS or the existence of isogenics between Lr>s and 
Lr>tS>, we allow ourselves to replace (r, s) by any member of its equivalence 
class. In particular, if g.c.d. (r, N) = 1, we may assume that the pair is 
actually (1, s). 

To determine when Lr>s is simple, we use a criterion of Shimura-Taniyama 
[7]: Let 

Wr,„ = {w g (Z/MZ)* : wHr,8 = HTtS). 

Then Wr,s is a subgroup of (Z/JlfZ)*, and Lr>s is simple if and only if Wr,x — 
{1}. Suppose IT?>S T̂  {1}. Then LTtS is isogenous to a product of |Wr>s| iso
morphic simple factors, where |IT?)V| is the cardinality of Wr,s- These factors 
have complex multiplication by an order of the fixed field of Wr^ and Of- type 
equal to HrtS/Wr,s (viewed as a subset of the Galois group of the fixed field of 
Wr,s over Q)-

If g.c.d. (r, s, N) = g.c.d. (rr, sf, N) and Hrs = hHr>^> for some h in 
(Z/iVZ)*, then Lr s and Lr/>à./ are identical lattices. On the other hand, suppose 
Lr>s and Lr>tS> are isogenous. Then the Of-types of their simple factors must be 
the same up to an automorphism of the field of complex multiplication, so that 
hHTtS = Hr>tS> for some A in (Z/7VZ)*. 

From now on we shall introduce a superfluous t into our notation, writing 
Hr>Stt instead of Hrs, where r + s + t = N. The point of this is the following: 
One verifies immediately that for any h in (Z/AfZ)* (where N/M = g.c.d. 
(r, s, TV)) either 

(hr) + (hs) + (ht) - N or (fcr) + (hs) + <A/) = 2Â  

and that HTtS = HTiStt is the set of those h for which 

(hr) + (hs) + (/*/) - iV. 

Consequently, HTjS>t depends on {r, s, t) only up to permutation, so that if p is 
a permutation of {r, s, t}, then 

•^r,s,t J-^pr,ps,p t-

In addition, for any ft Ç HriSttwe have 

•LfT,s,t — -L(hr),{hs),(ht)' 
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T h u s it is natural to define an equivalence {r, s, t] ^ {r', s', t'} if and only if 
there exists h Ç (Z/NZ)* such tha t , up to a permutat ion, we have 

\r',s',t'} = {(kr), (hs), (ht)}. 

Remark. This is a weaker equivalence relation than the one mentioned 
previously, when no permutat ion was allowed. Only this new equivalence 
will play a role from now on, in determining isogeny classes of lattices. 

The equali ty of lattices Lr>Srt resulting from an equivalence of triples will be 
called an obvious equality, or obvious isogeny. 

T H E O R E M 1. Suppose N is prime to 6. Then: 
(i) HTtStt = Hr>tS>tt> if and only if {r, s, t] ~ \r', s', t'\. 

(ii) The only isogenies between the lattices Lr>sj are the obvious equalities. 

I t is clear t ha t (ii) follows from (i). Most of the rest of the paper is devoted 
to proving (i). 

The same combinatorial result will allow us to determine when a lattice 
LriStt is simple. For if w is in Wr,s,t, then 

Hr,s,t = wHrtStt = H(w-\r)^w-ls)^w-\t) 

so t ha t 

{r,s,t) = {(w~lr), (w^s), (w~lt)}. 

If a t least one of rM/N, sM/N, tM/N is prime to M (where N/M = g.c.d. 
(r, sj t, N)) then one deduces tha t for w ^ 1, either 

1 + w + w2 = 0 in Z/MZ 
or 

w2 = 1 in Z/MZ. 

I t follows tha t after multiplying by an element of (Z/iVZ)*, we have 

{r,s,t\ = {N/M, (wN/M), (w2N/M)} 

or 

{r,s,t} = {N/M, (wN/M), ( - ( 1 +w)N/M)} 

respectively. On the other hand, suppose rM/N, sM/N, tM/N each have a 
common factor with M. Then necessarily 

(w~lr) = r, (w^s) = s, (w~H) = t, 

whence w = 1 mod M. Hence LTiSit is simple. T o summarize: 

T H E O R E M 2. Suppose N is prime to 6. The only lattices Lr>Sjt which are not 
simple are those for which {r, s, t] is equivalent to a triple of the form 

{N/M, (wN/M), (w2N/M)}, 
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for some divisor M of N, and some w 6 Z/MZ such that 1 + w + w2 = 0, or to 
a triple of the form 

{N/M, (wN/M), ( - ( 1 +w)N/M)}, 

for some divisor M of N, and some w £ Z/MZ such that w2 = 1, w ^ ± 1 . In 
particular, if N equals a prime p, then all the factors LTtStt are simple if p = 2 
mod 3, and all but two are simple if p = \ mod 3. 

When N is not prime to 6, the situation is more complicated. To illustrate 
this, we shall prove: 

THEOREM 3. Suppose N = 3n. Then the only isogenics apart from the obvious 
ones are between pairs of lattices corresponding to the triples 

(3™, 3*-1 - 2(3W), 2(3n-1) + 3m) and (3m+1, 3"-1 - 2(3™), 2(3"~1) - 3m) 

for 0 S m ^ n — 2. 

THEOREM 4. Suppose N = 2 \ Then the only isogenics apart from the obvious 
ones are between pairs of lattices corresponding to the triples 

a) (2m, 2n~l - 2m+1, 2n~l + 2m) and (2m+1, 2n~2 - 2m, 3(2n~2) - 2m) 

for 0 ^ m S n — 3, or 

b) (2m, 2n~l - 2m+1, 2n~l + 2m) and (2m+1, 2^~2 - 2™, 3(2n~2) - 2m) 

for 0 ^ rn ^ n — 3, or 

c) (2m, 2m, 2n - 2m+1) and (2m+1, 2n~l - 2m, 2n~l - 2m) 

for 0 ^ m S n — 2, or 

d) (2W, 3(2W), 2n - 2m+2) and (2n~1 - 2n\ 2n~l - 2m+1, 3(2™)) 

for 0 ^ m ^ n — 4, or 

e) (2W, 2n-\ 2n~1 — 2m) and (2m, 2m, 2n — 2m+1) 

for 0 ^ m S n — 2. 
Furthermore, a lattice of type a)m is isogenous to the product of two lattices of type 

e)m+l-

Finally, we note that Theorems 1 through 4 may equally well be interpreted 
as statements about when two Stickelberger elements are distinct. The Stickel-
berger elements referred to here are the elements 

e, , ,^z(^±fi+iM>-i) <,_,-' 
of Z[Gal (Q(f ) /Q], see [2] or [5] ; the classical Stickelberger relations show that 
Or,s,t annihilates the ideal class group of 0( f ) - F ° r distinct triples (r, s, t) and 
(r', sf, t'), the preceding theorems give conditions under which Qr,s,t and 
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9r',s,'t' are or are not essentially distinct—essentially distinct means that 
we do not have 

®r,s,t == 0 "6 r ' , s ' , « ' 

for some a in Gal (Q(?)/Q)-

2. The relatively prime case when N is prime to six. We must show that 
if N is prime to 6 and Hr>Stt = Hr>tS>tv then {r, s, t) = [r1, sf, t'). Without loss 
of generality, we may assume that g.c.d. (N, r, s, t) = 1, whence M = N. 
In this section we shall assume in addition that 

(r, N) = (s, N) = (t, N) = 1 ("the relatively prime case"); 

in subsequent sections the remaining "boundary cases" will be considered. 
The statement to be proved can be formulated in the group algebra 

Q[Gal (Q(e2*w) /Q]) as follows: If 

Z (<Ar) + (hs) + (ht))ah = Z {{hr') + (hs') + (ht'))*h 
he(Z/NZ)* h£(Z/NZ)* 

then {r, s, t) = jr', ^', f) up to a permutation. Equivalently, we can define, 
for any r G (Z/iVZ)*, 

Gif) = Z 5 i ( * r K , where B1(a) = &• - \ . 

Then the statement becomes: If 

(*) G(r) + G(s) + G{t) = G(rf) + G(s') + G(t') 

then {r, s, t) = {r', sf, t'} up to a permutation. 
We shall now follow an idea of Carlitz-Olson [1] to prove this statement. 

Assuming the truth of (*), let us apply a character 

x : Gal (Q(e27r i / iV)/Q)-+C* 

to both sides of the equation. We get 

Bi,xx(r) + B1>xx(s) + BliXx(t) = BltXx(r') + B1>xx(s') + BliXx(J,') 

where BiiX is the generalized Bernoulli number 

Bi,x = E 5i(A)x(A). 
h 

If BitX does not equal 0, we get 

xOO + x(*) + x(0 - x(r') - x(s') - x(0 = 0. 

Let us now consider exclusively odd characters %, i.e. those for which x( — 1) = 

— 1. Such a character % may be written x = Xo'A, where \p is an even character 
and xo is a fixed odd character chosen once and for all. Then the above equation 
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may be rewritten 

Xo(r)#(r) + xo(s)tf(5) + XoiDHt) - Xo(r')Hr') - X o ( s ' W ) 

- Ut')H") = 0 
for any even character \p such t ha t BitX0^ 9^ 0. In other words, we have a 
relation of linear dependence between the six row vectors va, a = r, s, t, r', s', t', 
where 

va = (• • • , \p(a), • • -)^€S, 

with 5 the set of even characters \[/ such t ha t B\tX^ 9e 0. Now if N is a prime 
power, then 5 is the set of all even characters, hence by the independence of 
characters wre must have 

ir,s,t) = {<±r '>, ( ± 5 ' ) , < ± f > } . 

Since (rf) + (~r') = N, and similarly for s ;, t', we conclude t ha t 

{ r , s , / } = { / - ' . s ' , * ' } -

T h u s if iV is a prime power, the desired s t a tement is an immediate conse
quence of the linear independence of the G(r) for 1 g r < /?n/2, (r, £>) = 1. 
The reader interested only in this case need proceed no further. Unfortunately, 
for composite N the set S is smaller than the set of all even characters , so t ha t 
the linear dependence of the vectors va does not give an immediate contradic
tion. However, we have the following lemma: 

LEMMA. Let G be an abelian group, S a subset of G, T a subset of G. If 

\s\ > ̂ j r f - IGI 

then the rows of 

are linearly independent. 

Proof. Assuming the contrary, let 

]C aot(g) = 0 f ° r all yp in 5 

be a nontrivial relation of linear dependence and choose go such tha t 

\aeo\ è \ag\ for all g £ T. 

Then if we mult iply 

Clgo^(go) = ~ X) aet(g) 
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by \Kgo)_1 and sum over all \f/ in S, we get 

aso\S\ = - 2 % 2 ^(g)lKgo)"1 

0G77 ^ G S 

05*00 

by the orthogonality relations. Hence 

k»l |5| ̂  Z kl(|G| - |5|) ^ ko|(|r| - i)(|G| - \s\) 
s^go 

whence 

|5|^-^L=^|G|, 

a contradiction.. 

We apply the lemma by letting G = (Z/NZ)*/dbl, S be the set of even 
characters yp such that B1>x^ ^ 0, and T be the set consisting of r, s, /, r', sf, t', 
viewed as elements of (Z/iVZ)*/dbl. But first we must know that 

|5| > (5/6)|G|,. 

i.e. we must know that for more than five-sixths of the odd characters x of 
(Z/iVZ)*, BitX 7e 0. This is what we turn to now. 

Remark. The map 

G:Z / iVZ-Q[Ga l (QG- ) /Q) ] 
r f—> G(r) 

extends uniquely to a map of vector spaces 

G : Q [ Z / i V Z ] - > 0 [ G a l ( 0 ( f ) / 0 ) ] 

and it is easy to verify that G is an "odd distribution", i.e. that it satisfies the 
relations 

1) g GV + §J) =G(Mr) and 

2) G ( - r ) = - G ( r ) 

for any / in Z/NZ and ikf dividing iV. Furthermore, it is a fact (see [4]) that 
all relations satisfied by G are a consequence of relations 1) and 2) above. In 
particular, to show that the relation 

G(r) + G(s) + G(t) = G(r') + G(s') + G{t') 

does not hold, one need only show that it does not follow from 1) and 2) above. 
However, we have not been able to get from this line of argument a proof which 
is simpler than the present one. 
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TABLE 1 

All primes ^ 5 dividing pm — 1 for certain p and m 

5 7 11 13 17 19 23 29 

5 11 7 
— — 5 7 — 5 11 5,7 
31 19 5,7,19 61 307 127 7,11,79 7,13,67 

13 5 5,61 5,7,17 5,29 5,181 5,11,53 5,7,421 

11,71 2801 5,3221 

7,31 19,43 5,7,19,37 

19531 29,4733 

13,313 5,1201 

19,31,829 19,37,1063 

PROPOSITION. Suppose 2, 3 \ N. Let S(N) be the set of odd characters of 
(Z/NZ)*, and letS0(N) C S(N) be the set of "bad" characters, i.e., 

S0(N) = {x G S(N)\BliX = 0}. 

Then#S0(N) < $#S(N). 

Proof. For x € S(N) let N0\N be the conductor of x> and let xo be the 
character mod NQ which induces x- Then 

Bi,x = £i,xo I I (1 - XO(P)). 
V\N 

Thus x G So(N) if and only if there exists p\N/N0 such that Xo(p) = 1. 
Let 

m 

i=\ 

be the prime factorization. Let N\ = N/piai, and let ordz- denote the order of 
pi in (Z/iViZ)*. If x € So(N), then for some i the corresponding xo must be 
an odd character mod Nt such that xo(pi) = 1- For fixed i, the number of 
such xo is 

(0 if pi is a root of — 1 mod Nu 

^ ( ( Z / ^ Z r / i i ^ j ) = f ^ }
: , otherwise. 

Thus, 

S(N) = J » < £ __î  
We claim that this sum is < | . It clearly suffices to prove this when all a* = 1. 
So suppose TV is a product of m distinct primes, 

m 

N = n pi> 5 s pi < pi < • • • < pm. 
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Note that ord^ > \ogpiNi ^ m — i. Thus 

(1) ordi ^ m + 1 — i. 

Also, 

(2) orcL = 1 only iî pm ^ 2 U pt+l. 

Case \.m = 2,s(N) = 77 77—7- + 77 T T — j - . 
(pi - 1) ordi (p2 - 1) ord2 

By Table 1, if pt = 5 or 7, then ord* ^ 3 with equality only if p2 = 31 or 19. 
If pi ^ 11, then (pi - l )ordi ^ 20 by (1). Thus in either case 

s(A0 g 7^ IT— + ^ 7 if p2 è 13 (with at least one ^ strict). 
(£> — 1J-3 P2 — 1 o 

For the remaining case pi = 5, p2 = 11 : s(55) = 1/4.5 + 1/10 = 3/20 < 1/6. 

Cas£ 2. m = 3. 
If pi = 5 or 7, then for j < 5 Table 1 shows that pt

j — \ is not divisible by 
two distinct primes ^ 0. Hence ordz- ^ 5 and (pi — 1) ord2- ^ 20. If p7- §; 11, 
then by (1) and (2) also (pi -I) ordz- ^ 20. Thus s(N) ^ 3/20 < 1/6. 

Case 3. m = 4. 
If p^ = 5 or 7, then ord* ^ 9 by Table 1. This, together with (1) and (2), 

gives : 
1 < ± i < -1 1 < _L 

(pi - 1) ordx = 4-9 ' {pi - 1) ord2
 = 10.3 ' (/>, - 1) ord3

 = 10.2 ' 

1 < - 1 -
(pA ~ 1) ord4

 = 12.2 ' 
and so 

V i < i 
*- (pt- l)ord t- 6" 

Case 4. 5 5j m ^ 9. 
From Table 1, if pt = 5, 7, 11, then ord* ^ 10, 10, 6, respectively, and if 

13 ^ pt ^ 29, then ord4 ^ 5. Thus, 

J_ 
4-10' 

610 
1 <l l 

(pt- l ) o rd , = V 0 ' 6 
1 

12-5 : 

30-2 ; 

Pt = 5, 

£< = 7, 

*><= H, 

£, = 13, • • • , 29, 

Pi è 31. 
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Hence, 

K J = 4 0 ^ 60 60 - 6 

Case 5. m ^ 10. 
We show that for all b* we have (pi — 1) orcU > 6m, which will imply 

m 1 1 
s(N) = § (£~=iy^d~ < e • 

( 1 ) ^ = 5. 

ordi > log5 n/5 ^ logs (7 • 11 • 13 • 17 • 19 • 23 • 29 • 31 • 37 • 41M-10) 
> 16 + 5(m - 10)/2 > 3m/2, 

so that (pi — 1) ordj > 4 • 3?w/2 = 6m. 
(2) £< = 7. 

ord, > log7(5 • 11 • 13 • 17 • 19 • 23 • 29 • 31 • 37 • 41™"10) 
> 13 + 3(m - 10)/2 > m, 

so that (^i — 1) ordi > 6m. 
(3) pt = 11. 

(£< - 1) ord* ^ 10(m - 2) > 6m by (1). 

(4) 13 g p , g 3m/2 + 1. 
There are clearly no more than m/2 — 1 primes p with 5 ^ p ^ 3m/2 — 1. 

(This holds for m = 10, 11, 12, 13, and for m + 4 whenever it holds for m, 
since any sequence of 6 consecutive integers has at most 2 primes.) Since any 
prime p < pt must be ^pt — 2 S 3m/2 — 1, there are at least m/2 primes 
>pi among pu • • • , pm. Then 

ord, > logpipt
m/2 = m/2, 

so that (pt — 1) ordi > 6m. 
(5) 3m/2 + 1 < Pi ^ 6m + 1. 
If suffices to prove that ord* ^ 4. But if ord* ^ 3, then \ogPln/pi < 3, and 

so n < p^ S (6m + l) 4 . But (6m + l ) 4 is less than the product of the first m 
primes starting with 5 as soon asm ^ 7. 

(6) pi > 6m + 1. 
Then obviously (pt — l)ord< > 6m. This completes the proof. 

Remarks. 1. When N = 5o, #S(N) = %<p(N) = 20, and #S0(N) = 3 (name
ly, So(N) consists of: both odd characters mod 5 and the Legendre character 
mod 11). Thus, 5(55) = 3/20. It is clear from the above proof that 3/20 is 
the maximum for s(N). 

It is also clear that 

lim s(N) = 0. 
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2. If TV is odd and 3|TV, it can similarly be proved tha t there are precisely 
two values of TV for which s(N) ^ 1/6 : s(21) = 1/6, 5(39) = 1/4. For all 
other values of TV, it thus follows tha t there can be no non-obvious isogenics 
b e t w e e n Jr,s,t a n d Jr><s>tt

f if r, s, t, r', sf, t' are all prime to TV. However, there 
are non-obvious isogenics in the boundary cases if 3|TV. 

When TV = 21, 39, the non-obvious isogenies in the relatively prime case 
all turn out to occur when Jr,s,t is isogenous to a product of elliptic curves. In 
each case we can take (r, s, t) to be (1, p, (p2 )) where p is a cube root of 1 mod 
TV. For TV = 21, /i (4,i6 is isogenous to the product of 6 copies of the same elliptic 
curve tha t occurs for TV = 7 and the triple (1, 2, 4) . (Recall t ha t if TV is a prime 
= 1 mod 3, then JitPi(p2) splits up into 3 curves of genus (TV — l ) / 6 . ) For 

TV = 39, Ji,16,22 is isogenous to a product of 12 copies of an elliptic curve tha t 
does not occur as a simple factor for prime TV. 

I t would be interesting to unders tand more directly why, if r and r' are 
triples all of whose components are prime to TV, then JT and JT> can only be 
isogenous when they split into a product of elliptic curves. 

I t is unclear to us why the ' ' relatively prime case" should be so different 
from the "boundary cases." 

3. T h e b o u n d a r y cases w h e n TV is p r i m e to six. To prove Theorem 1, 
it remains to establish the following proposition. 

PROPOSITION. Let 2, 3 \ TV, T = (r, s, t), r' == (rf, s', t'), r + s + t = N. 

Suppose g.c.d. (r, s,t,r'}s
f,t') = I. Let 

HT = {h e (Z/TVZ)*| (hr) + (hs) + (ht) = TV}. 

and similarly for HTr. Suppose TV is not prime to rstr's't'. In the case that r = r' for 
some ordering of the triples r and r , suppose further that TV is not prime to sts't'. 
Finally, suppose HT = Hr>. 

Then r' is a permutation of r. 

Proof. Case 1. g.c.d. (r, s, t, TV) > 1. 
Let p\g.c.d.(r, s, t, TV), p ^ 5. Let P = 1 + (N/p) ( Z / b Z ) , P* = P C\ 

(Z/TVZ)*, v = #(P\P*). Then 

= / 0 iîp2\N 
v \ \ if£2^TV. 

Since (ur) = r, (us) = s} (ut) = / for u Ç P , we have: 

P * C HT = HT'. 

T h u s 

D {ur') + {us') + {ut') = {p - v)N. 
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Since (ur') + (us') + (id') = N or 2N for u (= P \ P * , we have 

(3) E <"''> + <«*') + ("O ^ (P - v)N. 

Let r0' = {r')N/p, So' = (s'\v/p, to' = (t'\v/p, where for any positive integer M 
we let ( )M denote least non-negative residue mod M. For x prime to p, note 
t ha t (ux) runs through (x)Njv + iN/p, i = 0, 1, • - • , p — 1, as u runs through 
P . 

First suppose p \ r'', s', /'. Then 

X <*«"> + <"*'> + ( « O = P(ro' + so' + h') + Wlp £ i 
u£P 1=0 

è £iV/£ + 3 " - ^ - - iV - £iV + ^-~~- N, 

because rQ' + s0' + /o' = N/p or 2N/p. This contradicts (3) because (p — l ) / 2 
^ 2 > p. 

Now suppose, say, £>|r'. Since g.c.d.(r, s, t, r', 5', / ') = 1, we then have 
p \ s', t'. Note t ha t if r and r are replaced by UQT = ({utf), (uos), (itot)) and 
U0T'J where u0 G (Z/7VZ)*, the assumptions of the proposition remain valid, 
except t ha t (z/or) + ("os) + («oO will equal 2N instead of N if u0 (? i7 r . In 
t ha t case (3) can be replaced by 

(4) £ (ur') + (us') + (uf) ^ (2p - V)N. 

Since p\r', we have 

J2 (ur') + {its') + (///') = p(r' + so' + to') + 2N/p £ i 
w6P i=0 

- pr' + p(s0' + to') + (P- 1)N. 

We claim tha t r' can be modified by a suitable z*0 £ (Z/7VZ)* so t ha t 

(£ + „)iV < £r ' + £ ( s 0 ' + /0 ') + (£ - 1)W < {2p - v)N, 

contradict ing (3) and (4). Since 0 < s0' + t0' < 2N/p, we would like r' to 
satisfy 

(v + l)N/p ^ rf ^ N - (v + l)N/p. 

I t clearly suffices if 2N/5 S r' g 37V/5. 
Let x = g.c.d.(r ' , TV), y = N/x, p = [log2 y/y/2\ Then y/2y/2 < 2$ < 

y/y/2. Note t ha t 0 ^ 1 , since y ^ 5. If 2^ < 2^ /5 , then 3 • 2$~l is <3;y/5 and 
> (Z/2)(y/2y/2) > 2y/o. If 2^ > 3;y/5 (in which case note t ha t 0 ^ 2) , then 
3 - 2 * - 2 is > (3/4) • (3y/5) > 2y/o and < (3/4) ( y / \ / 2 ) < 3y /5 . Now let 
MI G (Z/NZ)* equal either 2*, 3 • 2*"1, or 3 • 2 ^ 2 , so t ha t 2y/5 ^ ux S 3y /5 . 
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Then if (r'/x)-1 e (Z/iVZ)*, we have 

2N/5 ^ (u0r
f) ^ 3N/5, 

as required. 

Case 2. There exists a prime p dividing TV, r, r' but not dividing sts't'; and 
r 9^ r'. 

We need the following simple lemma, whose proof is straightforward and 
will be omitted. 

LEMMA. Let 2, 3 \ N, 1 ^ x, y < N, x ^ y, p\N. Then there exists u £ 
(Z/NZ)* such that 

IN/p. 
(iix) 

W/pA 
> {3 ifp > 5, 
- 12 ifp = 5. 

If x = 1, y 9* 2, (N + l ) / 2 , awrf 5 \ N, then there exists u 6 (Z/7VZ)* s weft 

(ux) 
JV/5J ^ 3. 

Let P , P x , p, r0
/, V , ^o' be defined as before, r0 = (r)v/P, $o = (S)N/P, h — 

(t)N/p. Since i7T = i/T/, for ^ Ç P * we have 

(nr) + (us) + (ut) = (urf) + <«*') + (utf). 

For w G P\P* we have 

|<«r) + (us) + <w0 - « w ' ) + (us') + (utf))\ g N . 

Thus 

P 
Y, (ur) + (us) + (ut)- X <wr'> + (us') + <w*') 

(5) ^ / ^ ^ |r + ô + to - r' - *>' - k'\ 

> 

(6) v + 1 ^ 

Liv/^J 
i 

7V/£ 
|r0 + ô + /o - 0V + so' + t0')\ 

r 
IN/p. 

r _ 

WP. 
First suppose p > 5, or p = 5 and £2|iV (so tha t ^ = 0) . By the lemma ap

plied with x = r, y = r', if we multiply through by a suitable w G (Z/iVZ)*, 
wi thout loss of generality we may assume tha t 

| LJ_1 _ Lu] I > 
which contradicts (6). 

u + 2, 
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Now suppose TV = 5TV0, 5|TV0, 5|r, r'. If there is another prime p > 5 with 
£| TV and £>|r or £|r ' , we can use either Case 1 or Case 2 for p > 5 above or Case 3 
below. So suppose g.c.d. (TV, r) = g.c.d. (TV, r') = 5. 

If r /V ^ 2 ± x mod TV0, then we use the above lemma (with TV0, r/r' in place 
of TV, 3/) to find u prime to TV0 such t h a t 

3 g 
(w r / r % 0 

TV0/5 J LTV0/5j 
\tjj_No 

TV/5 J L TV/5 

Here r'/5 G (Z/TVZ)*. If 5|w, replace w by w + TV0 G (Z/NZ)*. Thus , we can 
find Wo = 5zi/V or (ozt + N)/r' prime to TV, such t h a t 

(upr) 
L TV/5 J 

W_0 
L -V/5. 

^ 3, 

which contradicts (6). 
I t remains to consider the case r/r' = 2±l mod TV0, say r = 2rf mod TV. 

Mult iplying through by ( r / 5 ) - 1 G (Z/TVZ)*, we may assume r = 5, r' = 
(TV + 5 ) / 2 . By (5) we have 

TVo ^ |r + s0 + to - r' - s0' ~ h'\ 

= ko + So + k - r0
f - so' - to' - 2TV0|. 

Thus , 

(7) r0 + so + to = 2TVo, r„' + V + *</ = ^Vo. 

Say r = (5, iTV0 — a,jN0 — b), where a, b > 0, a + b = 5. Mult iplying through 
by a suitable u G P* , without loss of generality we may assume r = (5, TV — r/, 
TV — b) (namely, if iN0 — a = k mod 5, let u = ( — i/k)5No + 1). Since 
2 (L HT = HT', and (2rf) = 5, we mus t have 2r' = (5, TV - a', TV - b'), where 
a', V > 0, a' + 6' = 5. Say a/ is even. Then r ' - ((TV + 5 ) / 2 , TV - a ' / 2 , 
(TV - &')/2), and r0 ' + s0' + t0' = 2TV0, contradict ing (7). 

Case 3. There exists a prime £>|TV, r, p\str's't'. 
Multiplying through by a suitable element of (Z/TVZ)*, wi thout loss of 

generali ty we may assume t h a t r = g.c.d. (TV, r). Let P , P* , r0, s0, ^0, ?Y, V , /o' 
be defined as in Cases 1 and 2. We have 

T̂V > E <w> + (us) + <^> - Z <wr'> + <ws') + {utf) 

v-i 

Pr + J2 (so + iN/p + to + iN/p - r0
f - iN/p 

i==0 
so' 

to' 

- iN/p 

iN/p) 

= P \r + so + to ro so to'-£—±N/p 
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Hence 

(8) vN/p ^ £-~--N/p + ro' + so' + to' -r - so-to 

> £-2— N/p + Nip - 2N/p - r, 

(9) > 
p-S 

N/p " 2 

Let a = N/r ^ 5. If p ^ 11, (9) implies 

0 < p/a - p/2 + 5/2 ^ 5/2 - 3£/10 < 0, 

a contradiction. If p = 7 and a ^ 7. then we obtain 

0 < />/7 - p/2 + 5/2 = 0, 

5 and the case p = 5. Note that 
again a contradiction. 

It remains to consider the case p = 7, a 
when v = 0, (9) gives 

0 < p/a - £/2 + 3 / 2 ^ 0 

for all a ^ 5, £ ^ 5. So suppose £>2 -f TV. 
First suppose ^ = 7, a = 5. If a prime q > 7 divides r, we can use Case 1,2, 

or 3 with p = q > 7 instead of p = 7. If 5|r, so that 52|TV, we can use Case 1, 2, 
or 3 with p = 5, v = 0. The only remaining case when p = 7, a = 5, 72|TV 
is when r = 7, i.e., TV = 35; this case is easily checked by hand. 

We now consider the case p = 5, 52-fTV. If r > 5, there is a prime q > 5 
dividing r and TV, and we can use Case 1, 2, or 3 with p = q > 5. So suppose 
r = 5. 

By (8), 

TV/5 ^ 2TV/5 + ro' + so' + *</ - (5 + 50 + /<,), 

which is only possible if r0' + V + to' = TV/5, 5 + s0 + /o = 2TV/5. Thus, 
r = (5jiN/o — a,jN/5 — b), where a, & > 0, a + & = 5. Multiplying through 
by a suitable element in P*, without loss of generality we may assume that 
T = (5, TV - a, TV - &). 

But for this T we know i7 r C (Z/TVZ)* explicitly. Namely, if h 6 (Z/TVZ)*, 
then 

(io) h eHT <=> 
(h) 

_ 5 _ + 
_ a _ 

+ <*> 
- b _ 

is odd. 

In particular, whether or not h £ HT depends only on [(h)/oab] (here bab = 20 
or 30). By a tedious examination of possible ranges of values for r', s', t', we 
verified that no r' ^ r has HT> given by (10). This part of the proof will be 
omitted in the interest of brevity. 

This completes the proof of Case 3 of the proposition, and hence of Theorem 1. 

https://doi.org/10.4153/CJM-1978-099-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-099-6


1198 N. KOBLITZ AND D. ROHLRICH 

4. I sogen ie s for TV a power of 3 . Theorem 3 can be restated as follows. 

PROPOSITION. Let TV = 3W, Nl = 3*"1 , r = (r, s, t), r' = (r', s', t'), HT = HT>. 

Suppose that r is not a permutation of r, and that g.c.d.(r, s, t, r', sf, t') = 1. 
Then for some u £ (Z/TVZ)*, ur = ((ur), (us), {at)) and in' are permutations 
of (1, Nx - 2, 2TVi + 1) and (3, iVi - 2, 2NX - 1). 

Proof. Let ord m denote the highest power of 3 t h a t divides an integer m. 
Withou t loss of generality, we may suppose ord r ^ ord 5 ^ ord t and ord r' ^ 
ord s' ^ ord t'. Note t ha t then ord 5 = ord /, ord sf = ord t' and either ord s = 0 
or ord s' = 0. We may suppose ord s' = 0. 

The proof t h a t r = r' if 3 ^ rst r's't' or if r = rr and 3 \ st s't' is included 
in the proof of Theorem 1 in the relatively prime case ( § 2 ) . 

Case 1. ord 5 > 0. 
If 3|r', mult iply through by a suitable u € (Z/TVZ)* so t h a t TVi g («r ' ) ^ 

27Vi (namely, let w = (3-° r d r' r / )~ 1 ( (3~ o r d r ' TV - l ) / 2 ) ) . Thus , wi thout loss of 
generality we may suppose 

(11) Ni S rf g 27VX if 3|r'. 

Let P = 1 + 7Vi(Z/3Z) C (Z/TVZ)*, and let r0 ' = ( r , )^ 1 , V = W)Xl, 
to' = {t')Nl. By (3) and (4), we have 

£ (^) + (̂ ') + ( ^ ) { | ^ or 

But if 3 \ r', this sum equals 

3TV + 3(r0 ' + so' + /<>') = 47V or 5TV; 

while if 3|r', the sum equals 

2N + 3(r' + so' + tQ'), 

which by (11) equals 47V or 57V. 
We may now suppose 3 \ sts't'. Also suppose .ord r ^ ord r'. 

Case 2. 3|r' and r 9^ r'. 
Let m = n - ord r', M = 3™, Mx = 3™"1. Let t ing P = 1 + M(Z/3ord r ' Z) 

and proceeding as in Case 2 of § 3, wre obtain (see (6)) 

(12) 1 è | [ r /M] - [r'/M]\. 

The case TV = 9 is easily checked by hand ; if m = 1, n ^ 3, then ?>\r/M, 
rf/M, contradict ing (12). So suppose m ^ 2. 

We need a simple lemma, whose proof will be omit ted. 

LEMMA. Suppose 1 g x j < I , x ^ y, 3 | g.c.d.(x, y). Then there exists 
u prime to 3 such that 

\{uy)M - {ux)M\ > ML 
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We apply the lemma with x = r ' /3 o r d r/, y = r /3 o r d r>'. Multiplying through 
by the u in the lemma, without loss of generality we may assume that \r — r'\ > 
iVi. But (12) gives \r - r'\ < 3M ^ Nlt a contradiction. 

Ca^3.3f t f ry* ' f3
2 | r . 

Multiplying through by (r/3o r d r ) _ 1 ê (Z/iVZ)*, without loss of generality 
we may assume that r = 3ord r. Letting m = n — ord r, M = 3m, P = 1 + 
ilf (Z/3o r d T Z), and proceeding as in Case 3 of § 3, we obtain (see (9)) 

3ord r - 3 r_ < 3^_ r 

2 < M = 3 ' 

a contradiction. 

Case 4. ?>\strf s'tf, ord r = 1. 
Multiplying through by a suitable « G (Z/7VZ)*, we may assume that r = 3. 

Suppose r = (r, 5, /) and r = {rf, s', t') are arranged so that 5 = 1 ((mod 3), 
t = 2 (mod 3), r' ^ s' ^ /'. We have 3 \ st r' s' tf. 

Note that r' = s' = t' (mod 3). We claim r' = 1 (mod 3). Let r' = r0' 
(mod 3), r0' = 1 or 2. Let P = 1 + 3(Z/# iZ) C (Z/NZ)*. Then 

£ <«r) + <W5) + <«*> = E <wr'> + <«*'> + K > -

The sum on the left equals 

3 E & + Z & = 9 E *. 
A;=3mod9 3J& fc^mod 9 

l^k<N l^k<N l^k<N 

The sum on the right equals 

3 E ( * + (n> ' - 1)) = 9 E £ + ( r 0 ' - l ) i V . 
ft=l(mod3) A=4mod9 

l^k<N l^k<N 

Hence r0
f = 1 as claimed. 

Now first suppose that s' < Ni. We shall call a triple admissible if the sum 
of its components is N rather than 2N. Then, since r' = s' = t' = 1 (mod 3), 
we have 

(iVi - 1 ) / = (Nx - r\ N1 - s', 47V: - t') is admissible, 

i.e., (Nx - rf) + (iVi - s') + (4N1 - t') = TV. Hence ^ - 1 £ i7T, = # r , 
and 

(# i - l ) r = (N - 3, ( W - 1)5), <(#! - 1)/)) is admissible, 

in other words ((A^ - 1)5) + ((iVi - 1)0 = 3. Since 5 = 1 (mod 3), t = 2 
(mod 3), we have ((N, - l)s) = 2, ( ( ^ - 1)0 = 1. Hence 

5 = (2/(TV: - 1)) = iVi - 2, / = (1/(7V! - 1)> = 2# i - 1. 

Next suppose that r is not admissible. Then r = (3, ( — 2), ( — 1)), and 
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(TVi + l ) r = (3, Nl - 2, 27Vi - 1). T h u s we may again obtain r = (3, 

Ni - 2, 2TVX - 1) after mult iplying through by a suitable u £ (Z/TVZ)*. 

Now suppose r is admissible, and s' > TVi. Then we must have iVi < 67, 

t' < 2NU and so 

(2TVi - 1 ) ( / , s', *') - (2N1 - r'} 2Ni - s', 2TVi - *') is admissible. 

Thus , 

(2TVi - l ) r = (TV - 3, ((27V! - 1)5), ((2TVi - 1)/)) is admissible, 

which gives 

s = (2/(2N1 - 1)) = 2Nr - 2, t = (l/(2N1 - 1) ) = N, - 1. 

Then (TVX + l ) r = (3, Nl - 2, 2TVX - 1). 
Thus , after mult iplying through by a suitable u g (Z/TVZ)*, we may assume 

tha t r - (3, N1 - 2, 2 # i - 1). Let r0 = (1, N1 - 2, 2 ^ + 1) ; then Hr{) = 
77T = 77T>. But i^T0 = /TV implies t ha t r' is a permuta t ion of r0, because all 
components in r and ro are prime to 3 (see beginning of this proof). 

5. I sogen ie s for TV a power of 2. Theorem 4 can be restated as follows. 

PROPOSITION. Let TV = 2n, n ^ 4. Let TVi = 2n-\ TV2 = 2n~\ r = (r, s, / ) , 

r ' = (rr, s', / / ) , i^T = HTr. Suppose that r' is not a permutation of r, and that 
g.c.d.(r, s, t, r', s', t') = 1. Then for some u Ç (Z/TVZ)*, ^ r awrf ?*r' r/rc permu
tations of one of the following pairs of triples: 

(1) ( T V - 4, 1 ,3) , (Ni - 2,N1 - 1 ,3 ) ; 
(2) any 2 of the triples (TV - 2, 1, 1), (Nu 1, TVi - 1), (2, N1 - 1, TVi - 1 ) ; 
(3) rmy 2 of the triples (TV - 4, 2, 2), (TVX, 2, TVi - 2) , (TVX - 2, 1, Nx + 1), 

(2,TV2 - 1,3TV2 - 1). 

Proof. Most of the proof is similar to the proof of Theorem 2, and will be 
omit ted. However, one case is somewhat harder. When TV = 2n, there is no 
' ' relatively prime case" when rst r' s' t' is prime to TV (since a t least one com
ponent in a triple must be even) . Instead, the "relat ively prime case," in which 
divisibility is least possible, occurs when, say, 2\r, r' ; 4 \ r,r';2\ st s't'. Since 
it does not seem to be possible to apply the Frobenius de te rminan t formula to 
this si tuation, our proof of the "relat ively prime case" when TV = 2n needs 
another technique, based on a probabilistic consideration. 

Let (r, s, / ) , (r', s', t') fall in the "relat ively pr ime case," i.e., 2\r, r', 4 | r, r', 
2 \ st s't'. Mult iplying through by s~x Ç (Z/TVZ)*, we may suppose t ha t 
5 = 1. 

If t = N1 + 1, then r = (TVi - 2, 1, TVX + 1), HT = {odd j\0 < j < TV2 or 
Ni < j < 3TV2}. Then for all u Ç (Z/TVZ)* we have: 

(u) G HT. <=> (u + N^eHr*. 

Since ((u + N1)r') = (ur'), ((u + NJs') = {us' + TVX), ((u + N,)t') = 
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(ut' + Ni)j this means tha t exactly one of {its'), (lit1) is <Ni. Then for all 
u < Nx: (u(t'/sf + TVi)) < NL By Sublemma 1 below, t' = (-s') or (Ni + 
s'). But t' ^ ( - * ' ) . Hence r' = s,(N1 - 2,l,N1 + 1). Then s' preserves HT, 
and it is easy to see t ha t then s' = 1 or iV2 - 1. If s' = 1, we have r' — T\ 
if s' — N2 — 1, we have a pair in list (3) of the proposition. 

Next, if t = 1 = s, then HT = {odd j < Ni}, and a similar application of 
Sublemma 1 gives a pair in list (2) of the proposition. Sublemma 1 can also be 
used to rule out the cases sf or /' = 1 or Ni + 1 ; t, s' or tf = N — 1 or 7V\ — 1 
or reduce them to a pair in list (2) or (3) of the proposition. 

Thus , we may assume tha t s = 1, /, sf, t' ^ ± 1 mod iVi. In addition, a t 
least one of the /, s', t' may be assumed ^ ± 3 ^ mod Ni, since otherwise we 
could find two with the same sign in the exponent, divide r and r' by one of 
these two, and reduce to a case already considered when one of s, t, s', t' is 1 
and one is 1 or iVi ± 1. 

Now we apply the Probabilistic Lemma. (We suppose n ^ 9, i.e., N g; 512. 
The "relatively prime case" of Theorem 3 was verified by computer for TV = 16, 
32, 64, 128, 256.) Let yu y2, y?, be (-t), s', t', where yx is chosen =zi ± 3 ^ mod 
N\. Let u G Sy. P\ Svj. Let k be the index in {1, 2, 3} not equal to i or j . 

First consider the case y/c = s' or t'. Then (us) = u < Ni, (lit) < iVi, so 
t ha t u Ç 77T, zz + ATi g HT. At least one of (us'), (iW) is >iV~i. If both are, 
then u g HT>, a contradiction. If one is > N\ and one is <iVi, then 

((u + Nt)r') + ({u + i V ^ ' ) + ((u + W ) 

= ( w / ) + <«$') db iVi + (uf) T TVi = (ur') + ( ^ ' ) + < ^ ' ) , 

so t ha t either both u, u + iVi G i7T/ or both w, w + Ni (? H7>, also a contra
diction. 

Now consider the case yk = ( — t) and u (? 5 ^ , i.e., (w/) > iVi. Since 
(its'), (ut') > Ni, we have u d HT>, u + iVi (t HT>. But since («5) = u < Ni 
and (ut) > Ni, we must have either u, u + N\ 6 i 7 r or ẑ , « + iVi $ i /T , a 
contradiction. This proves the proposition assuming the Probabilistic Lemma. 

PROBABILISTIC LEMMA. Let N = 2n, Ni = 2n~\ N2 = 2n~2, n ^ 9, 5 = 

{1, 3, 5, • • • , N\ — I). Let ( ) denote least positive residue mod N. For y £ 
(Z/NZ)*, letSv = {s G S\(sy) > NJ. Suppose y>u y2, y, G (Z/NZ)*, yu y2, 3/3 
^ ± 1 (mod N^, yi ^ =b3±:L (mod Ni). Then for some i ^ j , Syi C\ Syj 

is not empty. 

Proof. We shall need some simple sublemmas. 

SUBLEMMA 1. Let yS = {(ys)\s G S}. If yS = S, then y = 1 or Ni — 1 
(mod N). 

SUBLEMMA 2. > , - < log — T ^ T ~ • 
0<K2M. J V ^ 

iodd 

SUBLEMMA 3. Let «i ^ a2 ^ • • • ^ a r ^ 0, 61 ^ &2 è • • • ^ br ^ 0. F^?r 
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any permutation a of {1, 2, • • • , r) define Aa = J2 ^i><y{i)- Then Aa ^ A\ 

SUBLEMMA 4. For M odd, let 

, N 4 v-̂  sin 2TJX 

SM(X) =- 2J — 7 - ^ - . 
T j>M, J 

j odd Then 

**<*)! ^ V(MTÏW^^Y ' »*°redMZ)=T*m[\x-l/l\\. 

The proofs of the first three sublemmas are very simple, and will be omitted. 
To prove the fourth, we write 

. . , N 4 v^ sin 4:irx sin 2irjx 
sm4:TX sM(x) =— 2 j '• 

7T odd j^M+2 J 

cos 27r(j — 2)x — cos 27r(j + 2)x 
- E 
7T odd ;^AT+2 2 j 

2 ^COS2TTMX C O S 2 T T ( M + 2)X 

M + 2 + AT + 4 

Since 
+ X cos 2 ^ ( ^ - 7 - 2 ~ 7"Z^) ) • 

x (---9 - -4-o) =4 s --5—5 < 4 z 4 
^ p 1 Z 

y^Oii-+3)/2 7 - ^ + 1 
and since |sin 47rx| ^ 8d(x, JZ), we have 

u ^ 1 < _2_ ( _ _ ? _ . _ A _ ) < I 
K " 1 ; | = 7T • &*(*, JZ) \M + 2 ^ M + 1/ ir(ilf + l)d(*. iZ) ' 

This concludes the proof of Sublemma 4. 

Proceeding to the proof of the Probabilistic Lemma, we define 

;' odd 

sin27r>- 4 v . e2lriJj: 

2TTÎ J 0 d d 7 

https://doi.org/10.4153/CJM-1978-099-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-099-6


SIMPLE FACTORS 1203 

For y Ç (Z/iVZ)*, let 

Ay — AT   

j o d d 

Clearly, Av = Ay-i, Av 

& f\ûF\N) N „<§,, AN) • 
j 'odd 

— A-v = —Av+Nl. Moreover, 

j odd 

and the lemma follows if we show that N2 < (iV2/2)(3 — Ayi — Ay2 — AV3). 
We shall show that \Ayi\ + \AV2\ + \AV3\ < 1. 

4̂3 is easily computed directly: 

.4; = M ? ~ 2(#ofoddisuchthat?<i <^ 6 
iV + 2 N/2 - 2 . 

o i n if ^ is even ; 
_ ^ / b 6 

~ N)N - 2 iV/2 + 2 .r . ^ 
f—«— n 11 w is odd, 6 

3 v ; 3N 

6 

Thus, \Ay\ g 1/3 + 16/37V if y = ±3±l (mod i ^ ) . 
We now prove: If y ^ ± 1 , ± 3 ^ (mod iVi) and w è 9, then |^ly| < 1/3 -

32/3N. This will give us the required \Ayi\ + \Ay2\ + \Ays\ < 1/3 - 32/3iV + 
2(1/3 + 16/3A0 = 1. 

First suppose ( d z ^ 1 ) or (iVi =b 3^±1) is <N2/2 for some choice of signs; 
say 0 < y < N?J2. For k = 0, 1, • • • , (y - l ) / 2 - 1, clearly 

while 

2 /($) 
kN/y<j<(Jc-\-l)N/y \^V / 

.7 odd 

-l)N/2j/<j<Ni \ i V / 
.7 odd 

^ 1, 

= 2 4y 2 

Thus, 

T 4y T 2 / AT y \AV\ è N \ 2 

/ l0 , 1 1 , 2 \ 

liV+5'ï + îvj f0r5 = 
for w ^ 6 

32 

s max 

4 ^ JV 

. # 2 

< | - S forw^8-
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Now suppose (±y±l) > N2/2 and (Ni ± y±l) > N2/2 for all choices of 

signs. For M odd, let 

SM(x) = - S ^ - 7 - — , sM(x) = f(x) - SM(x). 

j odd 

Applying Sublemma 4 with M = N — 1, x = k/N, we obtain 

1 
\sN-i(k/N)\ è 7/7 AT r,\ , where d(k, N2Z) = min {\k — N2l\}. 

Then 

\AV\Û 
N ^^ANJ^-'VN) 0<j<N 

j odd 
N 0<j<N, 

j odd 

SN-I\N 

V̂ 0<j<N, 
j odd 

$N- 4) SN-I 

The second sum is bounded by 

7T 0<j<Ar 7T 0<j<A r2/2j ?T V ^ V 2 
j odd j odd 

by Sublemma 2. T h e third sum is bounded by 

,'. E 1 < _§_ y^ -. / -2 
TT" o<7<iv d ( j , N2Z)d (jy, N2Z) = TT 2

 0 < ^ 2 /2 
;' odd j odd 

by Sublemma 3. We rewrite the first sum as 

4 V^ T ^ 1 2irij(r+ys)/N 

^ -iV<r,s<Ar 0<j<N VS 
r, s odd jodd 

4 iV 

K 2 —N<T,S<N,T,s oûd^S 

4iV 
2 

7T~ 

1 

( H - | / s ) / i V i 

r+ys=0(mod Ni) 

X ^ JL / i \(r+ys)/iVi 

0<s<ZV,sodd r s 

-N< r< IV, r^E—7j s (mod N\) 

4iV y 1 | 1 1 1 
+ 

Thus , 

\(-ys) (ys) (Ni - ys) (TVi + ys)l ' 

4:N 
| f i rs tsum| ^ —2 ]C g(s)g(-ys)1 

Tt 0<s<N2 
s odd 

l 
where g (5) + (s) (-s) (m + s) • (^-5) r 
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Clearly, 
( l ) g ( l ) è g ( 3 ) è ••• ^ £ ( ^ 2 - 1); 
(2) {g(-3;^)}o<.<^2 is a permutation of {gCO}o<5<^2; 

s odd s odd 

(3) g (s) < 1/s for s < N2/2; 
(4) g(s) < 2/N2 for s > N2/2. 

Hence by Lemma 3 

Ifirstsuml S ~ï I g(l)g(-y) + g(-l/y)g(l) + Z g(s) ^--f (g(l)g(-y) + g(-l/y)g(D + £ s(sA 
\ 5 odd / 

IN (2 2 ~ 1 i V 2 | V } 2 \ 
^ xM ÎV2 ^ÏV2 ^ ,_<4/is ! 4 W I 

\ 5 odd / 

4iV/20 + l l _ A 

Putting the three estimates together now gives: 

, . | . 160 , 8 / V \ 32 iV2 + 2 2 

< 0.28 i f iV^512 . 

Thus, 

|4 J < 1/3 - 32/3iV if TV ̂  512. 

This completes the proof of the Probabilistic Lemma. 
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