SIMPLE FACTORS IN THE JACOBIAN OF A FERMAT CURVE

NEAL KOBLITZ AND DAVID ROHRLICH

1. Introduction. Let

$$
F(N)=\left\{(X, Y, Z) \in P^{2}(\mathbf{C}): X^{N}+Y^{N}=Z^{N}\right\}, \quad N \geqq 3,
$$

denote the N th Fermat curve. The period lattice of $F(N)$ is contained with finite index in the product of certain lattices $L_{r, s}$ (see [6]), and to this inclusion of lattices there corresponds an isogeny of the Jacobian of $F(N)$ onto a product of abelian varieties. The purpose of this paper is to determine when two factors in this product are isogenous over \mathbf{C}, and whether they are absolutely simple.
Since we shall view abelian varieties as complex tori and shall work exclusively with the lattices $L_{r, s}$, it will be convenient to say that a lattice L is simple (rather than that \mathbf{C}^{d} / L is simple) or that L and L^{\prime} are isogenous (rather than that \mathbf{C}^{d} / L and $\mathbf{C}^{d} / L^{\prime}$ are isogenous).

We begin by recalling the definition of the lattices $L_{r, s}$. Given a pair of integers (r, s) with $1 \leqq r, s$ and $r+s \leqq N-1$, let M be the integer defined by

$$
N / M=\operatorname{g.c.d.}(N, r, s) .
$$

Let $\langle a\rangle$ denote the unique representative of a modulo N between 0 and $N-1$, and let $H_{r, s}$ be the subset of $(\mathbf{Z} / M \mathbf{Z})^{*}$ of all elements h such that

$$
\langle h r\rangle+\langle h s\rangle \leqq N-1
$$

Then $H_{r, s}$ is a set of coset representatives for $\{-1,1\}$ in $(\mathbf{Z} / M \mathbf{Z})^{*}$. Making the usual identification of $(\mathbf{Z} / M \mathbf{Z})^{*}$ with $\mathrm{Gal}\left(\mathbf{Q}\left(e^{2 i \pi / M}\right) / \mathbf{Q}\right)$,

$$
h \mapsto \sigma_{h}, \quad \text { where } \sigma_{h}\left(e^{2 \pi i / M}\right)=e^{2 \pi h i / M},
$$

we define $L_{r, s}$ as the lattice in $\mathbf{C}^{\varphi(M) / 2}$ consisting of all vectors

$$
\left(\cdots, \sigma_{h}(z), \cdots\right)_{h \in H_{r, s}}
$$

where z runs through the integers of $\mathbf{Q}\left(e^{2 \pi i / M}\right)$.
Observe that

$$
H_{r, s}=h H_{\langle h r\rangle,\langle h s\rangle}
$$

for any h in $H_{r, s}$. Consequently, since we have not prescribed an ordering on $H_{r, s}$, we have

$$
L_{r, s}=L_{\langle h r\rangle,\langle h s\rangle} .
$$

Received June 28, 1977.

Now the period lattice of $F(N)$ (relative to a suitable basis for the holomorphic differentials) is contained with finite index in the product

$$
\prod_{[r, s]} L_{r, s}
$$

taken over equivalence classes of pairs (r, s) with $1 \leqq r, s$ and $r+s \leqq N-1$. The equivalence relation is

$$
(r, s) \approx(\langle h r\rangle,\langle h s\rangle)
$$

for h in $H_{r, s}$. The observation of the preceding paragraph shows that this product over equivalence classes is well-defined. In what follows, when we consider the simplicity of $L_{r, s}$ or the existence of isogenies between $L_{r, s}$ and $L_{r^{\prime}, s^{\prime}}$, we allow ourselves to replace (r, s) by any member of its equivalence class. In particular, if g.c.d. $(r, N)=1$, we may assume that the pair is actually $(1, s)$.

To determine when $L_{r, s}$ is simple, we use a criterion of Shimura-Taniyama [7]: Let

$$
W_{r, u}=\left\{w \in(\mathbf{Z} / M \mathbf{Z})^{*}: w H_{r, s}=H_{r, s}\right\}
$$

Then $W_{r, s}$ is a subgroup of $(\mathbf{Z} / M \mathbf{Z})^{*}$, and $L_{r, s}$ is simple if and only if $W_{r, s}=$ $\{1\}$. Suppose $W_{r, s} \neq\{1\}$. Then $L_{r, s}$ is isogenous to a product of $\left|W_{r, s}\right|$ isomorphic simple factors, where $\left|W_{r, s}\right|$ is the cardinality of $W_{r, s}$. These factors have complex multiplication by an order of the fixed field of $W_{r, s}$ and $C M$-type equal to $H_{r, s} / W_{r, s}$ (viewed as a subset of the Galois group of the fixed field of $W_{r, s}$ over \mathbf{Q}).

If g.c.d. $(r, s, N)=$ g.c.d. $\left(r^{\prime}, s^{\prime}, N\right)$ and $H_{r, s}=h H_{r^{\prime}, s^{\prime}}$ for some h in $(\mathbf{Z} / N \mathbf{Z})^{*}$, then $L_{r, s}$ and $L_{r^{\prime}, s^{\prime}}$ are identical lattices. On the other hand, suppose $L_{r, s}$ and $L_{r^{\prime}, s^{\prime}}$ are isogenous. Then the $C M$-types of their simple factors must be the same up to an automorphism of the field of complex multiplication, so that $h H_{r, s}=H_{r^{\prime}, s^{\prime}}$ for some h in $(\mathbf{Z} / N \mathbf{Z})^{*}$.

From now on we shall introduce a superfluous t into our notation, writing $H_{r, s, t}$ instead of $H_{r, s}$, where $r+s+t=N$. The point of this is the following: One verifies immediately that for any h in $(\mathbf{Z} / M \mathbf{Z})^{*}$ (where $N / M=$ g.c.d. (r, s, N)) either

$$
\langle h r\rangle+\langle h s\rangle+\langle h t\rangle=N \quad \text { or } \quad\langle h r\rangle+\langle h s\rangle+\langle h t\rangle=2 N
$$

and that $H_{r, s}=H_{r, s, t}$ is the set of those h for which

$$
\langle h r\rangle+\langle h s\rangle+\langle h t\rangle=N .
$$

Consequently, $H_{r, s, t}$ depends on $\{r, s, t\}$ only up to permutation, so that if ρ is a permutation of $\{r, s, t\}$, then

$$
L_{r, s, t}=L_{\rho r, \rho s, \rho t} .
$$

In addition, for any $h \in H_{r, s, t}$ we have

$$
L_{r, s, t}=L_{\langle h r\rangle,\langle h s\rangle,\langle h t\rangle} .
$$

Thus it is natural to define an equivalence $\{r, s, t\} \sim\left\{\boldsymbol{r}^{\prime}, s^{\prime}, t^{\prime}\right\}$ if and only if there exists $h \in(\mathbf{Z} / N \mathbf{Z})^{*}$ such that, up to a permutation, we have

$$
\left\{r^{\prime}, s^{\prime}, t^{\prime}\right\}=\{\langle h r\rangle,\langle h s\rangle,\langle h t\rangle\} .
$$

Remark. This is a weaker equivalence relation than the one mentioned previously, when no permutation was allowed. Only this new equivalence w!ll play a role from now on, in determining isogeny classes of lattices.

The equality of lattices $L_{r, s, t}$ resulting from an equivalence of triples will be called an obvious equality, or obvious isogeny.

Theorem 1. Suppose N is prime to 6. Then:
(i) $H_{r, s, t}=H_{r^{\prime}, s^{\prime}, t^{\prime}}$ if and only if $\{r, s, t\} \sim\left\{r^{\prime}, s^{\prime}, t^{\prime}\right\}$.
(ii) The only isogenies between the lattices $L_{r, s, t}$ are the obvious equalities.

It is clear that (ii) follows from (i). Most of the rest of the paper is devoted to proving (i).

The same combinatorial result will allow us to determine when a lattice $L_{r, s, t}$ is simple. For if w is in $W_{r, s, t}$, then

$$
H_{r, s, t}=w H_{r, s, t}=H_{\left\langle w^{-1} r\right\rangle,\left\langle w^{-1} s\right\rangle,\left\langle w^{-1} t\right\rangle}
$$

so that

$$
\{r, s, t\}=\left\{\left\langle w^{-1} r\right\rangle,\left\langle w^{-1} s\right\rangle,\left\langle w^{-1} t\right\rangle\right\} .
$$

If at least one of $r M / N, s M / N, t M / N$ is prime to M (where $N / M=$ g.c.d. (r, s, t, N)) then one deduces that for $w \neq 1$, either

$$
1+w+w^{2}=0 \quad \text { in } \mathbf{Z} / M \mathbf{Z}
$$

or

$$
w^{2}=1 \quad \text { in } \mathbf{Z} / M \mathbf{Z} .
$$

It follows that after multiplying by an element of $(\mathbf{Z} / N \mathbf{Z})^{*}$, we have

$$
\{r, s, t\}=\left\{N / M,\langle w N / M\rangle,\left\langle w^{2} N / M\right\rangle\right\}
$$

or

$$
\{r, s, t\}=\{N / M,\langle w N / M\rangle,\langle-(1+w) N / M\rangle\}
$$

respectively. On the other hand, suppose $r M / N, s M / N, t M / N$ each have a common factor with M. Then necessarily

$$
\left\langle w^{-1} r\right\rangle=r,\left\langle w^{-1} s\right\rangle=s,\left\langle w^{-1} t\right\rangle=t,
$$

whence $w \equiv 1 \bmod M$. Hence $L_{r, s, t}$ is simple. To summarize:
Theorem 2. Suppose N is prime to 6 . The only lattices $L_{r, s, t}$ which are not simple are those for which $\{r, s, t\}$ is equivalent to a triple of the form

$$
\left\{N / M,\langle w N / M\rangle,\left\langle w^{2} N / M\right\rangle\right\},
$$

for some divisor M of N, and some $w \in \mathbf{Z} / M \mathbf{Z}$ such that $1+w+w^{2}=0$, or to a triple of the form

$$
\{N / M,\langle w N / M\rangle,\langle-(1+w) N / M\rangle\}
$$

for some divisor M of N, and some $w \in \mathbf{Z} / M \mathbf{Z}$ such that $w^{2}=1, w \neq \pm 1$. In particular, if N equals a prime p, then all the factors $L_{r, s, t}$ are simple if $p \equiv 2$ $\bmod 3$, and all but two are simple if $p \equiv 1 \bmod 3$.

When N is not prime to 6 , the situation is more complicated. To illustrate this, we shall prove:

Theorem 3. Suppose $N=3^{n}$. Then the only isogenies apart from the obvious ones are between pairs of lattices corresponding to the triples

$$
\left(3^{m}, 3^{n-1}-2\left(3^{m}\right), 2\left(3^{n-1}\right)+3^{m}\right) \text { and }\left(3^{m+1}, 3^{n-1}-2\left(3^{m}\right), 2\left(3^{n-1}\right)-3^{m}\right)
$$

for $0 \leqq m \leqq n-2$.
Theorem 4. Suppose $N=2^{n}$. Then the only isogenies apart from the obvious ones are between pairs of lattices corresponding to the triples
a) $\quad\left(2^{m}, 2^{n-1}-2^{m+1}, 2^{n-1}+2^{m}\right)$ and $\left(2^{m+1}, 2^{n-2}-2^{m}, 3\left(2^{n-2}\right)-2^{m}\right)$ for $0 \leqq m \leqq n-3$, or
b) $\quad\left(2^{m}, 2^{n-1}-2^{m+1}, 2^{n-1}+2^{m}\right)$ and $\left(2^{m+1}, 2^{n-2}-2^{m}, 3\left(2^{n-2}\right)-2^{m}\right)$
for $0 \leqq m \leqq n-3$, or
c) $\quad\left(2^{m}, 2^{m}, 2^{n}-2^{m+1}\right)$ and $\left(2^{m+1}, 2^{n-1}-2^{m}, 2^{n-1}-2^{m}\right)$
for $0 \leqq m \leqq n-2$, or
d) $\quad\left(2^{m}, 3\left(2^{m}\right), 2^{n}-2^{m+2}\right) \quad$ and $\quad\left(2^{n-1}-2^{m}, 2^{n-1}-2^{m+1}, 3\left(2^{m}\right)\right)$
for $0 \leqq m \leqq n-4$, or
e) $\quad\left(2^{m}, 2^{n-1}, 2^{n-1}-2^{m}\right)$ and $\left(2^{m}, 2^{m}, 2^{n}-2^{m+1}\right)$
for $0 \leqq m \leqq n-2$.
Furthermore, a lattice of type a $)_{m}$ is isogenous to the product of two lattices of type e) $)_{m+1}$.

Finally, we note that Theorems 1 through 4 may equally well be interpreted as statements about when two Stickelberger elements are distinct. The Stickelberger elements referred to here are the elements

$$
\Theta_{r, s, t}=\sum\left(\frac{\langle h r\rangle \pm\langle\langle h s\rangle+\langle h t\rangle}{N}-1\right) \sigma_{-h}^{-1}
$$

of $\mathbf{Z}[\mathrm{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q}]$, see $[\mathbf{2}]$ or $[\mathbf{5}]$; the classical Stickelberger relations show that $\Theta_{r, s, t}$ annihilates the ideal class group of $\mathbf{Q}(\zeta)$. For distinct triples (r, s, t) and ($r^{\prime}, s^{\prime}, t^{\prime}$), the preceding theorems give conditions under which $\Theta_{r, s, t}$ and
$\Theta_{r^{\prime}, s, t^{\prime}}$ are or are not essentially distinct-essentially distinct means that we do not have

$$
\Theta_{r, s, t}=\sigma \Theta_{r^{\prime}, s^{\prime}, t^{\prime}}
$$

for some σ in $\mathrm{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})$.
2. The relatively prime case when N is prime to six. We must show that if N is prime to 6 and $H_{r, s, t}=H_{r^{\prime}, s^{\prime}, t^{\prime}}$ then $\{r, s, t\}=\left\{r^{\prime}, s^{\prime}, t^{\prime}\right\}$. Without loss of generality, we may assume that g.c.d. $(N, r, s, t)=1$, whence $M=N$. In this section we shall assume in addition that

$$
(r, N)=(s, N)=(t, N)=1 \quad \text { ("the relatively prime case") }
$$

in subsequent sections the remaining "boundary cases" will be considered.
The statement to be proved can be formulated in the group algebra $\mathbf{Q}\left[\operatorname{Gal}\left(\mathbf{Q}\left(e^{2 \pi i / N}\right) / \mathbf{Q}\right]\right)$ as follows: If

$$
\sum_{h \in(\mathbf{Z} / N \mathbf{Z})^{*}}(\langle h r\rangle+\langle h s\rangle+\langle h t\rangle) \sigma_{h}=\sum_{h \in(\mathbf{Z} / N \mathbf{Z})^{*}}\left(\left\langle h r^{\prime}\right\rangle+\left\langle h s^{\prime}\right\rangle+\left\langle h t^{\prime}\right\rangle\right) \sigma_{h}
$$

then $\{r, s, t\}=\left\{r^{\prime}, s^{\prime}, t^{\prime}\right\}$ up to a permutation. Equivalently, we can define, for any $r \in(\mathbf{Z} / N \mathbf{Z})^{*}$,

$$
G(r)=\sum_{h \in(\mathbf{Z} / N \mathbf{Z})^{*}} B_{1}(h r) \sigma_{h}, \quad \text { where } B_{1}(a)=\frac{\langle a\rangle}{N}-\frac{1}{2} .
$$

Then the statement becomes: If

$$
\begin{equation*}
G(r)+G(s)+G(t)=G\left(r^{\prime}\right)+G\left(s^{\prime}\right)+G\left(t^{\prime}\right) \tag{}
\end{equation*}
$$

then $\{r, s, t\}=\left\{r^{\prime}, s^{\prime}, t^{\prime}\right\}$ up to a permutation.
We shall now follow an idea of Carlitz-Olson [1] to prove this statement. Assuming the truth of $\left({ }^{*}\right)$, let us apply a character

$$
\chi: \operatorname{Gal}\left(\mathbf{Q}\left(e^{2 \pi i / N}\right) / \mathbf{Q}\right) \rightarrow \mathbf{C}^{*}
$$

to both sides of the equation. We get

$$
B_{1, \chi} \bar{\chi}(r)+B_{1, \chi} \bar{\chi}(s)+B_{1, \chi} \bar{\chi}(t)=B_{1, \chi} \bar{\chi}\left(y^{\prime}\right)+B_{1, \chi} \bar{\chi}\left(s^{\prime}\right)+B_{1, \chi} \bar{\chi}\left(t^{\prime}\right)
$$

where $B_{1, x}$ is the generalized Bernoulli number

$$
B_{1, \chi}=\sum_{h} B_{1}(h) \chi(h) .
$$

If $B_{1, \chi}$ does not equal 0 , we get

$$
\bar{\chi}(r)+\bar{\chi}(s)+\bar{\chi}(t)-\bar{\chi}\left(r^{\prime}\right)-\bar{\chi}\left(s^{\prime}\right)-\bar{\chi}\left(t^{\prime}\right)=0 .
$$

Let us now consider exclusively odd characters χ, i.e. those for which $\chi(-1)=$ -1 . Such a character χ may be written $\chi=\chi_{0} \psi$, where ψ is an even character and χ_{0} is a fixed odd character chosen once and for all. Then the above equation
may be rewritten

$$
\begin{aligned}
\bar{\chi}_{0}(r) \bar{\psi}(r)+\bar{\chi}_{0}(s) \bar{\psi}(s)+\bar{\chi}_{0}(t) \bar{\psi}(t)-\bar{\chi}_{0}\left(r^{\prime}\right) \bar{\psi}\left(r^{\prime}\right)- & \bar{\chi}_{0}\left(s^{\prime}\right) \bar{\psi}\left(s^{\prime}\right) \\
& -\bar{\chi}_{0}\left(t^{\prime}\right) \bar{\psi}\left(x^{\prime}\right)=0
\end{aligned}
$$

for any even character ψ such that $B_{1, \chi_{0} \psi} \neq 0$. In other words, we have a relation of linear dependence between the six row vectors $v_{a}, a=r, s, t, r^{\prime}, s^{\prime}, t^{\prime}$, where

$$
v_{a}=(\cdots, \bar{\psi}(a), \cdots)_{\psi \in S},
$$

with S the set of even characters ψ such that $B_{1, \chi 0 \psi} \neq 0$. Now if N is a prime power, then S is the set of all even characters, hence by the independence of characters we must have

$$
\{r, s, t\}=\left\{\left\langle \pm r^{\prime}\right\rangle,\left\langle \pm s^{\prime}\right\rangle,\left\langle \pm t^{\prime}\right\rangle\right\}
$$

Since $\left\langle r^{\prime}\right\rangle+\left\langle-r^{\prime}\right\rangle=N$, and similarly for s^{\prime}, t^{\prime}, we conclude that

$$
\{r, s, t\}=\left\{r^{\prime}, s^{\prime}, t^{\prime}\right\}
$$

Thus if N is a prime power, the desired statement is an immediate consequence of the linear independence of the $G(r)$ for $1 \leqq r<p^{n} / 2,(r, p)=1$. The reader interested only in this case need proceed no further. Unfortunately, for composite N the set S is smaller than the set of all even characters, so that the linear dependence of the vectors v_{a} does not give an immediate contradiction. However, we have the following lemma:

Lemma. Let G be an abelian group, S a subset of \hat{G}, T a subset of G. If

$$
|S|>\frac{|T|-1}{|T|}|G|
$$

then the rows of

$$
(\psi(g))_{g \in T, \psi \in S}
$$

are linearly independent.
Proof. Assuming the contrary, let

$$
\sum_{g \in T} a_{g} \psi(g)=0 \quad \text { for all } \psi \text { in } S
$$

be a nontrivial relation of linear dependence and choose g_{0} such that

$$
\left|a_{g_{0}}\right| \geqq\left|a_{g}\right| \quad \text { for all } g \in T \text {. }
$$

Then if we multiply

$$
a_{g 0} \psi\left(g_{0}\right)=-\sum_{\substack{g \in T \\ g \neq g_{0}}} a_{g} \psi(g)
$$

by $\psi\left(g_{0}\right)^{-1}$ and sum over all ψ in S, we get

$$
\begin{aligned}
a_{g 0}|S| & =-\sum_{\substack{g \in T \\
g \neq g_{0}}} a_{g} \sum_{\psi \in S} \psi(g) \psi\left(g_{0}\right)^{-1} \\
& =\sum_{\substack{g \in T \\
g \neq g_{0}}} a_{g} \sum_{\psi \notin S} \psi(g) \psi\left(g_{0}\right)^{-1}
\end{aligned}
$$

by the orthogonality relations. Hence

$$
\left|a_{g 0}\right||S| \leqq \sum_{\substack{g \in T \\ g \neq g 0}}\left|a_{g}\right|(|G|-|S|) \leqq\left|a_{g 0}\right|(|T|-1)(|G|-|S|)
$$

whence

$$
|S| \leqq \frac{|T|-1}{|T|}|G|,
$$

a contradiction.
We apply the lemma by letting $G=(\mathbf{Z} / N \mathbf{Z})^{*} / \pm 1, S$ be the set of even characters ψ such that $B_{1, \chi_{0} \psi} \neq 0$, and T be the set consisting of $r, s, t, r^{\prime}, s^{\prime}, t^{\prime}$, viewed as elements of $(\mathbf{Z} / N \mathbf{Z})^{*} / \pm 1$. But first we must know that

$$
|S|>(5 / 6)|G|,
$$

i.e. we must know that for more than five-sixths of the odd characters χ of $(\mathbf{Z} / N \mathbf{Z})^{*}, B_{1, \chi} \neq 0$. This is what we turn to now.

Remark. The map

$$
\begin{aligned}
G: \mathbf{Z} / N \mathbf{Z} & \rightarrow \mathbf{Q}[\mathrm{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})] \\
r & \mapsto G(r)
\end{aligned}
$$

extends uniquely to a map of vector spaces

$$
G: \mathbf{Q}[\mathbf{Z} / N \mathbf{Z}] \rightarrow \mathbf{Q}[\operatorname{Gal}(\mathbf{Q}(\zeta) / \mathbf{Q})]
$$

and it is easy to verify that G is an "odd distribution", i.e. that it satisfies the relations

1) $\sum_{j=0}^{M-1} G\left(r+\frac{N}{M} j\right)=G(M r)$ and
2) $G(-r)=-G(r)$
for any r in $\mathbf{Z} / N \mathbf{Z}$ and M dividing N. Furthermore, it is a fact (see [4]) that all relations satisfied by G are a consequence of relations 1) and 2) above. In particular, to show that the relation

$$
G(r)+G(s)+G(t)=G\left(r^{\prime}\right)+G\left(s^{\prime}\right)+G\left(t^{\prime}\right)
$$

does not hold, one need only show that it does not follow from 1) and 2) above. However, we have not been able to get from this line of argument a proof which is simpler than the present one.

Table 1
All primes $\geqq 5$ dividing $p^{m}-1$ for certain p and m

p m	5	7	11	13	17	19	23	29
1	-	-	5	-	-	-	11	7
2	-	-	5	7	-	5	11	5,7
3	31	19	$5,7,19$	61	307	127	$7,11,79$	$7,12,67$
4	13	5	5,61	$5,7,17$	5,29	5,181	$5,11,53$	$5,7,421$
5	11,71	2801	5,3221					
6	7,31	19,43	$5,7,19,37$					
7	19531	29,4733						
8	13,313	5,1201						
9	$19,31,829$	$19,37,1063$						

Proposition. Suppose 2, $3 \nmid N$. Let $S(N)$ be the set of odd characters of $(\mathbf{Z} / N \mathbf{Z})^{*}$, and let $S_{0}(N) \subset S(N)$ be the set of "bad" characters, i.e.,

$$
S_{0}(N)=\left\{\chi \in S(N) \mid B_{1, \chi}=0\right\} .
$$

Then $\# S_{0}(N)<\frac{1}{6} \# S(N)$.
Proof. For $\chi \in S(N)$ let $N_{0} \mid N$ be the conductor of χ, and let χ_{0} be the character $\bmod N_{0}$ which induces χ. Then

$$
B_{1, \chi}=B_{1, \chi_{0}} \prod_{p \mid N}\left(1-\chi_{0}(p)\right)
$$

Thus $\chi \in S_{0}(N)$ if and only if there exists $p \mid N / N_{0}$ such that $\chi_{0}(p)=1$.
Let

$$
N=\prod_{i=1}^{m} p_{i}^{\alpha_{i}}
$$

be the prime factorization. Let $N_{i}=N / p_{i}{ }^{\alpha_{i}}$, and let ord_{i} denote the order of p_{i} in $\left(\mathbf{Z} / N_{i} \mathbf{Z}\right)^{*}$. If $\chi \in S_{0}(N)$, then for some i the corresponding χ_{0} must be an odd character $\bmod N_{i}$ such that $\chi_{0}\left(p_{i}\right)=1$. For fixed i, the number of such χ_{0} is

$$
\left\{\begin{array}{l}
0 \text { if } p_{i} \text { is a root of }-1 \bmod N_{i}, \\
\#\left(\left(\mathbf{Z} / N_{i} \mathbf{Z}\right)^{*} /\left\{ \pm p_{i}{ }^{j}\right\}\right)=\frac{\varphi\left(N_{i}\right)}{2 \operatorname{ord}_{i}}, \quad \text { otherwise. }
\end{array}\right.
$$

Thus,

$$
s(N) \underset{\text { def }}{=} \frac{\# S_{0}(N)}{\# S(N)} \leqq \sum_{i=1}^{m} \frac{1}{\varphi\left(p_{i}^{\alpha_{i}}\right) \operatorname{ord}_{i}}
$$

We claim that this sum is $<\frac{1}{6}$. It clearly suffices to prove this when all $\alpha_{i}=1$. So suppose N is a product of m distinct primes,

$$
N=\prod_{i=1}^{m} p_{i}, \quad 5 \leqq p_{1}<p_{2}<\cdots<p_{m}
$$

Note that $\operatorname{ord}_{i}>\log _{p i} N_{i} \geqq m-i$. Thus
(1) $\quad \operatorname{ord}_{i} \geqq m+1-i$.

Also,
(2) $\quad \operatorname{ord}_{m}=1 \quad$ only if $p_{m} \geqq 2 \prod_{i<m} p_{i}+1$.

Case 1. $m=2, s(N)=\frac{1}{\left(p_{1}-1\right) \operatorname{ord}_{1}}+\frac{1}{\left(p_{2}-1\right) \operatorname{ord}_{2}}$.
By Table 1 , if $p_{i}=5$ or 7 , then ord ${ }_{i} \geqq 3$ with equality only if $p_{2}=31$ or 19 . If $p_{1} \geqq 11$, then $\left(p_{1}-1\right) \operatorname{ord}_{1} \geqq 20$ by (1). Thus in either case

$$
s(N) \leqq \frac{1}{(5-1) \cdot 3}+\frac{1}{p_{2}-1} \leqq \frac{1}{6} \text { if } p_{2} \geqq 13 \text { (with at least one } \leqq \text { strict } \text {. }
$$

For the remaining case $p_{1}=5, p_{2}=11: s(55)=1 / 4.5+1 / 10=3 / 20<1 / 6$.
Case 2. $m=3$.
If $p_{i}=5$ or 7 , then for $j<5$ Table 1 shows that $p_{i}{ }^{j}-1$ is not divisible by two distinct primes $\geqq 5$. Hence ord ${ }_{i} \geqq 5$ and $\left(p_{i}-1\right) \operatorname{ord}_{i} \geqq 20$. If $p_{i} \geqq 11$, then by (1) and (2) also ($p_{i}-1$) ord ${ }_{i} \geqq 20$. Thus $s(N) \leqq 3 / 20<1 / 6$.

Case 3. $m=4$.
If $p_{i}=5$ or 7 , then $\operatorname{ord}_{i} \geqq 9$ by Table 1 . This, together with (1) and (2), gives:

$$
\begin{array}{r}
\frac{1}{\left(p_{1}-1\right) \text { ord }_{1}} \leqq \frac{1}{4 \cdot 9}, \frac{1}{\left(p_{2}-1\right) \text { ord }_{2}} \leqq \frac{1}{10.3}, \frac{1}{\left(p_{3}-1\right) \operatorname{ord}_{3}} \leqq \frac{1}{10.2} \\
\frac{1}{\left(p_{4}-1\right) \operatorname{ord}_{4}} \leqq \frac{1}{12.2}
\end{array}
$$

and so

$$
\sum \frac{1}{\left(p_{i}-1\right) \operatorname{ord}_{i}}<\frac{1}{6}
$$

Case $4.5 \leqq m \leqq 9$.
From Table 1, if $p_{i}=5,7,11$, then $\operatorname{ord}_{i} \geqq 10,10,6$, respectively, and if $13 \leqq p_{i} \leqq 29$, then $\operatorname{ord}_{i} \geqq 5$. Thus,

$$
\frac{1}{\left(p_{i}-1\right) \operatorname{ord}_{i}} \leqq \begin{cases}\frac{1}{4 \cdot 10}, & p_{i}=5, \\ \frac{1}{6 \cdot 10}, & p_{i}=7, \\ \frac{1}{10 \cdot 6}, & p_{i}=11, \\ \frac{1}{12 \cdot 5}, & p_{i}=13, \cdots, 29, \\ \frac{1}{30 \cdot 2}, & p_{i} \geqq 31 .\end{cases}
$$

Hence,

$$
s(N) \leqq \frac{1}{40}+\frac{m-1}{60}<\frac{m+1}{60} \leqq \frac{1}{6} .
$$

Case 5. $m \geqq 10$.
We show that for all b_{i} we have $\left(p_{i}-1\right)$ ord $_{i}>6 m$, which will imply

$$
s(N)=\sum_{i=1}^{m} \frac{1}{\left(p_{i}-1\right) \operatorname{ord}_{i}}<\frac{1}{6} .
$$

(1) $p_{i}=5$.

$$
\begin{array}{r}
\operatorname{ord}_{i}>\log _{5} n / 5 \geqq \log _{5}\left(7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41^{m-10}\right) \\
>16+5(m-10) / 2>3 m / 2
\end{array}
$$

so that $\left(p_{i}-1\right) \operatorname{ord}_{i}>4 \cdot 3 m / 2=6 m$.
(2) $p_{i}=7$.

$$
\begin{aligned}
& \operatorname{ord}_{i}>\log _{7}\left(5 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41^{m-10}\right) \\
&>13+3(m-10) / 2>m
\end{aligned}
$$

so that $\left(p_{i}-1\right) \operatorname{ord}_{i}>6 m$.
(3) $p_{i}=11$.

$$
\left(p_{i}-1\right) \operatorname{ord}_{i} \geqq 10(m-2)>6 m \quad \text { by } \quad(1) .
$$

(4) $13 \leqq p_{i} \leqq 3 m / 2+1$.

There are clearly no more than $m / 2-1$ primes p with $5 \leqq p \leqq 3 m / 2-1$. (This holds for $m=10,11,12,13$, and for $m+4$ whenever it holds for m, since any sequence of 6 consecutive integers has at most 2 primes.) Since any prime $p<p_{i}$ must be $\leqq p_{i}-2 \leqq 3 m / 2-1$, there are at least $m / 2$ primes $>p_{i}$ among p_{1}, \cdots, p_{m}. Then

$$
\operatorname{ord}_{i}>\log _{p_{i}} p_{i}^{m / 2}=m / 2,
$$

so that $\left(p_{i}-1\right) \operatorname{ord}_{i}>6 m$.
(5) $3 m / 2+1<p_{i} \leqq 6 m+1$.

If suffices to prove that ord ${ }_{i} \geqq 4$. But if $\operatorname{ord}_{i} \leqq 3$, then $\log _{p_{i}} n / p_{i}<3$, and so $n<p_{i}{ }^{4} \leqq(6 m+1)^{4}$. But $(6 m+1)^{4}$ is less than the product of the first m primes starting with 5 as soon as $m \geqq 7$.
(6) $p_{i}>6 m+1$.

Then obviously $\left(p_{i}-1\right) \operatorname{ord}_{i}>6 m$. This completes the proof.
Remarks. 1. When $N=55, \# S(N)=\frac{1}{2} \varphi(N)=20$, and $\# S_{0}(N)=3$ (namely, $S_{0}(N)$ consists of: both odd characters mod 5 and the Legendre character $\bmod 11)$. Thus, $s(55)=3 / 20$. It is clear from the above proof that $3 / 20$ is the maximum for $s(N)$.

It is also clear that

$$
\lim _{\substack{N \rightarrow \infty \\ 2,3 \nmid N}} s(N)=0 .
$$

2. If N is odd and $3 \mid N$, it can similarly be proved that there are precisely two values of N for which $s(N) \geqq 1 / 6: s(21)=1 / 6, s(39)=1 / 4$. For all other values of N, it thus follows that there can be no non-obvious isogenies between $J_{r, s, t}$ and $J_{r^{\prime}, s^{\prime}, t^{\prime}}$ if $r, s, t, r^{\prime}, s^{\prime}, t^{\prime}$ are all prime to N. However, there are non-obvious isogenies in the boundary cases if $3 \mid N$.

When $N=21,39$, the non-obvious isogenies in the relatively prime case all turn out to occur when $J_{r, s, t}$ is isogenous to a product of elliptic curves. In each case we can take (r, s, t) to be ($1, \rho,\left\langle\rho^{2}\right\rangle$) where ρ is a cube root of $1 \bmod$ N. For $N=21, J_{1,4,16}$ is isogenous to the product of 6 copies of the same elliptic curve that occurs for $N=7$ and the triple $(1,2,4)$. (Recall that if N is a prime $\equiv 1 \bmod 3$, then $J_{1, \rho,\left\langle\rho^{2}\right\rangle}$ splits up into 3 curves of genus $(N-1) / 6$.) For $N=39, J_{1,16,22}$ is isogenous to a product of 12 copies of an elliptic curve that does not occur as a simple factor for prime N.

It would be interesting to understand more directly why, if τ and τ^{\prime} are triples all of whose components are prime to N, then J_{τ} and $J_{\tau^{\prime}}$ can only be isogenous when they split into a product of elliptic curves.

It is unclear to us why the "relatively prime case" should be so different from the "boundary cases."
3. The boundary cases when N is prime to six. To prove Theorem 1, it remains to establish the following proposition.

Proposition. Let 2, $3 \nprec N, \tau=(r, s, t), \tau^{\prime}=\left(r^{\prime}, s^{\prime}, t^{\prime}\right), r+s+t=N$. Suppose g.c.d. $\left(r, s, t, r^{\prime}, s^{\prime}, t^{\prime}\right)=1$. Let

$$
H_{\tau}=\left\{h \in(\mathbf{Z} / N \mathbf{Z})^{*} \mid\langle h r\rangle+\langle h s\rangle+\langle h t\rangle=N\right\} .
$$

and similarly for $H_{\tau^{\prime}}$. Suppose N is not prime to r str' $s^{\prime} t^{\prime}$. In the case that $r=r^{\prime}$ for some ordering of the triples τ and τ^{\prime}, suppose further that N is not prime to sts $s^{\prime} t^{\prime}$. Finally, suppose $H_{\tau}=H_{\tau^{\prime}}$.

Then τ^{\prime} is a permutation of τ.
Proof. Case 1. g.c.d. $(r, s, t, N)>1$.
Let $p \mid$ g.c.d. $(r, s, t, N), p \geqq 5$. Let $P=1+(N / p)(\mathbf{Z} / \mathrm{b} \mathbf{Z}), P^{*}=P \cap$ $(\mathbf{Z} / N \mathbf{Z})^{*}, \nu=\#\left(P \backslash P^{*}\right)$. Then

$$
\nu= \begin{cases}0 & \text { if } p^{2} \mid N \\ 1 & \text { if } p^{2} \nmid N .\end{cases}
$$

Since $\langle u r\rangle=r,\langle u s\rangle=s,\langle u t\rangle=t$ for $u \in P$, we have:

$$
P^{*} \subset H_{\tau}=H_{\tau^{\prime}}
$$

Thus

$$
\sum_{u \in P^{*}}\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle=(p-\nu) N
$$

Since $\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle=N$ or $2 N$ for $u \in P \backslash P^{*}$, we have

$$
\begin{equation*}
\sum_{u \in P}\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle \leqq(p-\nu) N \tag{3}
\end{equation*}
$$

Let $r_{0}{ }^{\prime}=\left\langle r^{\prime}\right\rangle_{N / p}, s_{0}{ }^{\prime}=\left\langle s^{\prime}\right\rangle_{N / p}, t_{0}{ }^{\prime}=\left\langle t^{\prime}\right\rangle_{N / p}$, where for any positive integer M we let $\langle\quad\rangle_{M}$ denote least non-negative residue $\bmod M$. For x prime to p, note that $\langle u x\rangle$ runs through $\langle x\rangle_{N / p}+i N / p, i=0,1, \cdots, p-1$, as u runs through P.

First suppose $p \nsucc \varphi^{\prime}, s^{\prime}, t^{\prime}$. Then

$$
\begin{aligned}
& \sum_{u \in P}\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle=p\left(r_{0}^{\prime}+s_{0}^{\prime}+t_{0}^{\prime}\right)+3 N / p \sum_{i=0}^{p-1} i \\
& \geqq p N / p+3 \frac{p-1}{2} N=p N+\frac{p-1}{2} N
\end{aligned}
$$

because $r_{0}{ }^{\prime}+s_{0}{ }^{\prime}+t_{0}{ }^{\prime}=N / p$ or $2 N / p$. This contradicts (3) because $(p-1) / \underline{2}$ $\geqq 2>\nu$.

Now suppose, say, $p \mid r^{\prime}$. Since g.c.d. $\left(r, s, t, r^{\prime}, s^{\prime}, t^{\prime}\right)=1$, we then have $p \nmid s^{\prime}, t^{\prime}$. Note that if τ and τ^{\prime} are replaced by $u_{0} \tau=\left(\left\langle u_{0} r\right\rangle,\left\langle u_{0} s\right\rangle,\left\langle u_{0} t\right\rangle\right)$ and $u_{0} \tau^{\prime}$, where $u_{0} \in(\mathbf{Z} / N \mathbf{Z})^{*}$, the assumptions of the proposition remain valid, except that $\left\langle u_{0} r\right\rangle+\left\langle u_{0} s\right\rangle+\left\langle u_{0} t\right\rangle$ will equal $2 N$ instead of N if $u_{0} \notin H_{\tau}$. In that case (3) can be replaced by

$$
\begin{equation*}
\sum_{u \in P}\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle \geqq(2 p-\nu) N \tag{4}
\end{equation*}
$$

Since $p \mid r^{\prime}$, we have

$$
\begin{aligned}
& \sum_{u \in P}\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle=p\left(r^{\prime}+s_{0}{ }^{\prime}\right.\left.+t_{0}{ }^{\prime}\right)+2 N / p \sum_{i=0}^{p-1} i \\
&=p r^{\prime}+p\left(s_{0}{ }^{\prime}+t_{0}{ }^{\prime}\right)+(p-1) N
\end{aligned}
$$

We claim that τ^{\prime} can be modified by a suitable $u_{0} \in(\mathbf{Z} / N \mathbf{Z})^{*}$ so that

$$
(p+\nu) N<p r^{\prime}+p\left(s_{0}{ }^{\prime}+t_{0}{ }^{\prime}\right)+(p-1) N<(2 p-\nu) N
$$

contradicting (3) and (4). Since $0<s_{0}{ }^{\prime}+t_{0}{ }^{\prime}<2 N / p$, we would like r^{\prime} to satisfy

$$
(\nu+1) N / p \leqq r^{\prime} \leqq N-(\nu+1) N / p
$$

It clearly suffices if $2 N / 5 \leqq r^{\prime} \leqq 3 N / 5$.
Let $x=$ g.c.d. $\left(r^{\prime}, N\right), y=N / x, \beta=\left[\log _{2} y / \sqrt{2}\right]$. Then $y / 2 \sqrt{2}<2^{\beta}<$ $y / \sqrt{2}$. Note that $\beta \geqq 1$, since $y \geqq 5$. If $2^{\beta}<2 y / 5$, then $3 \cdot 2^{\beta-1}$ is $<3 y / 5$ and $>(3 / 2)(y / 2 \sqrt{2})>2 y / 5$. If $2^{\beta}>3 y / 5$ (in which case note that $\beta \geqq 2$), then $3 \cdot 2^{\beta-2}$ is $>(3 / 4) \cdot(3 y / 5)>2 y / 5$ and $<(3 / 4)(y / \sqrt{2})<3 y / 5$. Now let $u_{1} \in(\mathbf{Z} / N \mathbf{Z})^{*}$ equal either $2^{\beta}, 3 \cdot 2^{\beta-1}$, or $3 \cdot 2^{\beta-2}$, so that $2 y / 5 \leqq u_{1} \leqq 3 y / 5$.

Then if $u_{0}=u_{1}\left(r^{\prime} / x\right)^{-1} \in(\mathbf{Z} / N \mathbf{Z})^{*}$, we have

$$
2 N / 5 \leqq\left\langle u_{0} r^{\prime}\right\rangle \leqq 3 N / 5
$$

as required.
Case 2. There exists a prime p dividing N, r, r^{\prime} but not dividing $s t s^{\prime} t^{\prime}$; and $r \neq r^{\prime}$.

We need the following simple lemma, whose proof is straightforward and will be omitted.

Lemma. Let $2,3 \nmid N, 1 \leqq x, y<N, x \neq y, p \mid N$. Then there exists $u \in$ $(\mathbf{Z} / N \mathbf{Z})^{*}$ such that

$$
\left|\left[\frac{\langle u y\rangle}{N / p}\right]-\left[\frac{\langle u x\rangle}{N / p}\right]\right| \geqq \begin{cases}3 & \text { if } p>5 \\ 2 & \text { if } p=5\end{cases}
$$

If $x=1, y \neq 2,(N+1) / 2$, and $5 \nmid N$, then there exists $u \in(\mathbf{Z} / N \mathbf{Z})^{*}$ such that

$$
\left|\left[\frac{\langle u y\rangle}{N / 5}\right]-\left[\frac{\langle u x\rangle}{N / 5}\right]\right| \geqq 3
$$

Let $P, P^{x}, \nu, r_{0}{ }^{\prime}, s_{0}{ }^{\prime}, t_{0}{ }^{\prime}$ be defined as before, $r_{0}=\langle r\rangle_{N / p}, s_{0}=\langle s\rangle_{N / p}, t_{0}=$ $\langle t\rangle_{N / p}$. Since $H_{\tau}=H_{\tau^{\prime}}$, for $u \in P^{*}$ we have

$$
\langle u r\rangle+\langle u s\rangle+\langle u t\rangle=\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle .
$$

For $u \in P \backslash P^{*}$ we have

$$
\left|\langle u r\rangle+\langle u s\rangle+\langle u t\rangle-\left(\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle\right)\right| \leqq N .
$$

Thus

$$
\nu N / p \geqq \frac{1}{p}\left|\sum_{u \in P}\langle u r\rangle+\langle u s\rangle+\langle u t\rangle-\sum_{u \in P}\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle\right|
$$

$$
\begin{equation*}
\nu N / p \geqq\left|r+s_{0}+t_{0}-r^{\prime}-s_{0}^{\prime}-t_{0}^{\prime}\right| \tag{5}
\end{equation*}
$$

$$
\nu \geqq\left|\left[\frac{r}{N / p}\right]-\left[\frac{r^{\prime}}{N / p}\right]\right|-\frac{1}{N / p}\left|r_{0}+s_{0}+t_{0}-\left(r_{0}{ }^{\prime}+s_{0}{ }^{\prime}+t_{0}{ }^{\prime}\right)\right|
$$

$$
\begin{equation*}
\nu+1 \geqq\left|\left[\frac{r}{N / p}\right]-\left[\frac{r^{\prime}}{N / p}\right]\right| \tag{6}
\end{equation*}
$$

First suppose $p>5$, or $p=5$ and $p^{2} \mid N$ (so that $\nu=0$). By the lemma applied with $x=r, y=r^{\prime}$, if we multiply through by a suitable $u \in(\mathbf{Z} / N \mathbf{Z})^{*}$, without loss of generality we may assume that

$$
\left|\left[\frac{r}{N / p}\right]-\left[\frac{r^{\prime}}{N / p}\right]\right| \geqq \nu+2
$$

which contradicts (6).

Now suppose $N=5 N_{0}, 5 \nmid N_{0}, 5 \mid r, r^{\prime}$. If there is another prime $p>5$ with $p \mid N$ and $p \mid r$ or $p \mid r^{\prime}$, we can use either Case 1 or Case 2 for $p>5$ above or Case 3 below. So suppose g.c.d. $(N, r)=$ g.c.d. $\left(N, r^{\prime}\right)=5$.

If $r / r^{\prime} \not \equiv 2^{ \pm 1} \bmod N_{0}$, then we use the above lemma (with $N_{0}, r / r^{\prime}$ in place of N, y) to find u prime to N_{0} such that

$$
3 \leqq\left|\left[\frac{\left\langle u r / r^{\prime}\right\rangle_{V_{0}}}{N_{0} / 5}\right]-\left[\frac{\langle u\rangle_{N_{0}}}{N_{0} / 5}\right]\right|,=\left|\left[\frac{\left\langle\frac{u}{r^{\prime} / 5} r\right\rangle}{N / 5}\right]-\left[\frac{\left\langle\frac{u}{r^{\prime} / 5} r^{\prime}\right\rangle}{N / 5}\right]\right| .
$$

Here $r^{\prime} / 5 \in(\mathbf{Z} / N \mathbf{Z})^{*}$. If $5 \mid u$, replace u by $u+N_{0} \in(\mathbf{Z} / N \mathbf{Z})^{*}$. Thus, we can find $u_{0}=5 u / r^{\prime}$ or $(5 u+N) / r^{\prime}$ prime to N, such that

$$
\left|\left[\frac{\left\langle u_{0} r\right\rangle}{N / 5}\right]-\left[\frac{\left\langle u_{0} r^{\prime}\right\rangle}{N / 5}\right]\right| \geqq 3
$$

which contradicts (6).
It remains to consider the case $r / r^{\prime} \equiv 2^{ \pm 1} \bmod N_{0}$, say $r \equiv 2 r^{\prime} \bmod N$. Multiplying through by $(r / 5)^{-1} \in(\mathbf{Z} / N \mathbf{Z})^{*}$, we may assume $r=5, r^{\prime}=$ $(N+5) / 2$. By (5) we have

$$
\begin{aligned}
N_{0} \geqq \mid r+s_{0}+t_{0}-r^{\prime}-s_{0}^{\prime} & -t_{0}{ }^{\prime} \mid \\
& =\left|r_{0}+s_{0}+t_{0}-r_{0}{ }^{\prime}-s_{0}{ }^{\prime}-t_{0}{ }^{\prime}-2 N_{0}\right| .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
r_{0}+s_{0}+t_{0}=2 N_{0}, \quad r_{0}{ }^{\prime}+s_{0}{ }^{\prime}+t_{0}{ }^{\prime}=N_{0} \tag{7}
\end{equation*}
$$

Say $\tau=\left(5, i N_{0}-a, j N_{0}-b\right)$, where $a, b>0, a+b=5$. Multiplying through by a suitable $u \in P^{*}$, without loss of generality we may assume $\tau=(5, N-a$, $N-b$) (namely, if $i N_{0}-a \equiv k \bmod 5$, let $u=\langle-i / k\rangle_{5} N_{0}+1$). Since $\mathfrak{2} \notin H_{\tau}=H_{\tau}{ }^{\prime}$, and $\left\langle\Sigma^{\prime} r^{\prime}\right\rangle=5$, we must have $2 \tau^{\prime}=\left(5, N-a^{\prime}, N-b^{\prime}\right)$, where $a^{\prime}, b^{\prime}>0, a^{\prime}+b^{\prime}=5$. Say a^{\prime} is even. Then $\tau^{\prime}=\left((N+5) / 2, N-a^{\prime} / 2\right.$, $\left.\left(N-b^{\prime}\right) / 2\right)$, and $r_{0}{ }^{\prime}+s_{0}{ }^{\prime}+t_{0}{ }^{\prime}=2 N_{0}$, contradicting (7).

Case 3. There exists a prime $p \mid N, r, p \nmid s \operatorname{tr}^{\prime} s^{\prime} t^{\prime}$.
Multiplying through by a suitable element of $(\mathbf{Z} / N \mathbf{Z})^{*}$, without loss of generality we may assume that $r=$ g.c.d. (N, r). Let $P, P^{*}, r_{0}, s_{0}, t_{0}, r_{0}{ }^{\prime}, s_{0}{ }^{\prime}, t_{0}{ }^{\prime}$ be defined as in Cases 1 and 2. We have

$$
\begin{aligned}
& \nu N \geqq\left|\sum_{u \in P}\langle u r\rangle+\langle u s\rangle+\langle u t\rangle-\sum_{u \in P}\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle\right| \\
&=\mid p r+\sum_{i=0}^{p-1}\left(s_{0}+i N / p+t_{0}+i N / p-r_{0}^{\prime}-i N / p-s_{0}^{\prime}-i N / p\right. \\
&\left.-t_{0}^{\prime}-i N / p\right) \mid \\
&=p\left|r+s_{0}+t_{0}-r_{0}{ }^{\prime}-s_{0}{ }^{\prime}-t_{0}{ }^{\prime}-\frac{p-1}{2} N / p\right| .
\end{aligned}
$$

Hence

$$
\begin{align*}
\nu N / p \geqq \frac{p-1}{2} N / p+r_{0}{ }^{\prime}+s_{0}{ }^{\prime}+t_{0}{ }^{\prime} & -r-s_{0}-t_{0} \tag{8}\\
& >\frac{p-1}{2} N / p+N / p-2 N / p-r
\end{align*}
$$

(9) $\quad-\frac{r}{N / p}>\frac{p-3}{2}-\nu$.

Let $\alpha=N / r \geqq 5$. If $p \geqq 11$, (9) implies

$$
0<p / \alpha-p / 2+5 / 2 \leqq 5 / 2-3 p / 10<0
$$

a contradiction. If $p=7$ and $\alpha \geqq 7$. then we obtain

$$
0<p / 7-p / 2+5 / 2=0
$$

again a contradiction.
It remains to consider the case $p=7, \alpha=5$ and the case $p=5$. Note that when $\nu=0,(9)$ gives

$$
0<p / \alpha-p / 2+3 / 2 \leqq 0
$$

for all $\alpha \geqq 5, p \geqq 5$. So suppose $p^{2} \nmid N$.
First suppose $p=7, \alpha=5$. If a prime $q>7$ divides r, we can use Case 1,2 , or 3 with $p=q>7$ instead of $p=7$. If $5 \mid r$, so that $5^{2} \mid N$, we can use Case 1,2 , or 3 with $p=5, v=0$. The only remaining case when $p=7, \alpha=5,7^{2} \nmid N$ is when $r=7$, i.e., $N=35$; this case is easily checked by hand.

We now consider the case $p=5,5^{2} \nmid N$. If $r>5$, there is a prime $q>5$ dividing r and N, and we can use Case 1,2 , or 3 with $p=q>5$. So suppose $r=5$.

By (8),

$$
N / 5 \geqq 2 N / 5+r_{0}{ }^{\prime}+s_{0}{ }^{\prime}+t_{0}^{\prime}-\left(5+s_{0}+t_{0}\right),
$$

which is only possible if $r_{0}{ }^{\prime}+s_{0}{ }^{\prime}+t_{0}{ }^{\prime}=N / 5, \check{b}+s_{0}+t_{0}=2 N / 5$. Thus, $\tau=(5, i N / 5-a, j N / 5-b)$, where $a, b>0, a+b=5$. Multiplying through by a suitable element in P^{*}, without loss of generality we may assume that $\tau=(5, N-a, N-b)$.

But for this τ we know $H_{\tau} \subset(\mathbf{Z} / N \mathbf{Z})^{*}$ explicitly. Namely, if $h \in(\mathbf{Z} / N \mathbf{Z})^{*}$, then
(10) $h \in H_{\tau} \Leftrightarrow\left[\frac{\langle h\rangle}{5}\right]+\left[\frac{\langle h\rangle}{a}\right]+\left[\frac{\langle h\rangle}{b}\right]$ is odd.

In particular, whether or not $h \in H_{\tau}$ depends only on $[\langle h\rangle / 5 a b]$ (here $5 a b=20$ or 30). By a tedious examination of possible ranges of values for $r^{\prime}, s^{\prime}, t^{\prime}$, we verified that no $\tau^{\prime} \neq \tau$ has $H_{\tau^{\prime}}$ given by (10). This part of the proof will be omitted in the interest of brevity.

This completes the proof of Case 3 of the proposition, and hence of Theorem 1.
4. Isogenies for N a power of 3 . Theorem 3 can be restated as follows.

Proposition. Let $N=3^{n}, N_{1}=3^{n-1}, \tau=(r, s, t), \tau^{\prime}=\left(r^{\prime}, s^{\prime}, t^{\prime}\right), H_{\tau}=H_{\tau^{\prime}}$. Suppose that τ^{\prime} is not a permutation of τ, and that g.c.d. $\left(r, s, t, r^{\prime}, s^{\prime}, t^{\prime}\right)=1$. Then for some $u \in(\mathbf{Z} / N \mathbf{Z})^{*}, u \tau=(\langle u r\rangle,\langle u s\rangle,\langle u t\rangle)$ and $u \tau^{\prime}$ are permutations of $\left(1, N_{1}-2,2 N_{1}+1\right)$ and $\left(3, N_{1}-2,2 N_{1}-1\right)$.

Proof. Let ord m denote the highest power of 3 that divides an integer m. Without loss of generality, we may suppose ord $r \geqq$ ord $s \geqq$ ord t and ord $r^{\prime} \geqq$ ord $s^{\prime} \geqq \operatorname{ord} t^{\prime}$. Note that then ord $s=\operatorname{ord} t$, ord $s^{\prime}=\operatorname{ord} t^{\prime}$ and either ord $s=0$ or ord $s^{\prime}=0$. We may suppose ord $s^{\prime}=0$.

The proof that $\tau=\tau^{\prime}$ if $3 \nmid r s t r^{\prime} s^{\prime} t^{\prime}$ or if $r=r^{\prime}$ and $3 \nprec s t s^{\prime} t^{\prime}$ is included in the proof of Theorem 1 in the relatively prime case (§ 2).

Case 1 . ord $s>0$.
If $3 \mid r^{\prime}$, multiply through by a suitable $u \in(\mathbf{Z} / N \mathbf{Z})^{*}$ so that $N_{1} \leqq\left\langle u r^{\prime}\right\rangle \leqq$ $2 N_{1}$ (namely, let $\left.u=\left(3^{- \text {ord } r^{\prime}} r^{\prime}\right)^{-1}\left(\left(3^{- \text {ord } r^{\prime}} N-1\right) / 2\right)\right)$. Thus, without loss of generality we may suppose
(11) $\quad N_{1} \leqq r^{\prime} \leqq 2 N_{1} \quad$ if $3 \mid r^{\prime}$.

Let $P=1+N_{1}(\mathbf{Z} / 3 \mathbf{Z}) \subset(\mathbf{Z} / N \mathbf{Z})^{*}$, and let $r_{0}{ }^{\prime}=\left\langle r^{\prime}\right\rangle_{N_{1}}, \quad s_{0}{ }^{\prime}=\left\langle s^{\prime}\right\rangle_{N_{1}}$, $t_{0}^{\prime}=\left\langle t^{\prime}\right\rangle_{N_{1}}$. By (3) and (4), we have

$$
\sum_{u \in P}\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle\left\{\begin{array}{l}
\leqq 3 N \\
\geqq 6 N .
\end{array}\right. \text { or }
$$

But if $3 \nsucc r^{\prime}$, this sum equals

$$
3 N+3\left(r_{0}{ }^{\prime}+s_{0}{ }^{\prime}+t_{0}{ }^{\prime}\right)=4 N \text { or } 5 N ;
$$

while if $3 \mid r^{\prime}$, the sum equals

$$
2 N+3\left(r^{\prime}+s_{0}{ }^{\prime}+t_{0}{ }^{\prime}\right),
$$

which by (11) equals $4 N$ or $5 N$.
We may now suppose $3 \nprec$ sts $s^{\prime} t^{\prime}$. Also suppose ord $r \geqq$ ord r^{\prime}.
Case 2. $3 \mid r^{\prime}$ and $r \neq r^{\prime}$.
Let $m=n-$ ord $r^{\prime}, M=3^{m}, M_{1}=3^{m-1}$. Letting $P=1+M\left(\mathbf{Z} / 3^{\text {ord } r^{\prime}} \mathbf{Z}\right)$ and proceeding as in Case 2 of $\S 3$, we obtain (see (6))
(12) $1 \geqq\left|[r / M]-\left[r^{\prime} / M\right]\right|$.

The case $N=9$ is easily checked by hand; if $m=1, n \geqq 3$, then $3 \mid r / M$, r^{\prime} / M, contradicting (12). So suppose $m \geqq 2$.

We need a simple lemma, whose proof will be omitted.
Lemma. Suppose $1 \leqq x, y<M, x \neq y, 3 \nmid$ g.c.d. (x, y). Then there exists u prime to 3 such that

$$
\left|\langle u y\rangle_{M}-\langle u x\rangle_{M}\right|>M_{1} .
$$

We apply the lemma with $x=r^{\prime} / 3^{\text {ord } r^{\prime}}, y=r / 3^{\text {ord } r^{\prime}}$. Multiplying through by the u in the lemma, without loss of generality we may assume that $\left|r-r^{\prime}\right|>$ N_{1}. But (12) gives $\left|r-r^{\prime}\right|<3 M \leqq N_{1}$, a contradiction.

Case 3. $3 \nmid s t r^{\prime} s^{\prime} t^{\prime}, 3^{2} \mid r$.
Xultiplying through by $\left(r / 3^{\text {ord } r}\right)^{-1} \in(\mathbf{Z} / N \mathbf{Z})^{*}$, without loss of generality we may assume that $r=3^{\text {ord } r}$. Letting $m=n-$ ord $r, M=3^{m}, P=1+$ $M\left(\mathbf{Z} / 3^{\circ \mathrm{rd} r} \mathbf{Z}\right)$, and proceeding as in Case 3 of $\S 3$, we obtain (see (9))

$$
\frac{3^{\operatorname{ord} r}-3}{2}<\frac{r}{M} \leqq \frac{3^{\mathrm{ord} r}}{3}
$$

a contradiction.
Case 4. $3 \nmid s t r^{\prime} s^{\prime} t^{\prime}$, ord $r=1$.
\ultiplying through by a suitable $u \in(\mathbf{Z} / N \mathbf{Z})^{*}$, we may assume that $r=3$. Suppose $\tau=(r, s, t)$ and $\tau^{\prime}=\left(r^{\prime}, s^{\prime}, t^{\prime}\right)$ are arranged so that $s \equiv 1((\bmod 3)$, $t \equiv 2(\bmod 3), r^{\prime} \leqq s^{\prime} \leqq t^{\prime}$. We have $3 \nsucc$ st $r^{\prime} s^{\prime} t^{\prime}$.

Note that $r^{\prime} \equiv s^{\prime} \equiv t^{\prime}(\bmod 3)$. We claim $r^{\prime} \equiv 1(\bmod 3)$. Let $r^{\prime} \equiv r_{0}{ }^{\prime}$ $(\bmod 3), r_{0}{ }^{\prime}=1$ or 2 . Let $P=1+3\left(\mathbf{Z} / N_{1} \mathbf{Z}\right) \subset(\mathbf{Z} / N \mathbf{Z})^{*}$. Then

$$
\sum_{u \in P}\langle u r\rangle+\langle u s\rangle+\langle u t\rangle=\sum_{u \in P}\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle .
$$

The sum on the left equals

$$
3 \sum_{\substack{k=3 \bmod 9 \\ 1 \leqq k<N}} k+\sum_{\substack{3 \nmid k \\ 1 \leqq k<N}} k=9 \sum_{\substack{k=4 \text { mod } 9 \\ 1 \leq k<N}} k .
$$

The sum on the right equals

$$
3 \sum_{\substack{k=1(\bmod 3) \\ 1 \leqq k<N}}\left(k+\left(r_{0}^{\prime}-1\right)\right)=9 \sum_{\substack{k=4 \bmod 9 \\ 1 \leqq k<N}} k+\left(r_{0}^{\prime}-1\right) N .
$$

Hence $r_{0}{ }^{\prime}=1$ as claimed.
Now first suppose that $s^{\prime}<N_{1}$. We shall call a triple admissible if the sum of its components is N rather than $2 N$. Then, since $r^{\prime} \equiv s^{\prime} \equiv t^{\prime} \equiv 1(\bmod 3)$, we have

$$
\left(N_{1}-1\right) \tau^{\prime}=\left(N_{1}-r^{\prime}, N_{1}-s^{\prime}, 4 N_{1}-t^{\prime}\right) \text { is admissible, }
$$

i.e., $\left(N_{1}-r^{\prime}\right)+\left(N_{1}-s^{\prime}\right)+\left(4 N_{1}-t^{\prime}\right)=N$. Hence $N_{1}-1 \in H_{\tau^{\prime}}=H_{\tau}$, and

$$
\left(N_{1}-1\right) \tau=\left(N-3,\left\langle\left(N_{1}-1\right) s\right\rangle,\left\langle\left(N_{1}-1\right) t\right\rangle\right) \text { is admissible, }
$$

in other words $\left\langle\left(N_{1}-1\right) s\right\rangle+\left\langle\left(N_{1}-1\right) t\right\rangle=3$. Since $s \equiv 1(\bmod 3), t \equiv 2$ $(\bmod 3)$, we have $\left\langle\left(N_{1}-1\right) s\right\rangle=2,\left\langle\left(N_{1}-1\right) t\right\rangle=1$. Hence

$$
s=\left\langle 2 /\left(N_{1}-1\right)\right\rangle=N_{1}-2, t=\left\langle 1 /\left(N_{1}-1\right)\right\rangle=2 N_{1}-1 .
$$

Next suppose that τ is not admissible. Then $\tau=(3,\langle-2\rangle,\langle-1\rangle)$, and
$\left(N_{1}+1\right) \tau=\left(3, N_{1}-2,2 N_{1}-1\right)$. Thus we may again obtain $\tau=(3$, $\left.N_{1}-2,2 N_{1}-1\right)$ after multiplying through by a suitable $u \in(\mathbf{Z} / N \mathbf{Z})^{*}$.

Now suppose τ is admissible, and $s^{\prime}>N_{1}$. Then we must have $N_{1}<s^{\prime}$, $t^{\prime}<2 N_{1}$, and so

$$
\left(2 N_{1}-1\right)\left(r^{\prime}, s^{\prime}, t^{\prime}\right)=\left(2 N_{1}-r^{\prime}, 2 N_{1}-s^{\prime}, 2 N_{1}-t^{\prime}\right) \text { is admissible. }
$$

Thus,

$$
\left(2 N_{1}-1\right) \tau=\left(N-3,\left\langle\left(2 N_{1}-1\right) s\right\rangle,\left\langle\left(2 N_{1}-1\right) t\right\rangle\right) \text { is admissible, }
$$

which gives

$$
s=\left\langle 2 /\left(2 N_{1}-1\right)\right\rangle=2 N_{1}-2, \quad t=\left\langle 1 /\left(2 N_{1}-1\right)\right\rangle=N_{1}-1 .
$$

Then $\left(N_{1}+1\right) \tau=\left(3, N_{1}-2,2 N_{1}-1\right)$.
Thus, after multiplying through by a suitable $u \in(\mathbf{Z} / N \mathbf{Z})^{*}$, we may assume that $\tau=\left(3, N_{1}-2,2 N_{1}-1\right)$. Let $\tau_{0}=\left(1, N_{1}-2,2 N_{1}+1\right)$; then $H_{\tau_{0}}=$ $H_{\tau}=H_{\tau^{\prime}}$. But $H_{\tau_{0}}=H_{\tau^{\prime}}$ implies that τ^{\prime} is a permutation of τ_{0}, because all components in τ^{\prime} and τ_{0} are prime to 3 (see beginning of this proof).
5. Isogenies for N a power of 2. Theorem 4 can be restated as follows.

Proposition. Let $N=2^{n}, n \geqq 4$. Let $N_{1}=2^{n-1}, N_{2}=2^{n-2}, \tau=(r, s, t)$, $\tau^{\prime}=\left(r^{\prime}, s^{\prime}, t^{\prime}\right), H_{\tau}=H_{\tau^{\prime}}$. Suppose that τ^{\prime} is not a permutation of τ, and that g.c.d. $\left(r, s, t, r^{\prime}, s^{\prime}, t^{\prime}\right)=1$. Then for some $u \in(\mathbf{Z} / N \mathbf{Z})^{*}$, ut and $u \tau^{\prime}$ are permutations of one of the following pairs of triples:
(1) $(N-4,1,3),\left(N_{1}-2, N_{1}-1,3\right)$;
(2) any 2 of the triples $(N-2,1,1),\left(N_{1}, 1, N_{1}-1\right),\left(2, N_{1}-1, N_{1}-1\right)$;
(3) any 2 of the triples $(N-4,2,2),\left(N_{1}, 2, N_{1}-2\right),\left(N_{1}-2,1, N_{1}+1\right)$, $\left(2, N_{2}-1,3 N_{2}-1\right)$.

Proof. Most of the proof is similar to the proof of Theorem 2, and will be omitted. However, one case is somewhat harder. When $N=2^{n}$, there is no "relatively prime case" when $r s t r^{\prime} s^{\prime} t^{\prime}$ is prime to N (since at least one component in a triple must be even). Instead, the "relatively prime case," in which divisibility is least possible, occurs when, say, $2 \mid r, r^{\prime} ; 4 \nsucc r, r^{\prime} ; 2 \nmid$ st $s^{\prime} t^{\prime}$. Since it does not seem to be possible to apply the Frobenius determinant formula to this situation, our proof of the "relatively prime case" when $N=2^{n}$ needs another technique, based on a probabilistic consideration.

Let $(r, s, t),\left(r^{\prime}, s^{\prime}, t^{\prime}\right)$ fall in the "relatively prime case," i.e., $2 \mid r, r^{\prime}, 4 \nmid r, r^{\prime}$, $2 \nmid s t s^{\prime} t^{\prime}$. Multiplying through by $s^{-1} \in(\mathbf{Z} / N \mathbf{Z})^{*}$, we may suppose that $s=1$.

If $t=N_{1}+1$, then $\tau=\left(N_{1}-2,1, N_{1}+1\right), H_{\tau}=\left\{\right.$ odd $j \mid 0<j<N_{2}$ or $\left.N_{1}<j<3 N_{2}\right\}$. Then for all $u \in(\mathbf{Z} / N \mathbf{Z})^{*}$ we have:

$$
\langle u\rangle \in H_{\tau^{\prime}} \quad \Leftrightarrow \quad\left\langle u+N_{1}\right\rangle \in H_{\tau^{\prime}} .
$$

Since $\left\langle\left(u+N_{1}\right) r^{\prime}\right\rangle=\left\langle u r^{\prime}\right\rangle,\left\langle\left(u+N_{1}\right) s^{\prime}\right\rangle=\left\langle u s^{\prime}+N_{1}\right\rangle,\left\langle\left(u+N_{1}\right) t^{\prime}\right\rangle=$
$\left\langle u t^{\prime}+N_{1}\right\rangle$, this means that exactly one of $\left\langle u s^{\prime}\right\rangle,\left\langle u t^{\prime}\right\rangle$ is $\left\langle N_{1}\right.$. Then for all $u<N_{1}:\left\langle u\left(t^{\prime} / s^{\prime}+N_{1}\right)\right\rangle<N_{1}$. By Sublemma 1 below, $t^{\prime}=\left\langle-s^{\prime}\right\rangle$ or $\left\langle N_{1}+\right.$ $\left.s^{\prime}\right\rangle$. But $t^{\prime} \neq\left\langle-s^{\prime}\right\rangle$. Hence $\tau^{\prime}=s^{\prime}\left(N_{1}-2,1, N_{1}+1\right)$. Then s^{\prime} preserves H_{τ}, and it is easy to see that then $s^{\prime}=1$ or $N_{2}-1$. If $s^{\prime}=1$, we have $\tau^{\prime}=\tau$; if $s^{\prime}=N_{2}-1$, we have a pair in list (3) of the proposition.

Next, if $t=1=s$, then $H_{\tau}=\left\{\right.$ odd $\left.j<N_{1}\right\}$, and a similar application of Sublemma 1 gives a pair in list (2) of the proposition. Sublemma 1 can also be used to rule out the cases s^{\prime} or $t^{\prime}=1$ or $N_{1}+1 ; t$, s^{\prime} or $t^{\prime}=N-1$ or $N_{1}-1$ or reduce them to a pair in list (2) or (3) of the proposition.

Thus, we may assume that $s=1, t, s^{\prime}, t^{\prime} \not \equiv \pm 1 \bmod N_{1}$. In addition, at least one of the $t, s^{\prime}, t^{\prime}$ may be assumed $\not \equiv \pm 3^{ \pm 1} \bmod N_{1}$, since otherwise we could find two with the same sign in the exponent, divide τ and τ^{\prime} by one of these two, and reduce to a case already considered when one of $s, t, s^{\prime}, t^{\prime}$ is 1 and one is 1 or $N_{1} \pm 1$.

Now we apply the Probabilistic Lemma. (We suppose $n \geqq 9$, i.e., $N \geqq 512$. The "relatively prime case" of Theorem 3 was verified by computer for $N=16$, $32,64,128,256$.) Let y_{1}, y_{2}, y_{3} be $\langle-t\rangle, s^{\prime}, t^{\prime}$, where y_{1} is chosen $\not \equiv \pm 3^{ \pm 1} \bmod$ N_{1}. Let $u \in S_{y_{i}} \cap S_{y_{j}}$. Let k be the index in $\{1,2,3\}$ not equal to i or j.

First consider the case $y_{k}=s^{\prime}$ or t^{\prime}. Then $\langle u s\rangle=u<N_{1},\langle u t\rangle<N_{1}$, so that $u \in H_{\tau}, u+N_{1} \notin H_{\tau}$. At least one of $\left\langle u s^{\prime}\right\rangle,\left\langle u t^{\prime}\right\rangle$ is $>N_{1}$. If both are, then $u \notin H_{\tau^{\prime}}$, a contradiction. If one is $>N_{1}$ and one is $<N_{1}$, then

$$
\begin{aligned}
& \left\langle\left(u+N_{1}\right) r^{\prime}\right\rangle+\left\langle\left(u+N_{1}\right) s^{\prime}\right\rangle+\left\langle\left(u+N_{1}\right) t^{\prime}\right\rangle \\
& \quad=\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle \pm N_{1}+\left\langle u t^{\prime}\right\rangle \mp N_{1}=\left\langle u r^{\prime}\right\rangle+\left\langle u s^{\prime}\right\rangle+\left\langle u t^{\prime}\right\rangle,
\end{aligned}
$$

so that either both $u, u+N_{1} \in H_{\tau^{\prime}}$ or both $u, u+N_{1} \notin H_{\tau^{\prime}}$, also a contradiction.

Now consider the case $y_{k}=\langle-t\rangle$ and $u \notin S_{y_{k}}$, i.e., $\langle u t\rangle>N_{1}$. Since $\left\langle u s^{\prime}\right\rangle,\left\langle u t^{\prime}\right\rangle>N_{1}$, we have $u \notin H_{\tau^{\prime}}, u+N_{1} \notin H_{\tau^{\prime}}$. But since $\langle u s\rangle=u<N_{1}$ and $\langle u t\rangle>N_{1}$, we must have either $u, u+N_{1} \in H_{\tau}$ or $u, u+N_{1} \notin H_{\tau}$, a contradiction. This proves the proposition assuming the Probabilistic Lemma.

Probabilistic Lemma. Let $N=2^{n}, N_{1}=2^{n-1}, N_{2}=2^{n-2}, n \geqq 9, S=$ $\left\{1,3,5, \cdots, N_{1}-1\right\}$. Let \rangle denote least positive residue $\bmod N$. For $y \in$ $(\mathbf{Z} / N \mathbf{Z})^{*}$, let $S_{y}=\left\{s \in S \mid\langle s y\rangle>N_{1}\right\}$. Suppose $y_{1}, y_{2}, y_{3} \in(\mathbf{Z} / N \mathbf{Z})^{*}, y_{1}, y_{2}, y_{3}$ $\not \equiv \pm 1\left(\bmod N_{1}\right), y_{1} \not \equiv \pm 3^{ \pm 1}\left(\bmod N_{1}\right)$. Then for some $i \neq j, S_{y i} \cap S_{y_{j}}$ is not empty.

Proof. We shall need some simple sublemmas.
Sublemma 1. Let $y S=\{\langle y s\rangle \mid s \in S\}$. If $y S=S$, then $y \equiv 1$ or $N_{1}-1$ $(\bmod N)$.
Sublemma 2. $\sum_{\substack{0<j<2 M \\ j \text { odd }}} \frac{1}{j}<\log \frac{2 M+1}{\sqrt{\bar{M}}}$.
SUbLEmmA 3 . Let $a_{1} \geqq a_{2} \geqq \cdots \geqq a_{r} \geqq 0, b_{1} \geqq b_{2} \geqq \cdots \geqq b_{r} \geqq 0$. For
any permutation σ of $\{1,2, \cdots, r\}$ define $A_{\sigma}=\sum a_{i} b_{\sigma(i)}$. Then $A_{\sigma} \leqq A_{1}=$ $\sum a_{i} b_{i}$.

Sublemma 4. For Modd, let

$$
s_{M}(x)=\frac{4}{\pi} \sum_{\substack{j>M I \\ j \text { odd }}} \frac{\sin 2 \pi j x}{j}
$$

Then

$$
\left|s_{M}(x)\right| \leqq \frac{1}{\pi(M+1) d\left(x, \frac{1}{4} \mathbf{Z}\right)}, \quad \text { where } d\left(x, \frac{1}{4} \mathbf{Z}\right)=\min _{l \in \mathbf{Z}}\{|x-l / 4|\}
$$

The proofs of the first three sublemmas are very simple, and will be omitted. To prove the fourth, we write

$$
\begin{aligned}
\sin 4 \pi x s_{M}(x)= & \frac{4}{\pi} \sum_{\text {odd }} \frac{\sin 4 \pi x \sin 2 \pi j x}{j} \\
= & \frac{4}{\pi} \sum_{\text {odd }} \sum_{j \geqq M+2} \frac{\cos 2 \pi(j-2) x-\cos 2 \pi(j+2) x}{2 j} \\
= & \frac{2}{\pi}\left(\frac{\cos 2 \pi M x}{M+2}+\frac{\cos 2 \pi(M+2) x}{M+4}\right. \\
& \left.\quad+\sum_{\text {odd }} \sum_{j \geqq M+4} \cos 2 \pi j x\left(\frac{1}{j+2}-\frac{1}{j-2}\right)\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\sum_{\text {odd } j \geqq M+4}\left(\frac{1}{j-2}-\frac{1}{j+2}\right)=4 \sum_{\text {odd }} \sum_{j \geqq M+4} \frac{1}{j^{2}-2} & <4 \sum_{\text {even } j \geqq M+3} \frac{1}{j^{2}} \\
& =\sum_{j \geqq(M+3) / 2} \frac{1}{j^{2}}<\frac{2}{M+1}
\end{aligned}
$$

and since $|\sin 4 \pi x| \geqq 8 d\left(x, \frac{1}{4} \mathbf{Z}\right)$, we have

$$
\left|s_{M}(x)\right| \leqq \frac{2}{\pi \cdot 8 d\left(x,{ }_{4}^{1} \mathbf{Z}\right)}\left(\frac{2}{M+2}+\frac{2}{M+1}\right)<\frac{1}{\pi(M+1) d\left(x,{ }_{4}^{1} \mathbf{Z}\right)}
$$

This concludes the proof of Sublemma 4.
Proceeding to the proof of the Probabilistic Lemma, we define

$$
f(x)=\frac{4}{\pi} \sum_{\substack{j>0, j \text { odd }}} \frac{\sin 2 \pi j x}{j}=\frac{4}{2 \pi i} \sum_{j \text { odd }} \frac{e^{2 \pi i j x}}{j}
$$

For $y \in(\mathbf{Z} / N \mathbf{Z})^{*}$, let

$$
A_{y}=\frac{2}{N} \sum_{\substack{0<j<N \\ j \text { odd }}} f\left(\frac{j}{N}\right) f\left(\frac{j y}{N}\right)=\frac{4}{N} \sum_{\substack{0<j<N_{1}, j \text { odd }}} f\left(\frac{j y}{N}\right) .
$$

Clearly, $A_{y}=A_{y^{-1}}, A_{y}=-A_{-y}=-A_{y+N_{1}}$. Moreover,

$$
\# S_{y}=\sum_{\substack{0<j<N_{1} \\ j \text { odd }}}\left(1-f\left(\frac{j y}{N}\right)\right) / 2=\frac{N_{2}}{2}\left(1-A_{y}\right),
$$

and the lemma follows if we show that $N_{2}<\left(N_{2} / 2\right)\left(3-A_{y_{1}}-A_{y_{2}}-A_{y_{3}}\right)$. We shall show that $\left|A_{y_{1}}\right|+\left|A_{y_{2}}\right|+\left|A_{y_{3}}\right|<1$.
A_{3} is easily computed directly:

$$
\begin{aligned}
A_{3} & =\frac{4}{N}\left(\frac{N}{4}-2\left(\# \text { of odd } j \text { such that } \frac{N}{6}<j<\frac{N}{3}\right)\right) \\
& =1-\frac{8}{N} \begin{cases}\frac{N+2}{6}-\frac{N / 2-2}{6} & \text { if } n \text { is even; } \\
\frac{N-2}{6}-\frac{N / 2+2}{6} & \text { if } n \text { is odd, } \\
& =\frac{1}{3}-(-1)^{n} \frac{16}{3 N} .\end{cases}
\end{aligned}
$$

Thus, $\left|A_{y}\right| \leqq 1 / 3+16 / 3 N$ if $y \equiv \pm 3^{ \pm 1}\left(\bmod N_{1}\right)$.
We now prove: If $y \not \equiv \pm 1, \pm 3^{ \pm 1}\left(\bmod N_{1}\right)$ and $n \geqq 9$, then $\left|A_{y}\right|<1 / 3-$ $32 / 3 N$. This will give us the required $\left|A_{y_{1}}\right|+\left|A_{y_{2}}\right|+\left|A_{y_{3}}\right|<1 / 3-32 / 3 N+$ $2(1 / 3+16 / 3 N)=1$.

First suppose $\left\langle \pm y^{ \pm 1}\right\rangle$ or $\left\langle N_{1} \pm y^{ \pm 1}\right\rangle$ is $\left\langle N_{2} / 2\right.$ for some choice of signs; say $0<y<N_{2} / 2$. For $k=0,1, \cdots,(y-1) / 2-1$, clearly

$$
\left|\sum_{k N / y<j<(k+1) N / y} f\left(\frac{j y}{N}\right)\right| \leqq 1,
$$

while

$$
\left|\sum_{\substack{y-1) N / 2 y<j<N_{1} \\ j \text { odd }}} f\left(\frac{j y}{N}\right)\right| \leqq \frac{N_{1}-\frac{y-1}{2 y} N+1}{2}=\frac{N}{4 y}+\frac{1}{2} .
$$

Thus,

$$
\begin{aligned}
\left|A_{y}\right| & \leqq \frac{4}{N}\left(\frac{y-1}{2}+\frac{N}{4 y}+\frac{1}{2}\right)=\frac{2 y}{N}+\frac{1}{y} \\
& \leqq \max \left(\frac{10}{N}+\frac{1}{5}, \frac{1}{4}+\frac{2}{N_{2}}\right) \text { for } 5 \leqq y<\frac{N_{2}}{2} \\
& =\frac{1}{4}+\frac{8}{N} \text { for } n \geqq 6 \\
& <\frac{1}{3}-\frac{32}{3 N} \text { for } n \geqq 8
\end{aligned}
$$

Now suppose $\left\langle \pm y^{ \pm 1}\right\rangle>N_{2} / 2$ and $\left\langle N_{1} \pm y^{ \pm 1}\right\rangle>N_{2} / 2$ for all choices of signs. For M odd, let

$$
S_{M}(x)=\frac{4}{\pi} \sum_{\substack{0<j \leq M I \\ j \text { odd }}} \frac{\sin 2 \pi j x}{j}, \quad S_{M}(x)=f(x)-S_{M}(x)
$$

Applying Sublemma 4 with $M=N-1, x=k / N$, we obtain

$$
\left|s_{N-1}(k / N)\right| \leqq \frac{1}{\pi d\left(k, N_{2} \mathbf{Z}\right)}, \quad \text { where } d\left(k, N_{2} \mathbf{Z}\right)=\min _{l \in \mathbf{Z}}\left\{\left|k-N_{2} l\right|\right\}
$$

Then

$$
\begin{aligned}
\left|A_{y}\right| \leqq \frac{2}{N}\left|\sum_{\substack{0<j<N \\
j \text { odd }}} S_{N-1}\left(\frac{j}{N}\right) S_{N-1}\left(\frac{j y}{N}\right)\right| & +\frac{4}{N} \sum_{\substack{0<j<N, j \text { ood }}}\left|s_{N-1}\left(\frac{j}{N}\right)\right| \\
& +\frac{2}{N} \sum_{\substack{0<j<N, j \text { odd }}}\left|s_{N-1}\left(\frac{j}{N}\right)\right|\left|s_{N-1}\left(\frac{j y}{N}\right)\right| .
\end{aligned}
$$

The second sum is bounded by

$$
\frac{1}{\pi} \sum_{\substack{0<j<N \\ j \text { odd }}} 1 / d\left(j, N_{2} \mathbf{Z}\right)=\frac{8}{\pi} \sum_{\substack{0<j<N_{2} / 2 \\ j \text { odd }}} \frac{1}{j}<\frac{8}{\pi} \log \frac{N_{2}+2}{\sqrt{N_{2}}}
$$

by Sublemma 2. The third sum is bounded by

$$
\frac{1}{\pi^{2}} \sum_{\substack{0<j<N \\ j \text { odd }}} \frac{1}{d\left(j, N_{2} \mathbf{Z}\right) d\left(j y, N_{2} \mathbf{Z}\right)} \leqq \frac{8}{\pi^{2}} \sum_{\substack{0<j<N_{2} / 2 \\ j \text { odd }}} 1 / j^{2}
$$

by Sublemma 3. We rewrite the first sum as

$$
\begin{aligned}
-\frac{4}{\pi^{2}} & \sum_{-\substack{N<r, s<N \\
r, s \text { odd }}} \sum_{\substack{0<j<N \\
\text { jodd }}} \frac{1}{r s} e^{2 \pi i j(r+y s) / N} \\
& =-\frac{4}{\pi^{2}} \frac{N}{2} \sum_{\substack{N<r, s<N, r, s \text { odd } \\
r+y s=0(\bmod N 1)}} \frac{1}{r s}(-1)^{(r+y s) / N_{1}} \\
& =-\frac{4 N}{\pi^{2}} \sum_{\substack{\left.0<s s, N, s \text { odd } \\
-N<r<N, r=-y s \bmod N_{1}\right)}} \frac{1}{r s}(-1)^{(r+y s) / N_{1}} \\
& =-\frac{4 N}{\pi} \sum_{\substack{0<s<N \\
\text { sodd }}} \frac{1}{s}\left(\frac{1}{\langle-y s\rangle}-\frac{1}{\langle y s\rangle}-\frac{1}{\left\langle N_{1}-y s\right\rangle}+\frac{1}{\left\langle N_{1}+y s\right\rangle}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \mid \text { first sum } \left\lvert\, \leqq \frac{4 N}{\pi^{2}} \sum_{\substack{0<s<N_{2} \\
\text { sodd }}} g(s) g(-y s)\right., \\
& \quad \text { where } g(s)=\left|\frac{1}{\langle s\rangle}-\frac{1}{\langle-s\rangle}-\frac{1}{\left\langle N_{1}+s\right\rangle}+\frac{1}{\left\langle N_{1}-s\right\rangle}\right| .
\end{aligned}
$$

Clearly,
(1) $g(1) \geqq g(3) \geqq \cdots \geqq g\left(N_{2}-1\right)$;
(2) $\{g(-y s)\}_{\substack{0<s<N_{2} \\ s \text { odd }}}$ is a permutation of $\{g(s)\}_{\substack{0<s<N_{2} \\ s \text { odd }}}$;
(3) $g(s)<1 / s$ for $s<N_{2} / 2$;
(4) $g(s)<2 / N_{2}$ for $s>N_{2} / 2$.

Hence by Lemma 3

$$
\begin{aligned}
\mid \text { first sum } \mid & \leqq \frac{4 N}{\pi^{2}}\left(g(1) g(-y)+g(-1 / y) g(1)+\sum_{\substack{3 \leq s<N_{2} \\
s \text { odd }}} g(s)^{2}\right) \\
& <\frac{4 N}{\pi^{2}}\left(\frac{2}{N_{2}}+\frac{2}{N_{2}}+\sum_{\substack{3 \leq s<N_{2} / 2 \\
s \text { odd }}} \frac{1}{s^{2}}+\frac{N_{2}}{4}\left(\frac{2}{N_{2}}\right)^{2}\right) \\
& <\frac{4 N}{\pi^{2}}\left(\frac{20}{N}+\frac{\pi^{2}}{8}-1\right) .
\end{aligned}
$$

Putting the three estimates together now gives:

$$
\begin{aligned}
\left|A_{y}\right| & <\frac{160}{\pi^{2} N}+\frac{8}{\pi^{2}}\left(\frac{\pi^{2}}{8}-1\right)+\frac{32}{\pi N} \log \frac{N_{2}+2}{\sqrt{N_{2}}}+\frac{2}{N} \\
& <0.28 \text { if } N \geqq 512
\end{aligned}
$$

Thus,

$$
\left|A_{y}\right|<1 / 3-32 / 3 N \quad \text { if } N \geqq 512 .
$$

This completes the proof of the Probabilistic Lemma.

References

1. L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc. 6 (1955), 265-269.
2. K. Iwasawa, Lectures on p-adic L-functions, Annals of Math. Studies 74, Princeton, 1972.
3. M. Kac, Statistical independence in probability, analysis, and number theory (John Wiley and Sons, New York, 1959).
4. D. Kubert and S. Lang, Distributions on toroidal groups, Math. Zeit. 148 (1976), 33--51.
5. S. Lang, Cyclotomic fields (Springer-Verlag, New Vork, 1978).
6. D. Rohrlich, Periods of the Fermat curee, Appendix to B. Gross, On the periods of abelian integrals and a formula of Chowla and Selberg, Inventiones Math. 45 (1978), 193-211.
7. G. Shimura and Y. Taniyama, Complex multiplication of abelian verieties and its applications to number theory, Math. Soc. Japan, Tokyo, 1961.

Harvard University,
Cambridge, Massachusetts

