COMPATIBLE TIGHT RIESZ ORDERS II

A. M. W. GLASS

R. N. Ball (unpublished) and G. E. Davis and C. D. Fox [1] established that if Ω is a doubly homogeneous totally ordered set, the *l*-group $A(\Omega)$ of all orderpreserving permutations of Ω endures a compatible tight Riesz order. Specifically $T = \{g \in A(\Omega)^+ : \text{supp } (g) \text{ is dense in } \Omega\}$ is a compatible tight Riesz order for $A(\Omega)$. Using this fact, I inserted Theorem 3.7 into [2; *MR 53* (1977), #13070] at the galley proof stage. (It was also included in *MR 54* (1977), #7350 and [3; p. 472].) Theorem 3.7 stated: Let Ω be homogeneous. Then $A(\Omega)$ endures a compatible tight Reisz order if and only if Ω is dense. I stated that it was obvious that if Ω were homogeneous and discrete, $A(\Omega)$ could not endure a compatible tight Riesz order. This "obvious" is neither obvious nor true. My purpose in this note is to prove in a unified way (and without recourse to the machinery developed in [2]):

THEOREM. Let Ω be a homogeneous linearly ordered set. Then $A(\Omega)$ endures a compatible tight Riesz order if and only if Ω is not ordermorphic to \mathbb{Z} .

Let Ω be a homogeneous linearly ordered set (i.e., $A(\Omega)$ is transitive). The set of $A(\Omega)$ -congruences on Ω forms a chain (under inclusion), and for each $\alpha, \beta \in \Omega$ with $\alpha \neq \beta$, there exists a (unique) convex $A(\Omega)$ -congruence \mathscr{C}_{γ} on Ω that is maximal with respect to $\alpha \mathscr{C}_{\gamma} \neq \beta \mathscr{C}_{\gamma}$. Let \mathscr{C}^{γ} be the intersection of all convex $A(\Omega)$ -congruences \mathscr{C} on Ω such that $\alpha \mathscr{C}\beta$. Then $\alpha \mathscr{C}^{\gamma}\beta$ and \mathscr{C}^{γ} covers \mathscr{C}_{γ} (in the set of all convex $A(\Omega)$ -congruences on Ω). Let $\gamma = \operatorname{Val}(\alpha, \beta) =$ $(\mathscr{C}_{\gamma}, \mathscr{C}^{\gamma})$, and let Γ be the set of all such γ (as α, β range over Ω with $\alpha \neq \beta$) totally ordered by: $\gamma_1 \leq \gamma_2$ if and only if $\mathscr{C}_{\gamma_1} \subseteq \mathscr{C}_{\gamma_2}$. Let $\Omega(\gamma) = \alpha \mathscr{C}^{\gamma}/\mathscr{C}_{\gamma}$. If $g \in A(\Omega)$ is such that $\alpha \mathscr{C}^{\gamma} \alpha g$, let $g_{\alpha,\gamma} \in A(\Omega(\gamma))$ be obtained from g by: $(\beta \mathscr{C}_{\gamma})g_{\alpha,\gamma} = \beta g \mathscr{C}_{\gamma}$ ($\beta \in \alpha \mathscr{C}^{\gamma}$). Observe that for each $\alpha \in \Omega$,

$$\{g_{lpha,oldsymbol{\gamma}}\in A\left(\Omega(oldsymbol{\gamma})
ight):g\in A\left(\Omega
ight) ext{ and } lpha\mathscr{C}^{oldsymbol{\gamma}}lpha g\}=A\left(\Omega(oldsymbol{\gamma})
ight).$$

 $\{A(\Omega(\gamma)) : \gamma \in \Gamma\}$ is called the *set of o-primitive components of* $A(\Omega)$. For each $\gamma \in \Gamma$, $A(\Omega(\gamma))$ is *o*-2 transitive (and divisible), isomorphic to **Z**, or Ohkuma (i.e., $\Omega(\gamma)$ is ordermorphic to a dense subgroup of **R**—and so has cofinality **X**₀—and $A(\Omega(\gamma))$ is just the right regular representation of $\Omega(\gamma)$). If $\Omega(\gamma)$ is an Ohkuma set, $A(\Omega(\gamma))$ is a dense totally ordered group and hence

$$T = \{g \in A(\Omega(\gamma)) : g > e\} = \{g \in A(\Omega(\gamma))^+ : g \neq e\}$$

Received October 31, 1977 and in revised form April 5, 1978. This research was done while visiting the University of Alberta, Edmonton. I am most grateful for the support and for the hospitality accorded me there.

is a *compatible tight Riesz order on* $A(\Omega(\gamma))$. (*T* is a compatible tight Riesz order on an *l*-group *G* provided

1. T is a proper filter on G^+ , 2. T is G-invariant $[f \in T \text{ implies } (\forall g \in G)(g^{-1}fg \in T)]$, 3. $T \cdot T = T$, and 4. inf T = e).

Note that $A(\mathbf{Z}) \cong \mathbf{Z}$ and so, by 3, cannot endure a compatible tight Riesz order. Finally, if \mathscr{C} is a convex $A(\Omega)$ -congruence on Ω , let

 $L(\mathscr{C}) = \{g \in A(\Omega) : \alpha \mathscr{C} \alpha g \text{ for all } \alpha \in \Omega\}.$

 $L(\mathscr{C})$ is an *l*-ideal of $A(\Omega)$. For proofs and further details of these facts, see [3]. Throughout this paper, assume that Ω is a homogeneous linearly ordered set.

LEMMA 1. If $A(\Omega)$ has an o-primitive component that is o-2 transitive, then $A(\Omega)$ endures a compatible tight Riesz order.

Proof. Let $\gamma \in \Gamma$ be such that $A(\Omega(\gamma))$ is *o*-2 transitive. Let

 $T_{\gamma} = \{ f \in A(\Omega(\gamma))^+ : \text{supp } (f) \text{ is dense in } \Omega(\gamma) \},\$

a compatible tight Riesz order on $A(\Omega(\gamma))$. Let

 $T' = \{ g \in L(\mathscr{C}^{\gamma})^+ : (\forall \beta \in \Omega) (g_{\beta,\gamma} \in T_{\gamma}) \}.$

T' is an $A(\Omega)$ -invariant subset of $A(\Omega)^+$ that satisfies $T' \cdot T' = T'$ (since $A(\Omega(\gamma))$ is divisible). Moreover, $f, g \in T'$ implies $f \wedge g \in T'$. Let $\alpha \in \Omega$ and $h \in T_{\gamma}$. There exists $g_{\alpha,\gamma} \in T_{\gamma}$ such that $\alpha \mathscr{C}_{\gamma}$ is fixed by $g_{\alpha,\gamma}$. Let $g \in A(\Omega)^+$ be such that $g_{\beta,\gamma'} = e$ if $\gamma' < \gamma$ and $\beta \mathscr{C}^{\gamma}\alpha$, and

$$g_{\beta,\gamma} = \begin{cases} g_{\alpha,\gamma} & \text{if } \beta \mathscr{C}^{\gamma} \alpha. \\ h & \text{otherwise} \end{cases}$$

Then $g \in T'$ and $\alpha g = \alpha$. Consequently, inf T' = e. Therefore

 $T = \{g \in A(\Omega) : g \ge f \text{ for some } f \in T'\}$

is a compatible tight Riesz order on $A(\Omega)$.

LEMMA 2. If $A(\Omega)$ has a non-maximal o-primitive component that is Ohkuma, then $A(\Omega)$ endures a compatible tight Riesz order.

Proof. Let $\gamma \in \Gamma$ be such that $A(\Omega(\gamma))$ is Ohkuma. Let

 $T_{\gamma} = \{ f \in A(\Omega(\gamma))^+ : f \neq e \},\$

a compatible tight Riesz order on $A(\Omega(\gamma))$. Let

$$T' = \{ g \in L(\mathscr{C}^{\gamma})^{+} : (\exists \sigma, \tau \in \Omega) (\sigma < \tau \text{ and } (\forall \beta \in \Omega) \\ [(\beta < \sigma \text{ or } \tau < \beta) \rightarrow (g_{\beta,\gamma} \in T_{\gamma})] \} \}$$

T' is an $A(\Omega)$ -invariant subset of $A(\Omega)^+$ that satisfies $T' \cdot T' = T'$ (since T_{γ}

has no least element and is totally ordered). Moreover, $f, g \in T'$ implies $f \wedge g \in T'$. Let $\alpha \in \Omega$. Since γ is non-maximal, there exist $\sigma, \tau \in \Omega$ such that $\sigma \mathscr{C}^{\gamma} < \alpha \mathscr{C}^{\gamma} < \tau \mathscr{C}^{\gamma}$. Let $h \in T_{\gamma}$. Define $g \in A(\Omega)^+$ such that $g_{\beta,\gamma} = h$ for all $\beta \in \Omega$ for which $\beta \mathscr{C}^{\gamma} \leq \sigma \mathscr{C}^{\gamma}$ or $\beta \mathscr{C}^{\gamma} \geq \tau \mathscr{C}^{\gamma}$ and $g_{\beta,\gamma'} = e$ for all $\gamma' \leq \gamma$ and $\beta \in \Omega$ for which $\sigma \mathscr{C}^{\gamma} < \beta \mathscr{C}^{\gamma} < \tau \mathscr{C}^{\gamma}$. Then $g \in T'$ and $\alpha g = \alpha$. It follows that inf T' = e. Therefore

$$T = \{g \in A(\Omega) : g \ge f \text{ for some } f \in T'\}$$

is a compatible tight Riesz order on $A(\Omega)$.

Note that T defined above is equal to

$$\{ g \in A(\Omega)^+ : (\exists \sigma, \tau \in \Omega) (\sigma < \tau \text{ and} \\ (\forall \beta) [(\beta < \sigma \text{ or } \tau < \beta) \to \text{Val} (\beta, \beta g) \ge \gamma]) \}.$$

LEMMA 3. If there exists $\{\gamma_n : n \in \mathbb{Z}^+\} \subseteq \Gamma$ with $\gamma_1 > \gamma_2 > \gamma_3 > \ldots$, then $A(\Omega)$ endures a compatible tight Riesz order.

Proof. In view of Lemmas 1 and 2, we may assume that $A(\Omega(\gamma)) \cong \mathbb{Z}$ for all $\gamma \in \Gamma \setminus {\gamma_1}$. Let

$$T = \{ g \in A(\Omega)^+ : (\exists n \in \mathbb{Z}^+) (\exists \sigma, \tau \in \Omega) (\sigma < \tau \text{ and} \\ (\forall \beta \in \Omega) [(\beta < \sigma \text{ or } \tau < \beta) \rightarrow \text{Val} (\beta, \beta g) \ge \gamma_n]) \}.$$

Clearly T is an $A(\Omega)$ -invariant subset of $A(\Omega)^+$. Let $T_{\gamma_2} = \{f \in \mathbb{Z}^+ : f \neq e\}$. The proof in Lemma 2 that inf T' = e shows that inf T = e (replace γ by γ_2). Finally, let $g \in T$. Let n, σ, τ show this. Define $h \in L(\mathscr{C}^{\gamma_{n+1}})$ so that $h_{\beta,\gamma} = 0$ if

$$\sigma \mathscr{C}^{\gamma_{n+1}} \leq \beta \mathscr{C}^{\gamma_{n+1}} \leq \tau \mathscr{C}^{\gamma_{n+1}} \text{ and } \gamma \leq \gamma_{n+1},$$

and $h_{\beta,\gamma_{n+1}} = +1$ if

 $\beta \mathscr{C}^{\gamma_{n+1}} < \sigma \mathscr{C}^{\gamma_{n+1}}$ or $\beta \mathscr{C}^{\gamma_{n+1}} > \tau \mathscr{C}^{\gamma_{n+1}}$.

Then if $\beta < \sigma$ or $\tau < \beta$, Val $(\beta, \beta h) = \gamma_{n+1}$; so $h \in T$. Since $h_{\beta,\gamma} = 0$ if $\gamma \leq \gamma_{n+1}$ and $\sigma \mathscr{C}^{\gamma_{n+1}} \leq \beta \mathscr{C}^{\gamma_{n+1}} \leq \tau \mathscr{C}^{\gamma_{n+1}}$ and Val $(\beta, \beta g) \geq \gamma_n$ if $\beta < \sigma$ or $\tau < \beta$, $gh^{-1} > e$ and Val $(\beta, \beta gh^{-1}) \geq \gamma_n$ if $\beta < \sigma$ or $\tau < \beta$. Thus $gh^{-1} \in T$ and as $g = gh^{-1} \cdot h$, $T \cdot T = T$. Consequently, T is a compatible tight Riesz order on $A(\Omega)$.

LEMMA 4. If Λ is ordermorphic to \mathbf{Z} or an Ohkuma set, then $A(\mathbf{Z} \times \Lambda)$ endures a compatible tight Riesz order.

Proof. $A(\mathbf{Z} \succeq \Lambda) =$ { $(\{g_{\lambda} : \lambda \in \Lambda\}, \bar{g}) : \bar{g} \in A(\Lambda) \text{ and } (\forall \lambda \in \Lambda)(g_{\lambda} \in \mathbf{Z})$ }. Let T =

$$\{(\{g_{\lambda} : \lambda \in \Lambda\}, g) : g > 0 \text{ or } (g = 0, \text{ all } g_{\lambda} \ge 0 \text{ and} \\ (\forall n \in \mathbf{Z}^{+}) (\exists \lambda_{n} \in \Lambda) (g_{\lambda} \ge n \text{ for all } \lambda \ge \lambda_{n}))\}.$$

Clearly T is an $A(\mathbf{Z} \succeq \Lambda)$ -invariant filter on $A(\mathbf{Z} \succeq \Lambda)^+$ and $\inf T = e$. Let $g \in T$. If $\tilde{g} > 0$, let $f = (\{f_{\lambda} : \lambda \in \Lambda\}, 0)$ where

$$f_{\lambda} = \begin{cases} n & \text{if } \lambda \in [n, n+1) \text{ and } n > 0 \\ 0 & \text{if } \lambda < 0. \end{cases}$$

 $f \in T$ and $\overline{gf^{-1}} = \overline{g} > 0$. Hence $gf^{-1} \in T$ and $g = gf^{-1} \cdot f$. If $\overline{g} = 0$, let $\{\lambda_n : n \in \mathbb{Z}^+\}$ show that $g \in T$. Let $f = (\{f_\lambda : \lambda \in \Lambda\}, 0)$ where

$$f_{\lambda} = \begin{cases} g_{\lambda}/2 & \text{if } g_{\lambda} \text{ is even} \\ (g_{\lambda}+1)/2 & \text{if } g_{\lambda} \text{ is odd.} \end{cases}$$

Then $f \in T$ and $gf^{-1} \in T$ since f_{λ} , $(gf^{-1})_{\lambda} \ge n$ if $\lambda \ge \lambda_{2n}$. So $T \cdot T = T$. Consequently, T is a compatible tight Riesz order on $A(\Omega)$.

The technique employed in the above proof is due to N. R. Reilly [4, p. 159].

LEMMA 5. If $|\Gamma| \ge 2$ and $A(\Omega)$ has a minimal 0-primitive component that is isomorphic to \mathbb{Z} , then $A(\Omega)$ endures a compatible tight Riesz order.

Proof. By Lemmas 1 and 3, we may assume that no *o*-primitive component of $A(\Omega)$ is *o*-2 transitive and that Γ is well-ordered. Let γ_0 be the least element of Γ and γ_1 its successor. Then $\Lambda = \Omega(\gamma_1)$ is an Ohkuma set or **Z**. By Lemma 4, $A(\mathbf{Z} \times \Lambda)$ endures a compatible tight Riesz order, say T'. Let

$$\overline{T} = \{ g \in L(\mathscr{C}^{\gamma_1})^+ : (\forall \alpha \in \Omega) (g_{\alpha,\gamma_1} \in T') \} \text{ and }$$
$$T = \{ g \in A(\Omega) : g \ge f \text{ for some } f \in T' \}.$$

Then T is a compatible tight Riesz order on $A(\Omega)$.

By Lemmas 1–5, the theorem follows.

References

- 1. G. E. Davis and C. D. Fox, Compatible tight Riesz orders on the group of automorphisms of an o-2 homogeneous set, Canadian J. Math., 28 (1976), 1076-1081.
- A. M. W. Glass, Compatible tight Riesz orders, Canadian J. Math., 28 (1976), 186-200.
 —— Ordered Permutation Groups, Bowling Green State University, 1976.
- 4. N. R. Reilly, Compatible tight Riesz orders and prime subgroups, Glasgow Math. J. 14 (1973), 146-160.

Bowling Green State University, Bowling Green, Ohio

https://doi.org/10.4153/CJM-1979-032-2 Published online by Cambridge University Press