COMPATIBLE TIGHT RIESZ ORDERS II

A. M. W. GLASS

R. N. Ball (unpublished) and G. E. Davis and C. D. Fox [1] established that if Ω is a doubly homogeneous totally ordered set, the l-group $A(\Omega)$ of all orderpreserving permutations of Ω endures a compatible tight Riesz order. Specifically $T=\left\{g \in A(\Omega)^{+}: \operatorname{supp}(g)\right.$ is dense in $\left.\Omega\right\}$ is a compatible tight Riesz order for $A(\Omega)$. Using this fact, I inserted Theorem 3.7 into [2; MR 53 (1977), \#13070] at the galley proof stage. (It was also included in $M R 54$ (1977), \#7350 and [3; p. 472].) Theorem 3.7 stated: Let Ω be homogeneous. Then $A(\Omega)$ endures a compatible tight Reisz order if and only if Ω is dense. I stated that it was obvious that if Ω were homogeneous and discrete, $A(\Omega)$ could not endure a compatible tight Riesz order. This "obvious" is neither obvious nor true. My purpose in this note is to prove in a unified way (and without recourse to the machinery developed in [2]):

Theorem. Let Ω be a homogeneous linearly ordered set. Then $A(\Omega)$ endures a compatible tight Riesz order if and only if Ω is not ordermorphic to \mathbf{Z}.

Let Ω be a homogeneous linearly ordered set (i.e., $A(\Omega)$ is transitive). The set of $A(\Omega)$-congruences on Ω forms a chain (under inclusion), and for each $\alpha, \beta \in \Omega$ with $\alpha \neq \beta$, there exists a (unique) convex $A(\Omega)$-congruence \mathscr{C}_{γ} on Ω that is maximal with respect to $\alpha \mathscr{C}_{\gamma} \neq \beta \mathscr{C}_{\gamma}$. Let $\mathscr{C}{ }_{\gamma}$ be the intersection of all convex $A(\Omega)$-congruences \mathscr{C} on Ω such that $\alpha \mathscr{C} \beta$. Then $\alpha \mathscr{C} \gamma \beta$ and \mathscr{C}_{γ} covers \mathscr{C}_{γ} (in the set of all convex $A(\Omega)$-congruences on $\left.\Omega\right)$. Let $\gamma=\operatorname{Val}(\alpha, \beta)=$ $\left(\mathscr{C}_{\gamma}, \mathscr{C}^{\gamma}\right)$, and let Γ be the set of all such γ (as α, β range over Ω with $\alpha \neq \beta$) totally ordered by: $\gamma_{1} \leqq \gamma_{2}$ if and only if $\mathscr{C}_{\gamma_{1}} \subseteq \mathscr{C}_{\gamma_{2}}$. Let $\Omega(\gamma)=\alpha \mathscr{C} \gamma / \mathscr{C}_{\gamma}$. If $g \in A(\Omega)$ is such that $\alpha \mathscr{C}^{\gamma} \alpha g$, let $g_{\alpha, \gamma} \in A(\Omega(\gamma))$ be obtained from g by: $\left(\beta \mathscr{C}_{\gamma}\right) g_{\alpha, \gamma}=\beta g \mathscr{C}_{\gamma}(\beta \in \alpha \mathscr{C} \gamma)$. Observe that for each $\alpha \in \Omega$,

$$
\left\{g_{\alpha, \gamma} \in A(\Omega(\gamma)): g \in A(\Omega) \quad \text { and } \quad \alpha \mathscr{C}^{\gamma} \alpha g\right\}=A(\Omega(\gamma))
$$

$\{A(\Omega(\gamma)): \gamma \in \Gamma\}$ is called the set of o-primitive components of $A(\Omega)$. For each $\gamma \in \Gamma, A(\Omega(\gamma))$ is o-2 transitive (and divisible), isomorphic to \mathbf{Z}, or Ohkuma (i.e., $\Omega(\gamma)$ is ordermorphic to a dense subgroup of \mathbf{R}-and so has cofinality $\mathbf{\aleph}_{0}$-and $A(\Omega(\gamma))$ is just the right regular representation of $\left.\Omega(\gamma)\right)$. If $\Omega(\gamma)$ is an Ohkuma set, $A(\Omega(\gamma))$ is a dense totally ordered group and hence

$$
T=\{g \in A(\Omega(\gamma)): g>e\}=\left\{g \in A(\Omega(\gamma))^{+}: g \neq e\right\}
$$

[^0]is a compatible tight Riesz order on $A(\Omega(\gamma))$. (T is a compatible tight Riesz order on an l-group G provided

1. T is a proper filter on G^{+},
2. T is G-invariant $\left[f \in T\right.$ implies $\left.(\forall g \in G)\left(g^{-1} f g \in T\right)\right]$,
3. $T \cdot T=T$, and
4. inf $T=e)$.

Note that $A(\mathbf{Z}) \cong \mathbf{Z}$ and so, by 3 , cannot endure a compatible tight Riesz order. Finally, if \mathscr{C} is a convex $A(\Omega)$-congruence on Ω, let

$$
L(\mathscr{C})=\{g \in A(\Omega): \alpha \mathscr{C} \alpha g \text { for all } \alpha \in \Omega\}
$$

$L(\mathscr{C})$ is an l-ideal of $A(\Omega)$. For proofs and further details of these facts, see [3].
Throughout this paper, assume that Ω is a homogeneous linearly ordered set.
Lemma 1. If $A(\Omega)$ has an o-primitive component that is o-2 transitive, then $A(\Omega)$ endures a compatible tight Riesz order.

Proof. Let $\gamma \in \Gamma$ be such that $A(\Omega(\gamma))$ is $o-2$ transitive. Let

$$
T_{\gamma}=\left\{f \in A(\Omega(\gamma))^{+}: \operatorname{supp}(f) \text { is dense in } \Omega(\gamma)\right\},
$$

a compatible tight Riesz order on $A(\Omega(\gamma))$. Let

$$
T^{\prime}=\left\{g \in L(\mathscr{C} \gamma)^{+}:(\forall \beta \in \Omega)\left(g_{\beta, \gamma} \in T_{\gamma}\right)\right\}
$$

T^{\prime} is an $A(\Omega)$-invariant subset of $A(\Omega)^{+}$that satisfies $T^{\prime} \cdot \mathrm{T}^{\prime}=\mathrm{T}^{\prime}$ (since $A(\Omega(\gamma))$ is divisible). Moreover, $f, g \in T^{\prime}$ implies $f \wedge g \in T^{\prime}$. Let $\alpha \in \Omega$ and $h \in T_{\gamma}$. There exists $g_{\alpha, \gamma} \in T_{\gamma}$ such that $\alpha \mathscr{C}_{\gamma}$ is fixed by $g_{\alpha, \gamma}$. Let $g \in A(\Omega)^{+}$ be such that $g_{\beta, \gamma^{\prime}}=e$ if $\gamma^{\prime}<\gamma$ and $\beta \mathscr{C}^{\gamma} \alpha$, and

$$
g_{\beta, \gamma}= \begin{cases}g_{\alpha, \gamma} & \text { if } \beta \mathscr{C}^{\gamma} \alpha . \\ h & \text { otherwise }\end{cases}
$$

Then $g \in T^{\prime}$ and $\alpha g=\alpha$. Consequently, $\inf T^{\prime}=e$. Therefore

$$
T=\left\{g \in A(\Omega): g \geqq f \text { for some } f \in T^{\prime}\right\}
$$

is a compatible tight Riesz order on $A(\Omega)$.
Lemma 2. If $A(\Omega)$ has a non-maximal o-primitive component that is Ohkuma, then $A(\Omega)$ endures a compatible tight Riesz order.

Proof. Let $\gamma \in \Gamma$ be such that $A(\Omega(\gamma))$ is Ohkuma. Let

$$
T_{\gamma}=\left\{f \in A(\Omega(\gamma))^{+}: f \neq e\right\},
$$

a compatible tight Riesz order on $A(\Omega(\gamma))$. Let

$$
\begin{aligned}
& T^{\prime}=\left\{g \in L(\mathscr{C} \gamma)^{+}:(\exists \sigma, \tau \in \Omega)(\sigma<\tau \quad \text { and } \quad(\forall \beta \in \Omega)\right. \\
& \left.\left.\left[(\beta<\sigma \text { or } \tau<\beta) \rightarrow\left(g_{\beta, \gamma} \in T_{\gamma}\right)\right]\right)\right\} .
\end{aligned}
$$

T^{\prime} is an $A(\Omega)$-invariant subset of $A(\Omega)^{+}$that satisfies $T^{\prime} \cdot T^{\prime}=T^{\prime}$ (since T_{γ}
has no least element and is totally ordered). Moreover, $f, g \in T^{\prime}$ implies $f \wedge g \in T^{\prime}$. Let $\alpha \in \Omega$. Since γ is non-maximal, there exist $\sigma, \tau \in \Omega$ such that $\sigma \mathscr{C}^{\gamma}<\alpha \mathscr{C}^{\gamma}<\tau \mathscr{C}{ }^{\gamma}$. Let $h \in T_{\gamma}$. Define $g \in A(\Omega)^{+}$such that $g_{\beta, \gamma}=h$ for all $\beta \in \Omega$ for which $\beta \mathscr{C}^{\gamma} \leqq \sigma \mathscr{C}^{\gamma}$ or $\beta_{\mathscr{C}}{ }^{\gamma} \geqq \tau \mathscr{C}{ }^{\gamma}$ and $g_{\beta, \gamma^{\prime}}=e$ for all $\gamma^{\prime} \leqq \gamma$ and $\beta \in \Omega$ for which $\sigma \mathscr{C}^{\gamma}<\beta \mathscr{C}^{\gamma}<\tau \mathscr{C}^{\gamma}$. Then $g \in T^{\prime}$ and $\alpha g=\alpha$. It follows that $\inf T^{\prime}=e$. Therefore

$$
T=\left\{g \in A(\Omega): g \geqq f \text { for some } f \in T^{\prime}\right\}
$$

is a compatible tight Riesz order on $A(\Omega)$.
Note that T defined above is equal to

$$
\begin{aligned}
& \left\{g \in A(\Omega)^{+}:(\exists \sigma, \tau \in \Omega)(\sigma<\tau \text { and }\right. \\
& \quad(\forall \beta)[(\beta<\sigma \text { or } \tau<\beta) \rightarrow \operatorname{Val}(\beta, \beta g) \geqq \gamma])\} .
\end{aligned}
$$

Lemma 3. If there exists $\left\{\gamma_{n}: n \in \mathbf{Z}^{+}\right\} \subseteq \Gamma$ with $\gamma_{1}>\gamma_{2}>\gamma_{3}>\ldots$, then $A(\Omega)$ endures a compatible tight Riesz order.

Proof. In view of Lemmas 1 and 2, we may assume that $A(\Omega(\gamma)) \cong \mathbf{Z}$ for all $\gamma \in \Gamma \backslash\left\{\gamma_{1}\right\}$. Let

$$
\begin{aligned}
T=\left\{g \in A(\Omega)^{+}:\right. & \left(\exists n \in \mathbf{Z}^{+}\right)(\exists \sigma, \tau \in \Omega)(\sigma<\tau \text { and } \\
& \left.\left.(\forall \beta \in \Omega)\left[(\beta<\sigma \text { or } \tau<\beta) \rightarrow \operatorname{Val}(\beta, \beta g) \geqq \gamma_{n}\right]\right)\right\} .
\end{aligned}
$$

Clearly T is an $A(\Omega)$-invariant subset of $A(\Omega)^{+}$. Let $T_{\gamma_{2}}=\left\{f \in \mathbf{Z}^{+}: f \neq e\right\}$. The proof in Lemma 2 that inf $T^{\prime}=e$ shows that inf $T=e\left(\right.$ replace γ by γ_{2}). Finally, let $g \in T$. Let n, σ, τ show this. Define $h \in L\left(\mathscr{C}^{\gamma_{n+1}}\right)$ so that $h_{\beta, \gamma}=0$ if

$$
\sigma \mathscr{C}^{\gamma_{n+1}} \leqq \beta \mathscr{C}^{\gamma_{n+1}} \leqq \tau \mathscr{C}^{\gamma_{n+1}} \quad \text { and } \quad \gamma \leqq \gamma_{n+1}
$$

and $h_{\beta, \gamma_{n+1}}=+1$ if

$$
\beta \mathscr{C}^{\gamma_{n+1}}<\sigma \mathscr{C}^{\gamma_{n+1}} \text { or } \beta \mathscr{C}^{\gamma_{n+1}}>\tau \mathscr{C}^{\gamma_{n+1}}
$$

Then if $\beta<\sigma$ or $\tau<\beta$, $\operatorname{Val}(\beta, \beta h)=\gamma_{n+1}$; so $h \in T$. Since $h_{\beta, \gamma}=0$ if $\gamma \leqq \gamma_{n+1}$ and $\sigma \mathscr{C}^{\gamma_{n+1}} \leqq \beta \mathscr{C}^{\gamma_{n+1}} \leqq \tau \mathscr{C}^{\gamma_{n+1}}$ and $\operatorname{Val}(\beta, \beta g) \geqq \gamma_{n}$ if $\beta<\sigma$ or $\tau<\beta$, $g h^{-1}>e$ and $\operatorname{Val}\left(\beta, \beta g h^{-1}\right) \geqq \gamma_{n}$ if $\beta<\sigma$ or $\tau<\beta$. Thus $g h^{-1} \in T$ and as $g=g h^{-1} \cdot h, T \cdot T=T$. Consequently, T is a compatible tight Riesz order on $A(\Omega)$.

Lemma 4. If Λ is ordermorphic to \mathbf{Z} or an Ohkuma set, then $A(\mathbf{Z} \overleftarrow{\times})$ endures a compatible tight Riesz order.

Proof. $A(\mathbf{Z} \overleftarrow{\times} \Lambda)=$

$$
\left\{\left(\left\{g_{\lambda}: \lambda \in \Lambda\right\}, \bar{g}\right): \bar{g} \in A(\Lambda) \quad \text { and } \quad(\forall \lambda \in \Lambda)\left(g_{\lambda} \in \mathbf{Z}\right)\right\} .
$$

Let $T=$

$$
\begin{aligned}
\left\{\left(\left\{g_{\lambda}: \lambda \in \Lambda\right\}, \bar{g}\right): \bar{g}>0\right. & \text { or } \quad\left(\bar{g}=0, \text { all } g_{\lambda} \geqq 0 \quad\right. \text { and } \\
& \left.\left.\left(\forall n \in \mathbf{Z}^{+}\right)\left(\exists \lambda_{n} \in \Lambda\right)\left(g_{\lambda} \geqq n \text { for all } \lambda \geqq \lambda_{n}\right)\right)\right\} .
\end{aligned}
$$

Clearly T is an $A(\mathbf{Z} \overleftarrow{\times} \Lambda)$-invariant filter on $A(\mathbf{Z} \overleftarrow{\times} \Lambda)^{+}$and $\inf T=e$. Let $g \in T$. If $\bar{g}>0$, let $f=\left(\left\{f_{\lambda}: \lambda \in \Lambda\right\}, 0\right)$ where

$$
f_{\lambda}= \begin{cases}n & \text { if } \lambda \in[n, n+1) \text { and } n>0 \\ 0 & \text { if } \lambda<0\end{cases}
$$

$f \in T$ and $\overline{g f^{-1}}=\bar{g}>0$. Hence $g f^{-1} \in T$ and $g=g f^{-1} \cdot f$. If $\bar{g}=0$, let $\left\{\lambda_{n}: n \in \mathbf{Z}^{+}\right\}$show that $g \in T$. Let $f=\left(\left\{f_{\lambda}: \lambda \in \Lambda\right\}, 0\right)$ where

$$
f_{\lambda}=\left\{\begin{array}{lll}
g_{\lambda} / 2 & \text { if } & g_{\lambda} \text { is even } \\
\left(g_{\lambda}+1\right) / 2 & \text { if } & g_{\lambda} \text { is odd }
\end{array}\right.
$$

Then $f \in T$ and $g f^{-1} \in T$ since $f_{\lambda},\left(g f^{-1}\right)_{\lambda} \geqq n$ if $\lambda \geqq \lambda_{2 n}$. So $T \cdot T=T$. Consequently, T is a compatible tight Riesz order on $A(\Omega)$.

The technique employed in the above proof is due to N. R. Reilly [4, p. 159].
Lemma 5. If $|\Gamma| \geqq 2$ and $A(\Omega)$ has a minimal 0 -primitive component that is isomorphic to \mathbf{Z}, then $A(\Omega)$ endures a compatible tight Riesz order.

Proof. By Lemmas 1 and 3, we may assume that no o-primitive component of $A(\Omega)$ is $o-2$ transitive and that Γ is well-ordered. Let γ_{0} be the least element of Γ and γ_{1} its successor. Then $\Lambda=\Omega\left(\gamma_{1}\right)$ is an Ohkuma set or \mathbf{Z}. By Lemma 4, $A(\mathbf{Z} \overleftarrow{\times} \Lambda)$ endures a compatible tight Riesz order, say T^{\prime}. Let
$\bar{T}=\left\{g \in L\left(\mathscr{C}^{\gamma_{1}}\right)^{+}:(\forall \alpha \in \Omega)\left(g_{\alpha, \gamma_{1}} \in T^{\prime}\right)\right\} \quad$ and
$T=\left\{g \in A(\Omega): g \geqq f\right.$ for some $\left.f \in T^{\prime}\right\}$.
Then T is a compatible tight Riesz order on $A(\Omega)$.
By Lemmas 1-5, the theorem follows.

References

1. G. E. Davis and C. D. Fox, Compatible tight Riesz orders on the group of automorphisms of an o-2 homogeneous set, Canadian J. Math., 28 (1976), 1076-1081.
2. A. M. W. Glass, Compatible tight Riesz orders, Canadian J. Math., 28 (1976), 186-200.
3. -_Ordered Permutation Groups, Bowling Green State University, 1976.
4. N. R. Reilly, Compatible tight Riesz orders and prime subgroups, Glasgow Math. J. 14 (1973), 146-160.

Bowling Green State University, Bowling Green, Ohio

[^0]: Received October 31, 1977 and in revised form April 5, 1978. This research was done while visiting the University of Alberta, Edmonton. I am most grateful for the support and for the hospitality accorded me there.

