
J. Aust. Math. Soc. 87 (2009), 1–17
doi:10.1017/S1446788709000019

GENERAL THEOREMS ON AUTOMORPHISMS OF
SEMIGROUPS AND THEIR APPLICATIONS

JOÃO ARAÚJO and JANUSZ KONIECZNY ˛

(Received 8 September 2007; accepted 30 September 2008)

Communicated by M. G. Jackson

Abstract

We introduce the notion of a strong representation of a semigroup in the monoid of endomorphisms of
any mathematical structure, and use this concept to provide a theoretical description of the automorphism
group of any semigroup. As an application of our general theorems, we extend to semigroups a well-
known result concerning automorphisms of groups, and we determine the automorphism groups of certain
transformation semigroups and of the fundamental inverse semigroups.
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1. Introduction

Investigation of automorphism groups of mathematical structures is one of the classical
algebraic problems beginning with the works of Evariste Galois. Recently the subject
has attracted renewed attention owing to its links with universal algebraic geometry
(see, for example, [19]). This paper is concerned with the automorphism group Aut(S),
where S is any semigroup.

A significant amount of research has been devoted to the study of Aut(S) in the case
when S = End(A) is the monoid of endomorphisms of a mathematical structure A.
(A definition of a mathematical structure and its monoid of endomorphisms is
provided in Section 2.1.) For example, Schreier [21] and Mal′cev [16] described
all automorphisms of End(X), where X is a set, and Gluskı̌n [8] described the
automorphisms of End(V ), where V is a vector space. More examples are provided
by, among others, Formanek [7], Levi [11, 12], Liber [14], Magill [15], Mashevitzky
and Schein [17], Schein [20], Sullivan [23], and Šutov [24]. The present authors have
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contributed to this line of research by studying the automorphism groups of End(A)
for the cases when A= (X, ρ, R), where X is a set, ρ is an equivalence relation on X ,
and R is a cross section of X/ρ (see [3]); A= BV(X), where X is a set, V is a variety
of bands, and BV(X) is the free object in V on X (see [4]); A=AV(X), where X is a
set, V is a variety of universal algebras, and AV(X) is the 1-simple free algebra in V
on X (see [5]); and A= D, where D is a reflexive digraph [2].

In this paper, we provide a general theorem that may be helpful in describing
Aut(S) for various types of semigroups S. Our approach is as follows. Let A be a
mathematical structure. We define a strong representation θ : S→ End(A), and show
how the automorphisms of S can be constructed using θ and automorphisms of A. We
then apply the general theorems to particular types of semigroups.

In Section 2, we develop a general theory to find the automorphisms of
a semigroup S. The main results are Theorem 2.16, where we describe the
automorphisms of S, and Theorems 2.23 and 2.24, where we characterize the group
Aut(S). In Section 3, we provide applications of our general results. We
extend to semigroups a well-known result concerning automorphisms of groups
(Theorem 3.1), and we determine Aut(S) for certain transformation semigroups on
a set X (Theorem 3.4), and for the fundamental inverse semigroups (Theorems 3.7
and 3.10).

2. General theory

2.1. Preliminaries Let A and B be sets. We denote by T (A, B) the set of all
functions from A to B (that is, functions whose domain is A and whose image is a
subset of B). We write functions on the right and compose from left to right, that
is, for f : A→ B, g : B→ C , and x ∈ A, we write x f (not f (x)) and x( f g)= (x f )g
(not (g f )(x)= g( f (x))). We denote T (A, A) by T (A) and note that T (A) is a monoid
under function composition. We denote the symmetric group on a set A (which is the
group of units of the monoid T (A)) by Sym(A).

We make the concepts of a mathematical structure and its endomorphisms precise
through the notion of a concrete category.

DEFINITION 2.1. Let V be the class of all sets. Following [9, Definition 2.1], we
define a concrete category as a triple C = (Ob, µ, hom), where Ob is a class and
µ : Ob→ V and hom : Ob× Ob→ V are functions such that for all A, B, C ∈ Ob:
(1) hom(A, B)⊆ T (Aµ, Bµ);
(2) 1Aµ ∈ hom(A, A); and
(3) if f ∈ hom(A, B) and g ∈ hom(B, C), then f g ∈ hom(A, C).
Elements of Ob are called objects. For an object A, the set Aµ is called the underlying
set of A.

For example, the category of groups is the triple (Ob, µ, hom), where Ob is the
class of groups, Aµ is the underlying set of the group A, and hom(A, B) is the set
of group homomorphisms from A to B. The category of topological spaces is the
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triple (Ob, µ, hom), where Ob is the class of topological spaces, Aµ is the underlying
set of the topological space A, and hom(A, B) is the set of continuous functions from
A to B.

DEFINITION 2.2. We define a mathematical structure as an object A of any concrete
category. An endomorphism of A is any element of hom(A, A). We denote
hom(A, A) by End(A) and note that, by Definition 2.1, End(A) is a submonoid of
T (Aµ). An automorphism of A is any unit in the monoid End(A). We denote the
group of automorphisms of A by Aut(A). Note that an endomorphism χ of A is an
automorphism of A if and only if χ ∈ Sym(Aµ) and χ−1

∈ End(A).

We use the same symbol, say A, both for a mathematical structure A and for its
underlying set Aµ. For example, we write a ∈A meaning a ∈Aµ.

DEFINITION 2.3. Let S be a semigroup and A be a mathematical structure. A
representation of S in End(A) is a homomorphism θ : S→ End(A). If S is a monoid
with identity 1, we require that the homomorphism θ map 1 to the identity of End(A).

For a ∈A and s ∈ S, we denote a(sθ), the image of a under the endomorphism
sθ ∈ End(A), by a · s. From the fact that θ is a homomorphism, it follows that
(a · s) · t = a · (st) for all a ∈A and s, t ∈ S. Moreover, if S has an identity 1, then
a · 1= a for all a ∈A.

DEFINITION 2.4. We say that a representation θ : S→ End(A) is strong if:
(1) θ is one-to-one (or faithful);
(2) for every φ ∈ Aut(S), there is an automorphism χ ∈ Aut(A) such that

(∀ a ∈A)(∀ s ∈ S) (aχ) · (sφ)= (a · s)χ.

The idea of a strong representation was introduced by the first author in [1]. We
present two examples of strong representations.

EXAMPLE 2.5. Let S be a semigroup and let X be the underlying set of the monoid
S1, where S1 is the semigroup S with an identity 1 adjoined (if necessary). In
the category of sets, End(X)= T (X) and Aut(X)= Sym(X). For s ∈ S, define a
function ρs : S1

→ S1 by xρs = xs for all x ∈ S1. Thus ρs ∈ T (X), and we can define
θ : S→ T (X) by sθ = ρs . Then θ is a representation of S in T (X) since for all s, t ∈ S
and x ∈ X ,

xρst = x(st)= (xs)t = (xs)ρt = (xρs)ρt = x(ρsρt ),

and so (st)θ = (sθ)(tθ). This representation, which is faithful since 1 ∈ S1, is called
the right regular representation of S (see [10, p. 7]). Note that for all s ∈ S and x ∈ X ,

x · s = x(sθ)= xρs = xs.

We claim that the representation is strong. Indeed, for φ ∈ Aut(S), define χ : S1
→ S1

by xχ = xφ if x ∈ S and 1χ = 1. Then χ ∈ Sym(X) since φ is a bijection. Let x ∈ X
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and s ∈ S. If x ∈ S, then

(xχ) · (sφ)= (xφ) · (sφ)= (xφ)(sφ)= (xs)φ = (xs)χ = (x · s)χ.

If x = 1, then

(1χ) · (sφ)= 1 · (sφ)= 1(sφ)= sφ = sχ = (1s)χ = (1 · s)χ.

Thus the representation is strong.

DEFINITION 2.6. Let S be a semigroup and let A be a subset of S. We say that A
separates S if for all s, t ∈ S with s 6= t , there is a ∈ A such that as 6= at . We say that
A is characteristic in S if for all φ ∈ Aut(S), we have Aφ ⊆ A. Observe that if A is
characteristic in S and φ ∈ Aut(S), then φ−1

∈ Aut(S) and hence Aφ−1
⊆ A. Thus if

A is characteristic in S and φ ∈ Aut(S), then Aφ = A.

EXAMPLE 2.7. Let S be a semigroup separated by a characteristic ideal R. Let Y
be the underlying set of R. We view Y as a set, so End(Y )= T (Y ) and Aut(Y )=
Sym(Y ). For s ∈ S, define a function ρs : R→ R by yρs = ys (ys ∈ R since R is a
right ideal of S). Thus ρs ∈ T (Y ), and we can define θ : S→ T (Y ) by sθ = ρs . Then θ
is a representation of S in T (Y ), and this representation is faithful since R separates S.
Let φ ∈ Aut(S). Denote by φ|R the restriction of φ to R and note that φ|R ∈ Sym(Y )
since R is characteristic in S. For all y ∈ Y and s ∈ S,

(yφ|R) · (sφ)= (yφ|R)(sφ)= (yφ)(sφ)= (ys)φ = (ys)φ|R = (y · s)φ|R .

Thus the representation is strong.

Henceforth, S is a semigroup, A is a mathematical structure, and θ : S→ End(A)
is a strong representation of S in End(A).

It can happen that for φ ∈ Aut(S), there is more than one automorphism χ ∈ Aut(A)
such that (aχ) · (sφ)= (a · s)χ for all a ∈A and s ∈ S. It is therefore useful to
introduce the set

�φ = {χ ∈ Aut(A) | (∀ a ∈A)(∀ s ∈ S) (aχ) · (sφ)= (a · s)χ}.

We need the following two lemmas concerning the sets �φ .

LEMMA 2.8. If χ belongs to �φ , then χ−1 belongs to �φ−1 .

PROOF. We want to show that for all a ∈A and s ∈ S,

(aχ−1) · sφ−1
= (a · s)χ−1.

However, this is true since, setting b = aχ−1 and t = sφ−1, we have

(a · s)χ−1
= (bχ · tφ)χ−1

= (b · t)χχ−1
= b · t = (aχ−1) · (sφ−1),

where the second equality comes from the fact that χ ∈�φ . 2
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LEMMA 2.9. Let φ, ψ ∈ Aut(S). If φ 6= ψ , then �φ ∩�ψ = ∅.

PROOF. We prove the contrapositive. Let χ ∈�φ ∩�ψ . Then for all a ∈A and s ∈ S,
(aχ) · (sφ)= (a · s)χ . Setting b = aχ , we have

a · (sφψ−1) = (bχ−1) · ((sφ)ψ−1)

= (b · sφ)χ−1 (since χ−1
∈�ψ−1)

= (aχ · sφ)χ−1

= (a · s)χχ−1 (since χ ∈�φ)

= a · s.

Hence, for all a ∈A and s ∈ S, we have a · (sφψ−1)= a · s, which implies
sφψ−1

= s since θ is faithful. It follows that φ = ψ . 2

2.2. A description of the elements of Aut(S) Let S be a semigroup, A be a
mathematical structure, and θ : S→ End(A) be a strong representation of S in
End(A). We define a mapping that assigns to every automorphism χ of A a faithful
representation θχ of S in End(A). This is the main tool in our investigation of the
automorphisms of S. The purpose of this section is to show that the automorphisms
of S can be constructed from automorphisms χ of A, induced representations θχ , and
the original representation θ .

DEFINITION 2.10. For all χ ∈ Aut(A) and s ∈ S, define sχ ∈ End(A) by

(∀ a ∈A) asχ = (aχ
−1
· s)χ.

The mapping sχ is an endomorphism of A since it is the composition of
endomorphisms, namely sχ = χ−1(sθ)χ .

Let χ ∈ Aut(A). Denote by θχ the mapping θχ : S→ End(A) defined by sθχ = sχ .
We call θχ the representation of S in End(A) induced by χ .

The name of θχ is justified by the following lemma.

LEMMA 2.11. The mapping θχ is a faithful representation of S in End(A).

PROOF. Let s, t ∈ S be such that sθχ = tθχ . Then for all a ∈A, asχ = atχ , that is,
(aχ−1

· s)χ = (aχ−1
· t)χ , which implies aχ−1

· s = aχ−1
· t . As χ−1 is onto, it

follows that b · s = b · t for every b ∈A, and so s = t (since θ is faithful). Thus θχ is
faithful. Further, for all a ∈A,

a(sχ tχ ) = [(aχ
−1
· s)χ ]tχ = [((aχ

−1
· s)χ)χ−1

· t]χ

= [(aχ−1
· s) · t]χ = [(aχ−1) · st]χ = a(st)χ .

Thus θχ is a homomorphism, which concludes the proof. 2
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REMARK 2.12. We now have multiple representations of S in End(A): the original
strong representation θ and, for every χ ∈ Aut(A), the induced representation θχ . The
notation a · s, where s ∈ S and a ∈A, will always mean a(sθ). For θχ , we always
write a(sθχ ).

PROPOSITION 2.13. Let χ ∈ Aut(A). Then the following are equivalent:

(1) χ ∈�φ for some φ ∈ Aut(S);
(2) Sθχ = Sθ ;
(3) θχθ

−1
∈ Aut(S).

PROOF. To prove that (1) implies (2), suppose that χ ∈�φ , and let a ∈A and s ∈ S.
Then setting t = sφ, we have

a(sθχ )= asχ = (aχ
−1
· s)χ = (aχ−1

· tφ−1)χ = (a · t)χ−1χ = a · t = a · sφ,

where the fourth equality follows from the fact that χ−1
∈�φ−1 (Lemma 2.8). We

proved that sθχ = (sφ)θ for every s ∈ S and, hence, Sθχ = (Sφ)θ , implying Sθχ = Sθ
(as Sφ = S).

To prove that (2) implies (3), note that if Sθχ = Sθ , then θχθ−1 is an automorphism
as the composition of two isomorphisms: θχ : S→ Sθχ = Sθ and θ−1

: Sθ→ S.
Finally, to prove that (3) implies (1), suppose that θχθ−1

∈ Aut(S). We want to
show that χ ∈�θχ θ−1 , that is, that (aχ) · (sθχθ−1)= (a · s)χ for all a ∈A and s ∈ S.
Suppose that a ∈A and s ∈ S. Then

a · (sθχθ
−1)= a((sθχθ

−1)θ)= a(sθχ )= asχ ,

and so
(aχ) · (sθχθ

−1)= (aχ)sχ = (aχχ
−1
· s)χ = (a · s)χ.

The lemma follows. 2

Observe that the proof that (3) implies (1) in fact proves that if θχθ−1
∈ Aut(S),

then χ ∈�θχ θ−1 . This result is important enough to be stated formally.

LEMMA 2.14. Let χ ∈ Aut(A) such that θχθ−1
∈ Aut(S). Then χ ∈�θχ θ−1 .

LEMMA 2.15. If χ ∈�φ for some φ ∈ Aut(S), then φ = θχθ−1.

PROOF. By Proposition 2.13, if χ ∈�φ , then θχθ−1
∈ Aut(S). Thus the result follows

from Lemmas 2.14 and 2.9. 2

Now we can give a description of the automorphisms of S.

THEOREM 2.16. Let S be a semigroup, A be a mathematical structure, and suppose
that θ : S→ End(A) is a strong representation of S in End(A). Then

Aut(S)= {θχθ−1
| χ ∈ Aut(A) and Sθχ = Sθ}.
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PROOF. The converse containment follows from Proposition 2.13. For the direct
containment, let φ ∈ Aut(S). Since θ is a strong representation, there is some χ ∈�φ .
By Lemma 2.15, we have φ = θχθ−1, and the proof is complete. 2

We conclude this section with a lemma that is needed in Section 3.3.2.

LEMMA 2.17. Let χ ∈ Aut(A) such that Sθχ ⊆ Sθ . Then Sθ ⊆ Sθχ−1 .

PROOF. Let sθ ∈ Sθ . To prove that Sθ ⊆ Sθχ−1 , we need to find t ∈ S such that
tθχ−1 = sθ . Since Sθχ ⊆ Sθ , we see that sθχ ∈ Sθ , that is, sθχ is in the domain of
θ−1. Define t = (sθχ )θ−1. We claim that tθχ−1 = sθ . Indeed, for all a ∈A, we have

a(tθχ−1) = (aχ · t)χ−1 (by the definition of θχ−1)

= ((aχ)(tθ))χ−1

= ((aχ)(sθχ ))χ
−1 (since tθ = sθχ )

= ((aχ)χ−1
· s)χχ−1 (by the definition of θχ )

= a · s

= a(sθ).

The result follows. 2

2.3. A characterization of the group Aut(S) Let S be a subsemigroup of a
monoid T , and let G be a subgroup of T containing the identity of T . We define
the normalizer NG(S) of S in G and the centralizer CG(S) of S in G by

NG(S)= {g ∈ G | g−1Sg = S},

CG(S)= {g ∈ G | (∀ s ∈ S) gs = sg}.

It is straightforward from the definition of NG(S) to show that for all g, h ∈ NG(S),
gh ∈ NG(S) and g−1

∈ NG(S), that is, NG(S) is a subgroup of G. Let g ∈ G. If
gs = sg for every s ∈ S, then g−1sg = s for every s ∈ S, and so g−1Sg = S. Thus
CG(S) is a subgroup of NG(S).

Now we go back to our assumption that S is a semigroup, A is a mathematical
structure, and θ : S→ End(A) is a strong representation of S in End(A).

We write N (Sθ) for NAut(A)(Sθ) and C(Sθ) for CAut(A)(Sθ), that is,

N (Sθ)= {χ ∈ Aut(A) | χ−1(Sθ)χ = Sθ}, (2.1)

C(Sθ)= {χ ∈ Aut(A) | (∀ s ∈ S) χ(sθ)= (sθ)χ}. (2.2)

In this section, we prove that C(Sθ) is a normal subgroup of N (Sθ) and that Aut(S)
is isomorphic to the quotient group N (Sθ)/C(Sθ).

Recall that for χ ∈ Aut(A), θχ is the representation of S in End(A) induced by χ
(see Definition 2.10 and Lemma 2.11).

https://doi.org/10.1017/S1446788709000019 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000019
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LEMMA 2.18. Let θ : S→ End(A) be a strong representation. Then

N (Sθ)= {χ ∈ Aut(A) | Sθχ = Sθ} =
⋃

φ∈Aut(S)

�φ = {χ ∈ Aut(A) | θχθ−1
∈ Aut(S)}.

PROOF. Let χ ∈ Aut(A). Recall that for every s ∈ S, sθχ = χ−1(sθ)χ . Thus

Sθχ = {sθχ | s ∈ S} = {χ−1(sθ)χ | s ∈ S} = χ−1(Sθ)χ,

and so the first equality follows from (2.1). The second and third equalities follow
from Proposition 2.13. 2

Let χ ∈ N (Sθ). We denote θχθ−1
∈ Aut(S) by φχ :

φχ = θχθ
−1
∈ Aut(S). (2.3)

By Lemmas 2.18 and 2.9, we have that

φχ is the unique φ ∈ Aut(S) such that χ ∈�φ . (2.4)

REMARK 2.19. The symbol φ (perhaps with a subscript) always denotes an
automorphism of S; χ an automorphism of A; and θ a representation of S in End(A).
For example, if φχ , χ , and θχ occur in a formula, φχ will be an element of Aut(S),
χ an element of Aut(A), and θχ a representation.

LEMMA 2.20. Let χ, τ ∈ N (Sθ). Then χτ ∈�φχφτ .

PROOF. We want to prove that (a(χτ)) · (s(φχφτ ))= (a · s)(χτ) for all a ∈A and
s ∈ S. However, this is true since

(a(χτ)) · (s(φχφτ )) = ((aχ)τ) · ((sφχ )φτ )

= ((aχ) · (sφχ ))τ (since τ ∈�φτ )

= ((a · s)χ)τ (since χ ∈�φχ )

= (a · s)(χτ).

Hence, χτ ∈�φχφτ . 2

LEMMA 2.21. Let χ, τ ∈ N (Sθ). Then φχτ = φχφτ .

PROOF. Since N (Sθ) is a subgroup of Aut(A), we see that χτ ∈ N (Sθ). By
Lemma 2.20, χτ ∈�φχφτ . By (2.4), χτ ∈�φχτ and φχτ is the unique φ ∈ Aut(S)
such that χτ ∈�φ . Thus φχτ = φχφτ . 2

LEMMA 2.22. We have C(Sθ)=�idS .
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PROOF. For every χ ∈ Aut(A),

χ ∈�idS ⇔ (∀ s ∈ S)(∀ a ∈A) (aχ) · (s(idS))= (a · s)χ

⇔ (∀ s ∈ S)(∀ a ∈A) (aχ) · s = (a · s)χ

⇔ (∀ s ∈ S)(∀ a ∈A) (aχ)(sθ)= (a(sθ))χ

⇔ (∀ s ∈ S)(∀ a ∈A) a(χ(sθ))= a((sθ)χ)

⇔ (∀ s ∈ S) χ(sθ)= (sθ)χ

and the result follows by (2.2). 2

THEOREM 2.23. Let S be a semigroup, A be a mathematical structure, and suppose
that θ : S→ End(A) is a strong representation of S in End(A). Then

Aut(S)= {φχ | χ ∈ N (Sθ)} ∼= N (Sθ)/C(Sθ).

PROOF. By (2.3) and Lemma 2.18, the equality is just a restatement of Theorem 2.16.
To prove the congruence, define f : N (Sθ)→ Aut(S) by χ f = φχ . Then f

is indeed a mapping from N (Sθ) to Aut(S) by (2.4). Moreover, f is a group
homomorphism by Lemma 2.21, and it is onto since θ is a strong representation. For
every χ ∈ N (Sθ),

χ ∈ ker( f )⇔ χ f = idS⇔ φχ = idS⇔ χ ∈�idS ⇔ χ ∈ C(Sθ),

where the last equivalence is true by Lemma 2.22. Thus ker( f )= C(Sθ) and so C(Sθ)
is a normal subgroup of N (Sθ) and the result follows from the first isomorphism
theorem for groups. 2

It is easy to see that the elements of the quotient group N (Sθ)/C(Sθ) (that is, the
cosets of C(Sθ)) are the sets �φ , where φ ∈ Aut(S). Thus Theorem 2.23 implies the
following result.

THEOREM 2.24. Let S be a semigroup, A be a mathematical structure, and suppose
that θ : S→ End(A) is a strong representation of S in End(A). Then the following are
equivalent:

(1) Aut(S)∼= N (Sθ);
(2) C(Sθ) is the trivial group;
(3) |�φ| = 1 for every φ ∈ Aut(S);
(4) |�idS | = 1.

3. Applications

In this section we show how our general results from Section 2 can be used to
determine the automorphism groups of particular types of semigroups.
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3.1. General semigroups Theorem 2.23 describes Aut(S) for a semigroup S
provided that we have a strong representation of S in the monoid of endomorphisms
of some mathematical structure A. As we saw in Example 2.5, such a representation
is provided by the right regular representation of S. This gives us a description that
extends a well-known result concerning automorphisms of groups to semigroups.

Let G be a group and let X be the underlying set of G. Let G0 ≤ Sym(X) be the
image of G under the right regular representation of G in Sym(X). Let N (G0) and
C(G0) be the normalizer and centralizer of G0 in Sym(X). Then

Aut(G)∼= N (G0)/C(G0)

(see [6, Exercise 2.5.6, p. 45] and [22, Theorem 9.2.3, p. 214]).
Let S be a semigroup and let X be the underlying set of S1. Let S0 ≤ T (X) be

the image of S under the right regular representation of S in T (X). Let N (S0) and
C(S0) be the normalizer and centralizer of S0 in Sym(X). We already observed in
Section 2.1 that the right regular representation is a strong representation of S in T (X).
Thus Theorem 2.23 gives us the following result.

THEOREM 3.1. Let S be an arbitrary semigroup and let S0 be the image of S under
the right regular representation of S. Then

Aut(S)∼= N (S0)/C(S0).

3.2. Transformation semigroups The purpose of this section is purely illustrative.
We show how a well-known description of automorphisms can be derived from our
general results to illustrate how these results can be applied to particular cases.

Throughout this section we assume that S is a subsemigroup of T (X), the monoid
of full transformations of a set X .

For a ∈ T (X), the rank of a, denoted by rank(a), is the cardinality of the image
of a. An element of T (X) of rank one whose image is {x} is denoted by [x].

Let J1(S)= {s ∈ S | rank(s)= 1}. Suppose that J1(S) 6= ∅. Then J1(S) is the
kernel of S (the minimum ideal of S), see [10, p. 68], and so it is characteristic in S.
Let

A = {x ∈ X | [x] ∈ S}. (3.1)

Note that A is invariant under S, that is, for every s ∈ S, As ⊆ A. (Indeed, if [x] ∈ S
and s ∈ S, then [x]s = [xs], so xs ∈ A.)

Let A be the set A, so End(A)= T (A) and Aut(A)= Sym(A). Define the mapping
θ : S→ T (A) by sθ = s|A. This is well defined since A is invariant under S. Note that
for all x ∈ A and s ∈ S, x · s = xs. We prove that θ is a strong representation provided
that J1(S) separates S. (Note that if J1(S) separates S, then it must be nonempty.)

LEMMA 3.2. Suppose that J1(S) separates S. Then θ : S→ T (A) defined by sθ =
s|A is a strong representation of S in T (A).
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PROOF. It is clear that θ is a homomorphism. Moreover, it is one-to-one since J1(S)
separates S. Now we want to show that θ is strong, that is, for every φ ∈ Aut(S), there
is g ∈ Sym(A) such that for every x ∈ A, (xg) · (sφ)= (x · s)g. Let φ ∈ Aut(S) and
define g : A→ A by

xg = y⇔ [x]φ = [y].

Since φ is a permutation of J1(S), we have g ∈ Sym(A). Now, for all s ∈ S and x ∈ A,

[xg](sφ)= ([x]φ)(sφ)= ([x]s)φ = [xs]φ = [(xs)g],

which implies

(xg) · (sφ)= (xg)(sφ)= (xg)([xg](sφ))= (xg)[(xs)g] = (xs)g = (x · s)g.

The result follows. 2

LEMMA 3.3. Suppose that J1(S) separates S. Then |�idS | = 1.

PROOF. Let g ∈�idS . Then for all x ∈ A and s ∈ S, we have (xg) · (s(idS))=

(x · s)g, that is, (xg)s = (xs)g. Taking s = [x], we obtain (xg)[x] = (x[x])g, that
is, x = xg. We proved that if g ∈�idS , then g = idA. The lemma follows. 2

Recall that the normalizer of Sθ in Sym(A) (see (2.1)) is the group

N (Sθ)= {g ∈ Sym(A) | g−1(Sθ)g = Sθ}.

In our particular case,
Sθ = {s|A | s ∈ S}.

Since A is invariant under S, g−1sg = g−1(s|A)g for all s ∈ S and g ∈ Sym(A). Thus

N (Sθ)= {g ∈ Sym(A) | g−1Sg = Sθ}.

By Lemma 3.3 and Theorem 2.24, we obtain the following theorem.

THEOREM 3.4. Let S be a subsemigroup of T (X) such that J1(S) separates S, and
let A be the set defined in (3.1). Then Aut(S)∼= N (Sθ).

Theorem 3.4 generalizes a well-known result. For g ∈ NSym(X)(S), define φg
:

S→ S by sφg
= g−1sg. The mapping φg is an automorphism of S, called the

inner automorphism induced by g (see [23]). Let g ∈ N (Sθ). Recall that θg is the
representation of S in T (A) induced by g (see Definition 2.10) and that φg = θgθ

−1

is the unique φ ∈ Aut(S) such that g ∈�φ (see (2.3) and (2.4)). Now suppose
that A = X . Then θ = idS , Sθ = S, N (Sθ)= NSym(X)(S), and for all g ∈ N (Sθ),
sφg = s(θgθ

−1)= sθg = g−1sg, that is, φg = φ
g . Hence, the following result is a

special case of Theorem 3.4.

COROLLARY 3.5 (Sullivan [23] and Levi and Seif [13]). Let S be subsemigroup of
T (X) that contains all constant transformations of X. Then

Aut(S)= {φg
| g ∈ NSym(X)(S)} ∼= NSym(X)(S).
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3.3. Fundamental inverse semigroups In this section we continue to show how the
general results from Section 2 can be used to describe the automorphisms of particular
types of semigroups. The main results of this section give the automorphisms for an
important class of semigroups, whose automorphisms have not been described before.

A commutative semigroup E of idempotents is called a semilattice. The relation
≤ on E defined by e ≤ f if e f = e is a partial order on E . For all e, f ∈ E , e f is the
greatest lower bound of e and f (see [10, Section 1.3]). It is easy to see that for every
mapping φ : E→ E , φ is an automorphism of the semigroup E if and only if φ is an
automorphism of the poset (E,≤).

A semigroup S is called an inverse semigroup if for every a ∈ S, there is exactly
one a−1

∈ S (called the inverse of a) such that a = aa−1a and a−1
= a−1aa−1. If S

is an inverse semigroup, then the idempotents of S commute, and for all a, b ∈ S,
aa−1 is an idempotent and (ab)−1

= b−1a−1. The set E(S) of idempotents of an
inverse semigroup S is a semilattice, called the semilattice of idempotents of S (see
[10, Chapter 5]).

Let S be an inverse semigroup. Define a relation µ on S by

µ= {(a, b) ∈ S × S | (∀ e ∈ E(S)) a−1ea = b−1eb}. (3.2)

The relation µ is the largest congruence on S that separates idempotents (for all
e, f ∈ E(S), if (e, f ) ∈ µ, then e = f ); see [10, p. 160].

An inverse semigroup S is called fundamental if µ is the identity relation on S
(see [10, p. 161]). In what follows, S is a fundamental inverse semigroup and E(S) is
its semilattice of idempotents.

We give two descriptions of the group Aut(S).

3.3.1. First description We take the mathematical structure A to be the semilattice
E(S). Define θ : S→ End(E(S)) by

(∀ s ∈ S)(∀ e ∈ E(S)) e(sθ)= s−1es. (3.3)

LEMMA 3.6. The mapping θ defined in (3.3) is a strong representation of S in the
monoid End(E(S)).

PROOF. For all s ∈ S and e, f ∈ E(S),

(s−1es)(s−1es)= s−1e(ss−1)es = (s−1ss−1)ees = s−1es, and

(e f ) · s = s−1e f s = s−1ss−1e f s = s−1ess−1 f s = (s−1es)(s−1 f s)= (e · s)( f · s),

and so sθ ∈ End(E(S)). It follows from (3.2) and the fact that S is fundamental that θ
is one-to-one. Further, θ is a homomorphism because for all s, t ∈ S and e ∈ E(S),

e · (st)= (st)−1e(st)= t−1s−1est = t−1(s−1es)t = t−1(e · s)t = (e · s) · t,

and so (st)θ = (sθ)(tθ).
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Let φ ∈ Aut(S). We want to show that there is a χ ∈ Aut(E(S)) such that (eχ) ·
(sφ)= (e · s)χ for all s ∈ S and e ∈ E(S). Let χ = φ|E(S). Then χ ∈ Aut(E(S))
since E(S) is characteristic in S. Let s ∈ S and e ∈ E(S). Taking t = sφ,

(eχ) · (sφ)= (eχ) · t = t−1(eχ)t = (s−1φ)(eχ)(sφ)= (s−1es)φ|E(S) = (e · s)χ.

This concludes the proof. 2

Recall that the normalizer of Sθ in Aut(E) (see (2.1)) is the group

N (Sθ)= {χ ∈ Aut(E) | χ−1(Sθ)χ = Sθ}.

THEOREM 3.7. Let S be a fundamental inverse semigroup. Then

Aut(S)= {φχ | χ ∈ N (Sθ)} ∼= N (Sθ).

PROOF. By Theorems 2.23 and 2.24, we only have to prove that |�idS | = 1. Let
χ ∈�idS . Then for all s ∈ S and e ∈ E(S), (eχ) · (s(idS))= (e · s)χ , that is, (eχ) · s
= (e · s)χ . In particular, when s = e we have

eχ = (eee)χ = (e−1ee)χ = (e · e)χ = (eχ) · e = e−1(eχ)e

= e(eχ)e = ee(eχ)= e(eχ),

so eχ ≤ e. By Lemma 2.8, χ ∈�idS implies χ−1
∈�id−1

S
=�idS and hence eχ−1

≤ e.

Since χ is an automorphism of E(S), and so an automorphism of (E(S),≤), we see
that eχ−1

≤ e implies
e = (eχ−1)χ ≤ eχ ≤ e.

Thus for all e ∈ E(S), eχ = e, that is, χ = idE(S). We have proved that �idS =

{idE(S)}, and the theorem follows. 2

3.3.2. Second description In this section, we describe the normalizer N (Sθ) in terms
of the semigroup S itself rather than its image Sθ , with the help of the fundamental
inverse semigroup constructed by Munn [18]. Let E be a semilattice. For every
e ∈ E , the set Ee = { f ∈ E | f ≤ e} is the principal ideal of E generated by e. For
all e, f ∈ E such that Ee ∼= E f , denote by Te, f the set of all isomorphisms from Ee
to E f , and let

TE =
⋃
{Te, f | e, f ∈ E such that Ee ∼= E f }.

The set TE is a subset of the symmetric inverse semigroup I E of all partial one-to-one
transformations of E . It is in fact an inverse subsemigroup of I E , called the Munn
semigroup of E . The semilattice of idempotents E(TE ), which we denote by E0, is
the set

E0 = {1e | e ∈ E},

where for every e ∈ E , 1e is the identity transformation of the ideal Ee. The semilattice
E0 is isomorphic to E via the isomorphism e 7→ 1e.
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An inverse subsemigroup S of TE is called full if E0 ⊆ S. Every full inverse
subsemigroup of TE is fundamental. Moreover, every fundamental inverse semigroup
with semilattice of idempotent E is isomorphic to a full inverse subsemigroup of TE
(see [10, Section 5.4]).

In view of this result, we may assume from now on that our fundamental inverse
semigroup S is a full inverse subsemigroup of TE , where E = E(S). In this context,
the structure A is the semilattice E0.

For α ∈ I E , we denote by dom(α) the domain of α and by im(α) the image of α.

LEMMA 3.8. For all t ∈ TE and χ ∈ Aut(E), χ−1tχ ∈ TE .

PROOF. Let t : Ee→ E f be an element of TE . It is an easy exercise to show that

(1) dom(χ−1tχ)= (Ee)χ = E(eχ);
(2) im(χ−1tχ)= (E f )χ = E( f χ);
(3) χ−1tχ is a homomorphism from E(eχ) to E( f χ);
(4) χ−1tχ is a bijection.

Thus χ−1tχ is an isomorphism from E(eχ) to E( f χ), and so an element of TE . 2

For any χ ∈ Aut(E), define χ0 : E0→ E0 by

1eχ0 = 1eχ .

Since for all e, f ∈ E , 1e1 f = 1e f , it is clear that χ0 ∈ Aut(E0). Moreover, the
mapping χ 7→ χ0 is an isomorphism from Aut(E) to Aut(E0). It follows from
Lemma 3.8 and its proof that for all e ∈ E ,

1eχ0 = χ
−11eχ. (3.4)

In this context (S is a subsemigroup of TE , while E(S)= E0 = {1e | e ∈ E}, and A
is the semilattice E0), the strong representation θ : S→ End(E0) is defined by

(∀ s ∈ S) (∀ e ∈ E) 1e(sθ)= s−11es. (3.5)

From (2.1), the normalizer N (Sθ) is

N (Sθ)= {χ0 ∈ Aut(E0) | χ
−1
0 (Sθ)χ0 = Sθ}.

LEMMA 3.9. Let S be a full subsemigroup of TE and let θ : S→ End(E0) be the
strong representation defined in (3.5). Then

N (Sθ)= {χ0 ∈ Aut(E0) | χ
−1Sχ = S}.

PROOF. Define θ1 : TE → End(E0) by

(∀ t ∈ TE ) (∀ e ∈ E) 1e(tθ1)= t−11et,
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and note that θ = (θ1)|S . Let χ ∈ Aut(E). Recall that θχ0 : S→ End(E0) is defined
by

(∀s ∈ S) (∀e ∈ E) 1e(sθχ0)= (1eχ
−1
0 · s)χ0.

By (3.4) and the fact that χ−1
0 = (χ

−1)0, we have for all s ∈ S and e ∈ E ,

1e(sθχ0) = (1eχ
−1
0 · s)χ0 = (s

−1(1eχ
−1
0 )s)χ0 = χ

−1(s−1(1eχ
−1
0 )s)χ

= χ−1(s−1(χ1eχ
−1)s)χ = (χ−1sχ)−11e(χ

−1sχ)= 1e((χ
−1sχ)θ1).

We have proved that, for all χ ∈ Aut(E),

(∀ s ∈ S) sθχ0 = (χ
−1sχ)θ1. (3.6)

Suppose that χ0 ∈ N (Sθ). Then by Lemma 2.18, Sθχ0 = Sθ . Let s ∈ S.
By (3.6), sθχ0 = (χ

−1sχ)θ1. Thus (χ−1sχ)θ1 ∈ Sθ , and so there is s′ ∈ S such
that (χ−1sχ)θ1 = s′θ . Hence, since θ = (θ1)|S , we have (χ−1sχ)θ1 = s′θ1, and so
χ−1sχ = s′ (since, by Lemma 3.6, θ1 is one-to-one). It follows that χ−1Sχ ⊆ S.
Since χ0 ∈ N (Sθ) implies (χ−1)0 = χ

−1
0 ∈ N (Sθ), we also have χ Sχ−1

⊆ S, and so
χ−1Sχ = S, which proves that N (Sθ)⊆ {χ0 ∈ Aut(E0) | χ

−1Sχ = S}.
For the reverse containment, suppose that χ ∈ Aut(E) is such that χ−1Sχ = S.

Let s ∈ S. Then χ−1sχ ∈ S, and so, by (3.6), sθχ0 = (χ
−1sχ)θ1 = (χ

−1sχ)θ ∈ Sθ .
We have proved that Sθχ0 ⊆ Sθ . Since χ−1Sχ = S implies χ Sχ−1

= S, we also have
Sθ
χ−1

0
⊆ Sθ . Thus by Lemma 2.17, Sθ ⊆ Sθχ0 . Hence, Sθ = Sθχ0 , and so χ0 ∈ N (Sθ)

by Lemma 2.18. The proof is complete. 2

The group Aut(E) is not necessarily a subgroup of TE . However, we have
S ≤ TE ≤ I E and Aut(E) is a subgroup of the symmetric inverse semigroup I E . Thus
we have the normalizer of S in Aut(E):

NAut(E)(S)= {χ ∈ Aut(E) | χ−1Sχ = S}.

Every χ ∈ NAut(E)(S) induces a mapping φχ : S→ S defined by

sφχ = χ−1sχ.

It is clear that φχ ∈ Aut(S) for every χ ∈ NAut(E)(S).

THEOREM 3.10. Let E be a semilattice and let S be a full inverse subsemigroup of
the Munn semigroup TE . Then

Aut(S)= {φχ | χ ∈ NAut(E)(S)} ∼= NAut(E)(S).

PROOF. Let χ ∈ NAut(E)(S). Then φχ ∈ Aut(S), and so (φχ )|E0 ∈ Aut(E0). Thus
there is η ∈ Aut(E) such that (φχ )|E0 = η0. We claim that η = χ . Indeed, for every
e ∈ E ,

1eη0 = 1eφ
χ
= χ−11eχ = 1eχ0,
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which implies η0 = χ0, and so η = χ . Thus (φχ )|E0 = χ0 and so, by the proof of
Lemma 3.6, χ0 ∈�φχ , which implies φχ = φχ0 . Hence, we have

Aut(S)= {φχ | χ ∈ NAut(E)(S)} ∼= N (Sθ)

by Theorem 3.7. The result follows since N (Sθ)∼= NAut(E)(S) by Lemma 3.9. 2

Clearly χ−1TEχ = TE for every χ ∈ Aut(E). In other words, NAut(E)(TE )= Aut(E).
Thus Theorem 3.10 gives the following corollary.

COROLLARY 3.11. Let E be a semilattice and let TE be the Munn semigroup of E.
Then Aut(TE )∼= Aut(E).

The bicyclic semigroup B is the semigroup defined by the monoid presentation
B = 〈a, b | ab = 1〉. It is isomorphic to the Munn semigroup TCω , where

Cω = {e0, e1, e2, . . .} and e0 > e1 > e2 > · · ·

(see [10, p. 163]). As Cω is a countable chain with a maximal element, we
have that Aut(Cω)= {idCω}. Thus the following result (which is well known and
straightforward) is a special case of Corollary 3.11.

COROLLARY 3.12. The automorphism group of the bicyclic semigroup is trivial.
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