Proceedings of the Edinburgh Mathematical Society (1999) 42, 127-141 ©

BOUNDS FOR THE SIZE OF INTEGRAL SOLUTIONS TO
Y" =f(X)

by DIMITRIOS POULAKIS
(Received 20th February 1997)

Let K be an algebraic number field with ring of integers O, and f(X) € O,[X]. In this paper we establish
improved explicit upper bounds for the size of solutions in Oy, of diophantine equations ¥? = f(X), where
f(X) has at least three roots of odd order, and Y™ = f(X), where m is an integer > 3 and f(X) has at least
two roots of order prime to m.

1991 Mathematics subject classification: 11D41.

1. Introduction

Let K be an algebraic number field with ring of integers O, f(X) a polynomial in
Ok[X] and m an integer > 2. Consider the diophantine equation

Y™ =f(X) (*)

and assume that if m > 3, f(X) has at least two roots of order prime to m and if
m = 2, f(X) has at least three roots of odd order. When K = Q, Baker [1] obtained the
first explicit upper bound for the size of integral solutions to the equation (x). This
result has been extended to an arbitrary algebraic number field and has been improved
by several authors. The best known results have been obtained by Voutier [10].
Moreover, a generalization of the equation (x) has been studied in [5].

Throughout this paper we denote by d, Dy and Ny the degree of K, the discriminant
of K and the norm from K to Q. Further, we denote by K an algebraic closure of K.
By an absolute value we will always understand an absolute value that it extends either
the standard absolute value of Q or a p-adic absolute value ||, of Q. Let M(K) be a
set of symbols v such that with every v € M(K) an absolute value ||, is associated. We
denote by d, the local degree of ||, We define the field height of a point
X = (X, ..., x,) in the projective n-space P'(K) by

Hyx) = [] max{ixl,. ..., [x.L}*,
veM(K)

and the absolute height by H(x) = Hy(x)"?. For x € K we define Hg(x) = Hc((1: x))
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and H(x) = H((1:x)). Let G be a polynomial in one or several variables and with
coefficients in K. We define the field height Hy(G) and the absolute height H(G) of G,
respectively, to be the field height and the absolute height of a point in a projective
space having as coordinates the coefficients of G (in any order). For an account of the
properties of heights see [9, Chapter VIII] and [3, Chapter 3]. Finally, for
ze R,z >0, we let log* z = max({l, log z}.

In [6] we have obtained the following improved upper bound on the size of integral
solutions to the elliptic equation:

Theorem A. Suppose f(X)=X’+aX' +bX+c has coefficients in Oy and
discriminant A(f) # 0. Then, all solutions (x, y) € O% to the equation Y* = f(X) satisfy

max{Hy(x), He(y)} < CXP{Q(d)|DK|25|NK(A(f))|27 log™ Hy ()},

where
Q(d) < 10740d+48d312d+l3.

In this paper we generalize the above result and we obtain explicit upper bounds of
the above type for the height of integral solutions to the equation (x) over K,
improving on the estimates obtained by Voutier.

Let (x, y) € O% be a solution of y™ = f(x). Since we have

Hy(y) < He(y)" = Hg(y™) < (degf + l)dHK(f)HK(x)dcyv

it is sufficient to calculate an upper bound for Hi(x). We obtain the following explicit
estimates:

Theorem 1. Let f(X)=(X —o)"...(X —0a,)" be a polynomial of degree >3 in
Ok[X], where a,, ..., a, are pairwise distinct elements in K. Assume that «;, %,, %, € K and
e,e,e are odd Put g(X)=(X—oa)X —a,)(X —a;) and denote by A(g) the
discriminant of g(X). Then, all solutions (x, y) € Ok to the equation Y* = f(X) satisfy

Hy(x) < exp{®,(d)| D¢ I |Nx(A(g)I'™ log" Hk(g)},

where
®@,(d) < 1Q'7004+53 g624d+13

Corollary 1. Let f(X)=ay(X — o))" ...(X — )" be a polynomial of degree
n>3 in Ox[X), where w,,...,a, are pairwise distinct elements in K and e, e,, e,
are odd. Put G(X)=ay(X —a,)...(X — a,) and denote by A(G) the discriminant of
G(X). Then, all solutions (x,y) € 0% to the equation Y’ =f(X) satisfy

Hi(x) < exp{®,(d, r)(|Dx| IN«(AG)P¥INk(a) ™)™ log" (H(ao) Hx (G)}
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where
®,(d, r) < (10'5(dr)*)>*".

Theorem 2. Let p be a prime >3 and f(X) = (X — o))" ... (X — «,)" a polynomial of
degree > 2 in Ox[X), where a,, ..., a, are pairwise distinct elements in K with a,,a, € K
and (e;,p)=1 (i=1,2). Assume that K contains a primitive pth root of 1. Put
g(X) = (X — . (X — o) and denote by A(g) the discriminant of g(X). Then, all solutions
(x, y) € O% to the equation Y’ = f(X) satisfy

Hy(x) < exp{%¥,(d, p)| D" N (A(g))I"* log® H(g)},
where

1700dp? 2 3
Wl(d» p) <10 p +53d624dp +13pl438dp +9‘

Corollary 2. Let p be a prime > 3 and f(X) = ay(X — o))" ...(X — a,)" a polynomial
of degree n>2 in Oy[X], where a,,...,a, are pairwise distinct elements in K with
(e,p)=1 (i=1,2). Put G(X)=ay(X —y)...(X —a,) and denote by A(G) the dis-
criminant of G(X). Then, all solutions (x, y) € O% to the equation Y’ = f(X) satisfy

Hy(x) < exp{¥,(d,r, P)(IDKISINK(A(G))P' |NK(a0)|5,m)|0,zp4 log" (He(a) H (G).
where
\Pz(d, r, p) < (103(d,.2)p3p)625412p"

Theorem 3. Let f(X)=(X —o,)"...(X —a,)" be a polynomial of degree > 2 in
Ox[X), where a,, ..., a, are pairwise distinct elements in K with a,,a, € K and e,, e, are
odd. Assume that K contains a primitive 4th-root of 1. Denote by A(g) the discriminant of
the polynomial g(X) = (X — a,)(X — «;). Then, all solutions (x, y) € O% to the equation
Y* = f(X) satisfy

Hy(x) < exP(Ql(d)IDK|8°o|NK(A(9))l“ZO log" Hx(9)},

where

Ql (d) < 1050597d+73d 9984d+13 .

Corollary 3. Let f(X) = ao(X — )" ... (X — a,)" be a polynomial of degree n > 2 in
O%[X), where «,,...,a, are pairwise distinct elements in K and e,, e, are odd. Put
G(X)=ay(X —a;)...(X —a,) and denote by A(G) the discriminant of G(X). Then, all
solutions (x, y) € O% to the equation Y* = f(X) satisfy

Hy(x) < exp{Q,(d, )(IDxI*|Nx(A(G)) ™I N (@) ™)™ log" (Hy(a) Hy (G))),
where

Q,(d, 1) < (10%(dr?))' ™).
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Assume that m is an integer > 4 and f(X) a polynomial in Ok[X] having at least
two roots of order prime to m. Let x, y € Oy with y™ = f(x). If m has a prime divisor
p > 3, then (x, y*”) is an integral solution to the equation Y” = f(X). Hence Theorem 2
(or Corollary 2) implies an upper bound for H,(x). Similarly, if m = 2, ¢t > 2, Theorem
3 (or Corollary 3) gives an upper bound for Hg(x). Therefore, in all cases, Theorems
1, 2 and 3 (or Corollaries 1, 2 and 3) give a bound for the integral solutions to the
equation (x).

Following Kubert and Lang (2, §1], we reduce the proofs of Theorems 1, 2 and 3,
to our Theorem A. This reduction relies on the following result:

Proposition 1. Let m=p', where p is a prime and t is an integer > 1. Let
X)) =X -a)"...(X —a,)" be a polynomial in O[X), where ay,...,0, are pairwise
distinct elements in K. Assume that K contains a primitive mth root of 1,0a,,...a, € K
(s<ryand (e,m)=1((=1,...,5). Put g(X) =(X —o,)...(X —a,) and denote by A(g)
the discriminant of g(X). Let x,y € Og with y" = f(x). Then the algebraic number field
L = K(w), where w" = (x — o). ..(x — ), has discriminant D, satisfying
t—1

D] < P D N (Mg P

2. Auxiliary lemmas

For the proof of Proposition 1 and Theorems 1, 2 and 3 we shall need the following
lemmas:

Lemma 1. Let K be a field of characteristic p and m an integer > 2 not divisible by
p. Denote by C the algebraic curve defined by the equation

Y"=(X —a)".. (X —a),
where a,,...,a, are pairwise distinct elements in an algebraic closure K of K and

(e,,m) = 1. Let V be a discrete valuation ring of K(C) above X = «,. Then, the function
ty = (X — )Y, where c,d € Z with mc + e,d = 1, is a local parameter at V.

Proof. For h € K(C) we denote by ord,(h) the order of h at V. The equation
Y= (X =) .. (X — o)

yields
mord, (Y) = e, ord, (X — «a;).

Since (e,, m) = 1, we get

ordy(X —a)=m and ord,(Y)=e,.
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Let ¢, d € Z such that mc + e,d = 1. Then the function t, = (X — a,)°Y* has
ord,(ty) =mc+ed=1.
Therefore t, is a local parameter at V.
Lemma 2. Let K be an algebraic number field with ring of integers Oy. Let L be a

cyclic extension of K of degree £, where £ is a prime, and T a finite set of prime ideals in
Ok such that the extension L/K is unramified outside T. Then the discriminant D, of L

N < ( l_[ )
PeT

Proof. Let D,/ be the different of L over K. Then

22-1

ID.| < |Dgl

Dy =P ... P,

where Py, ..., P, are prime ideals in L such that BNOx € T (j=1,...,k). Let L and
K be the completlons of L and K with respect to the prlme ideals P and P, =P ﬂ O
(j=1,...,k). Denote by D;, sk, the different of L over K and by ’P the prime ideal
generated by ’P, m the ring of P adic integers in L By {8, Proposmon 10, page 61] we
have D; ¢, =P;. By [8, Corollary 4, page 41] L is a finite Galois extension of K
and its Galois group is the group of decomposmon of P. Then [8, Lemma 3, page 91,
and Exercise 3.c, page 79] give

r<2e—1 (j=1,...,k).

Denote by N, ,x and D, respectively the norm and the discriminant ideal of L over
K. The prime ideals P, (i =1,..., k) are the only prime ideals in Oy that are ramified
in L. Since ¢ is a prime number, it follows that the ramification index of P, is £. Then
Nyx(P) =P, (i=1,...,k). Further, we have N, x(D,x) = D, . Thus

NK(HP)

PeT

-1

INK(DL/K)I < |Ng(P, '-'Pk)lu_l <

Therefore

21

ID.| = 'DK|t|NK(DL/K)I < | Dkl

NK(QP)

Lemma 3. Let K be an algebraic number field with ring of integers Oy. Let
9 X)=X—a))...(X —a,) be a polynomial in Ok[X], where «,,...,a, are pairwise
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distinct elements in K. Set K; = K(a,, ..., a;) and denote by Dy, the discriminant of K;
(i=1,...,r). Then

|| < 1D IN (A
where A(g) is the discriminant of g(X).

Proof. Set K, =K and denote by Dy, , the discriminant ideal of the extension
K,/K;_, (i=1,...,r). By [8, Proposition §, page 60] we get

[Dg,| < | D" Ng(Dx, /6l

Let G(X) be the irreducible polynomial of «, over K and degG =¢{. Since o, is an

algebraic integer, the discriminant Dy , divides the discriminant of elements

1,a,,...,a"", which is equal to the discriminant A(G) of G(X). The element g, is a root

of g(X). Thus G(X) divides g(X) and we deduce that A(G) divides A(g). It follows that
Dy, x divides A(g). Then
|D, | < [DxI"INk(A(9))I-

Assume that Lemma holds for i — 1 > 1. Thus

IDg,,| < 1D DN (A
By the reasoning above, we get

|Dx,| < 1Dk, "IN (A(g)I V-2,
Applying the inductive hypothesis, we obtain

IDg,| < DI * VN (A

Lemma 4. Let f and g be two polynomials in one variable with coefficients in K and
deg f +degg < M. Then

(1/4")H(fg) < H(/)H(g) < 4" H(fg).
Proof. See [3, Proposition 2.4, page 57].

Lemma 5. Let G(X)=(X —a,)...(X —a,) be a polynomial in K[X] and a € K. Then,
the height of the polynomial E(X) = (X — ana,)...(X — aa,), s < r, satisfies

H(E,) < 2"\(s + )4""' H(a) H(G).
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Proof. Set G, (X)=(X-a,)...(X —¢a,). By [9, Lemma 59, page 211} and [7,
Lemma 3] we obtain

H(E,) < 2'"H(aY’H(w,)... H(x,) < 2°"'(s + 1)H(a)’H(G,).
On the other hand, Lemma 4 gives
H(G,) < 4*'H(G).
Hence

H(E,) < 2°\(s + D4 H(a)’ H(G).

3. Proof of Proposition 1

Denote by S the set of prime ideals in O dividing p or A(g). Let (x, y) € O% such that
y'=f(x) with x#£a, (i=1,...,5). Put L =K(w), where w is an algebraic integer
satisfying w™ = (x —a;)...(x — a,). Let P be a prime ideal in O such that P ¢ S and

let O¢p be the local ring of Ox at P. Denote by X,¥,%,,...,& respectively the
reductions of x, y,«,, ..., o, modP. Set k = Oy/P and denote by k an algebraic closure
of k.

Let C be the curve over k defined by the equation

Y= (X —%)" ... (X —8,)".

Since P does not divide A(g), the elements &@,,..., % are pairwise distinct in k. Put
[L:K} = u. We have two cases:
First case X #@, (i=1,...,s). Since w is an algebraic integer, the discriminant D,

of L divides the discriminant D(1, w, ..., w*™") of the elements 1,w, ..., w*'. Further,
D(1,w, ..., w ') divides the discriminant A(R) of the polynomial

R =T"—(x—2)...(x—a,).
Then D, divides A(R). We have
AR) =(-D""'m"[(x — ) ...(x —a)]"".
Since X #@ (i=1,...,s), we deduce that A(R) Z O0modP. Thus P does not divide D,.
Therefore P is unramified in L.
_ Second case X =@; (1 <i<s). Let V be a discrete valuation ring of the function field
k(C), above the local ring of C at (X,y). By Lemma 1, the function t, = (X — %,)°Y",

where ¢, d € Z with mc + e,d = 1, is a local parameter at V. Then the function

t=(X-w)...(X-a)/
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is a unit in V. Thus 7(X, ¥) # 0, co. Consider the element

z=(x—ay)...(x = a)/((x — ) y)".

Since x#a; (i=1,...,5), we deduce that z #0. Further, we have z=1(X,y) #
0,0omod P. If z is not a unit in O p, then z =0 or comod P which is a contradiction.
Thus z is a unit in Oy ». Put @ = w/(x — «,)°y". Since @™ = z, we deduce that w is a unit
in L. Then the discriminant D of the integral closure of Oy, in L divides the
discriminant D(1, w, ..., ®*™") of the elements 1, ®,...,®*" in Ox,. Since w is a root
of the polynomial (T) = T" — z, D(1, w, ..., @*”") divides the discriminant

AQ) = (="' mmzm!

of Q(T). It follows that D divides A(Q) in Ok ». The element z is a unit in O, and P
does not divide m. Thus A(Q) is a unit in Ok . It follows that D is also a unit in Ok .
So we deduce that P is unramified in L. Therefore, the ideals of Oy which do not lie
above the elements of § are unramified in L.

Put K, =KW ) (i=0,...,1). Then K, = K and K, = L. Denote by S, the set of
prime ideals of K; (i=1,...,t) lying above the elements of § and by Dy, the
discriminant of K;. The extension K,,,/K; is unramified outside S;. By Lemma 2,

NK,.(]—[’P)

PeS;

2p—-1

[Dy,, | < IDg,IF (i=0,...,t—1).

Thus, we obtain by induction

@p-1tp~!

ID.| < Dkl

NK(HP)

PesS

Therefore

-1

DL < P27 | Dy " Nk (A(@)) "

4. Proofs of Theorems 1, 2, 3 and Corollaries 1, 2, 3

Proof of Theorem 1. Let x,y be integers in K satisfying y* = f(x). Set g(X) =
(X — o )(X — a,(X — ;) and denote by A(g) the discriminant of g(X). Let w be an
algebraic integer such that w?* = g(x) and let L = K(w). Theorem A gives

max{H,(x), H.(w)} < exp{Q(2d)|D|*|N (A9))I*’ log" H,(g)}.

By Proposition 1, the discriminant D, of the number field L = K(w) satisfies
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ID,| < 8| DkI*INc(A(g)I’.
Thus
max{H,(x), H(w)} < exp{®,(d)|Dc|*|Nx(A(@)I'"™ log" Hk(g)},
where

(D] (d) < 10I7004+53d624d+l3 .

Proof of Corollary 1. Let f(X)=a,X"+a, X" +...4+a, and x, y € O satisfying

y?* = f(x). Then (apx, ai""?y) is an integral solution over K(a7"™"?) to the equation

Y? = f(X), where
fX)=X"4+a, X" + a3, X" +.. . +aal” =(X —ay)” ... (X — apx,)".
Put G(X)=ay(X —a)...( X —2a,),Gi(X)=(X —aya)...(X —ay,) and denote by
A(G), A(G,) respectively their discriminants. By Lemma 5, the height of the polynomial
h(X) = (X = aga) (X — aga,))(X — ayes) is
H(h) < 4**H(a,)’ H(G).
Further, the discriminant A(h) of h satisfies
INu(A)I < INu(AG))I = (INi(a0) "™ N (AGYN*72.
By Lemma 3, the discriminant D, of L = K(«,, «,, ;) has
D] < Dl 2INGAG I
Since |Nx(A(G))| < [N(a0)|" """ PN (A(G))], we get
D] < (IDgIIN(a)l "y~ P IN (MG
On the other hand the discriminant Dy, of M = L(ag'_”/ %) satisfies
Dyl = DL (4| Ni(ao)l "2y 072.
Thus
IDul < ING(AG)I® (41D PINg(ag)I™* Y~ =2,

Theorem 1 gives
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Hy(apx) < exp{®,(2dr(r — 1)(r — 2))| Dy |*IN\y(A(R)I" log™ Hy,(h)}.
Since
Hyy(x) < Huu(@0X)Hy(a5") = Hyy(a0x) Hyg(00),
combining the above estimates, we get
Hy(x) < exp{®y(d, )(ID¢I| Nc(A(G)) | Nic(ap) ™)' log" (H(ao) Hi(G))},

where

®,(d, r) < (10'(dr?)*y>™" .

Proof of Theorem 2. Let x,y be integers in K satisfying y* =f(x). Set
g(X) = (X —oy,)(X — ;) and denote by A(g) the discriminant of g(X). Let w be an
algebraic integer such that w* = g(x). Thus

WP — o = x? — (o, + ay)x.
Multiplying by 4” and adding the term (2°~'(a, + @,))” in the two members, we get
(4w)’ — A (ay0,) + (277! (o + )" = (2°x)* — 2°(a; + o;)(2%) + (277 (o, + )"
Setting
t=2""2x — (o, +,)) and u = 4w,
we obtain
?=u +4"AQg).

Put L = K(w) and R(X) = X’ +4°'A(g). Denote by D, and A(R) respectively the
discriminants of L and R(X). Let M = L(z), where z is a root of the polynomial R(X).
By Lemma 3,

|Dyl < |DPINL(A(R))I-
It is well known that A(R) = p°(4°~'A(g))’”". Thus
2
IDyl < (p4°) D, IPIN (A(@)IPC.

By Proposition 1,
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IDL| < p ™D PINK (AN
Therefore
IDul < (0*4)" D17 IN(A@)I”.

Let @ be a pth primitive root of 1. According to our assumptions w € K. Put
h(X) = (X — 2)(X — zw)(X — zw®). Applying Theorem 1, we get

Hy, (1) < exp{®,(dp?)| Dy | INy (A(R))|'*° log® Hyy(h)}.
We have
ING(AR))| < INy(2)I°P™ < IN(A@)IZ P’
and Lemma 4 gives
Hy(h) < Hy(2)4°7" < H(A(g))” 16% < Hy(g)” 2.
Therefore
Hy(4) < exp{®,(dp?)4™7 p7 | D, | N (A(g))|*'™ log” Hy(g)}.
We have

H(1) < H(t) = H(?) < 2HW)H(@ ' A(g)) < 2¥'H(w)H(A(g)) < 2**2H(w)H(g)’.

Then
H(x) < 2*2H(t)H(g) < 2*"*HW")H(g)’.
Hence
Hy(x) < exp{¥,(d, p)I D™ INx(A(@)I*™ log" He(g)},
where

\}l‘(d, p) < 10]7004p2+53d624dp2+|3p|4384p3+9.

Proof of Corollary 2. Let x, y € Ok be a solution of y* = f(x). Then (apx, ay~""y)
is an integral solution over K(ay~""%) to the equation Y’ = f(X), where

f(X)=(X — ag2)" ... (X — apt,)”.
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Consider the polynomials G(X) = a(X ~a,)... (X —«a,), G(X) = (X — ay}) .. . (X — ap2,)
and denote by A(G), A(G,) respectively their discriminants. Let w be a pth primitive
root of 1. By Lemma 3, the discriminant D, of L = K(«,, a,, @) 1s

DL < P IDI" O IN(AG ) PO,
Thus, we obtain

ID.| < P 1D IO (I Nx(@o) | P INK (A

Put M = L(af,"_”/” } and denote by D,, the discriminant of M. Since the discriminant
of the polynomial X” — al™" is (—1Y*""2pPa """ Lemma 3 gives

Dyl < IDLIP(p* N (@) "2 D)0
It follows that
IDul < 7 DO IN(AG)IPC P IN (@) 7.
By Lemma 5, the height of the polynomial A(X) = (X — a,a,)(X — aya,) satisfies
H(h) < 412H(a,)* H(G).
Furthermore, the discriminant A(h) of h satisfies
INy (AR < IN(AG)) < (Ng(@)l" ™ DN (AG)) ) 7o,
Using Theorem 2 and the above estimates, we get
Hy(x) < exp{t¥,(d, r, p)(IDcI*ING(AG) 1Nk (@) ™)™ log" (Hic(a:) H (G))},

where
¥,(d, r, p) < (10%(dr)p*)5"

Proof of Theorem 3. Let x,ye€ Ot be a solution of y*=f(x). Consider the
polynomial g(X) = (X — o,)(X — «,) and denote by A(g) its discriminant. Let w be an
algebraic integer such that w* = g(x). Then

w? — o0, = XP — (o) + o,)x.

Multiplying by 2* and adding the term (2(«, + ®,))’ in the two members, we obtain

(w)" + 4A(g) = [(4x) — 2(oy + )]
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Setting t = 2w and z = (4x) — 2(a, + a,), we get
22 = t* 4+ 4A(g).

Put L =K(w) and S(X)= X*+4A(g). Denote by D, and A(S) respectively the
discriminants of L and S(X). Let M = L(u), where u is a root of the polynomial S(X).
By Lemma 3,

IDyl < IDLI*INL(A(S))].
Since A(S) = 4'(4A(g))’, we have
INL(A(SHI < 4*|Ng (M)
By Proposition 1,
ID.| < 2'*|Dg|*| Nk (A(g))] .
Therefore
1Dyl < 4| Dg | "INk (A(g))I%-

Set A(X) = (X — u)(X — uw)(X — uw?®), where w is a 4th primitive root of 1. Then
Theorem 1 gives

Hy (1) < exp{®,(16d)| Dy 1INy (A(h))'"* log" Hy (h)}.
We deduce as in the proof of Theorem 2 that

INJ(ARY)| < 4*IN(A@)H* and  Hy(h) < 4'*H(g)”.

Hence
Hy (1) < exp{®,(16d)4"*%+| D, | N, (A(9))|** log" Hy(g)}.
We have
H(z) < H(z)’ < 8H(1)* H(A(g)) < 40H(1)*H(g)".
Hence
H(x) < 8H(g)H(z) < 320H(t)*H(g)’.
Thus

Hy(x) < CXP{QI(d)|DK|800|NK(A(g))|“2° log" Hk(g9)},
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where

Q|(d) < 1050597d+73d9984d+13'

Proof of Corollary 3. Consider the equation Y* = f(X), where

i(X) = (X —au)” .. (X — a2,)".

If x,ye O is a solution of y*=f(x), then (g,x,ay "*y) is an integral solution

over K(af,"")/”) to the equation Y?>=f(X). We set G(X)=ay(X —a,)...(X —a,),

G,(X) = (X —ap2))... (X —ay,), h(X) = (X — a2, (X — a,o,) and we denote by A(G),
A(G,), A(h) respectively their discriminants. By Lemma 3, the discriminant D, of
L = K(«,, o, ), where w is a 4th primitive root of 1, satisfies

DI < 4% DI IN(AG I < 44" 1D (IN (@)l IN(AG)D"
Put M = L(a{""*) and denote by D,, the discriminant of M. Then, Lemma 3 gives
Dyl < 42D D, [*| Ny (ag) "¢,
Thus,
Dy < 4% Dy [* IN(AG)' INi(ag) .
By Lemma 5, we get
H(h) < 412H(a,)*H(G).
Further, we deduce
INM(A)| < IN(A(G))] < (INk(@)I" P IN(AGHN™ .
Theorem 3 and the above estimates give
Hy(x) < expl€y(d, N)(IDxI*IN«(AG)IP INk(a0) ™)™ log"(Hy(a) H (G))},

where

Q,(d, 1) < (10°(dr?)*) "),
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