II.
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Remarks on Steady Perfect Fluid Flow with Spherical Symmetry.

P. GERMAIN

Institute Henry Poincaré - Paris

1. - Introduection.

As discussed by DEUTSCH, the following gas-dynamical problem arises in
the study of a stellar atmosphere: find a steady outward flow, originating from
a star, which is compatible with the interstellar medium. In what follows,
spherical symmetry will be assumed; moreover, the gas will be considered as
a perfect gas with constant specific heats.

The notation is as follows:

r, distance from the center of the star;

0, density;

7, specific volume;

T, absolute temperature;

C,, specific heat per unit mass at constant pressure;

y, adiabatic index (1<y<3$);

GM|r, gravitational potential of the star;

Toy T, values of 7 and T in the interstellar medium which are as-
sumed to be known.

2. - Equations.

This flow is ruled by the usual conservation laws: mass, momentum and
energy. The continuity equation gives:

1) our: =m or U =mir-?,

m, the rate of mass flux, is a constant.
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The energy equation says that the specific entropy is a constant; as a
_result the momentum equation may be replaced by the Bernoulli theorem

GM
~_L. —_——
(2) ) c,T ; =B,
while the equation of state shows that
3) T77-! = const .

The physical problem is a study of mass-loss from the star; thus B> 0.
For large values of r, as 7 tends towards 7_, » tends to zero, and (2) shows
that B=C,T_,. Thus, B is a known positive constant. It is very easy to
study the variations of «, 7, T’ as functions of ». For instance z(r) is implicitly
given by

GM m2t?

(4) ( + B —217) T7-! = const .

It is convenient to introduce non-dimensional variables.
If r, (length) and 7, (specific volume) are defined by

(5) GM =Br,, m't=riB

and if one introduces

r T
(6) x = I Y= 7’
(4) may be written
(M) F(x,y) = (1+__L)yy—1_g
’ 2w4 y

where C is a constant (C > 0).
One must investigate the shape of the curves ({) defined by (7) in the
domain z.> 0, y > 0.

3. - Pattern of the eurves ©)-
First of all, one hag

oF  yv1
(8) e (— a3+ 292),

oF v-2 !
5= | =D e Ly
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a) The curve (I') defined by
2y% =

i the locus of points of ({) where the tangent is parallel to the x axis.

For a given y, C is an increasing function of = for #°< 2y? and a decreas-
ing function of x for x®> 2y% Every curve ({) is cut in at most two ‘points
by a parallel to the = axis.

b) The curve (I',) defined by

_ 20—
(1o Y= 1 (@® + x%),

is the locus of points of () where the tangent is parallel to the y axis. As

2

o '
C, v

’

with ¢ the speed of sound, it is easily checked with (2) that (I',) is the locus
of points which correspond to a Mach number equal to 1. This curve (I'))
divides the domain into a subsonic and a supersonic region. That is, for a
given x, a value of y exceeding that from eq. (10) requires supersonic flow;
less, subsonic.

For a given #, C is an increasing function of y for

20y —-1) 3 4
yr< PENE (@® + 2,

and a decreasing function of y for

2o, 2r —

—

1
y+]_) (@ + %) .

Every curve ({) is cut in two points by a parallel to the axis.

¢) When 1<y<3$:
(I') and (I',) have one point of intersection A, apart from the origin
5 =3y s 1 [6—=3yP
an Wi Rl

Obviously, A4 is a saddle point for the family of the (-curves. The particular
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curve which goes through A—say ({,), and C, the corresponding value
of C—admits the point A as a double point ().
In what follows the two branches for x> z, will be noted ({,), and ({,),
respectively, (£,), lying below (Z,),.
The previous results allow one to

.3 il
sketch the pattern of the () curves Y (R /,(I‘.) '/(I‘)
(Fig. 3). ‘ X /7

The following information may be : ®

added

(8.)
d) When & — o<, either y remains :

finite (y*-'=C), or y may increase
indefinitely (y%*~ 2x*).

e¢) When x —0, y —0; but one ] X
has either Fig. 3. — Sketch of the pattern of the
(£) curve.
y i~ Cr
or
Y2~ 2a3(1 — Prs—/2) B>0.
4. — Shocks.

At a point distant » from the origin, the critical sound speed is given by

. s 2y =1 GM\_ 20y —1) ( 1
(12) o= (134 . >_ o B(14-).

If one has a shock at this point, according to Prandtl’s relation (cf., e.g.
Gas Dynamics, by K. OswATITSCH, p. 33, (New York, 1956))

(13) Uplhy = €y Ui > Us

Where w; and w, are the velocities for r —0 and r+0 respectively.

Thus.
MET, T, 2
T = Cy Ty > Toy
or
2y — 1
(14) we = 2 @0, "

(") For y =%. y*= 2,1 is one of the branches of ({,).
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Notice that (10)—the equation of (I',)—appears as a special case of (14).

In the «, y plane, when a shock is present the image point of the flow
jumps from a curve ({;) to another (£;). It is inportant to compare the values
of the related constants C; and C,. If one notes that the constant in the right-
hand side of (3) is proportional to

8
o]

where s is the specific entropy and C, the specific heat at constant volume,
it is clear that C,/C, is proportional to

8 — 8
exp| . |»

and, as s,>s,, one concludes that

(15) C,> C,.

5. — Discussion of uniqueness.

Let us recall that it is always assumed that 7, and T _ are given. Thus
the constant B= C T, is known. The following assumptions are also considered

a) m is given;

b) the radius of the star is very small in comparison with r ; and in
its neighborhood, the flow is subsonic. This excludes for the moment the
special limiting case y = 3.

This last assumption means that in the z, y plane, the image of the flow
is to be defined for 0 <2 < oo, and that the curve must reach the origin in
a path lying in the subsonic region in the neighborhood of this point. Of course,
it may be a serious limitation, which has to be discussed with figures

coming from the observations, but without
Y such an assumption uniqueness cannot be
—Case(ii)  proved. ‘

—tase (i) With these asswmptions, the flow is uni-
r quely defined.
Fig. 4. First of all, », and 7, may be computed

by (5). Thus y_, is known and defines
uniquely the ({) curve for large x. Let us call ({,) this arc. Two -cases
are possible (Fig. 4).
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i) This arc () lies below the arc ({,), which goes through A. The cor-
responding ({,) curve goes through the origin and checks the assumption b).
Thus, it is a solution. No other solution is possible because according to (15),
such an arc ({.,) would be the image of a flow lying downwards of a shock,
if the image of the upward flow were a ({) curve lying above the two branches
of the critical curve ({,) and thus condition ) would not be satisfied.
(ii) Or this arc (¢_) Kes above ({,);- A shock must be present. For the reason
given in i), the only possibility to check assumption b) is to have as image
of the upward part of the flow an arc of curve ({,), which corresponds to a
flow starting as a subsonic flow for # =0 and which is accelerated smoothly
through the trans-sonic regime (saddle point A4).

The position of the shock is defined as the intersection of the ({,) curve
with curve (), which represents the locus of flows lying just behind a shock
when the above state lies on the ({,), branch. It may be checked that these
two curves have one and only one point of intersection.

The special case y =} is a limiting case whose discussion is left to the
reader. We want to emphasize that assumption b) is necessary to guarantee

the uniqueness property.

6. — Signification of the results.

The values of r_, T, B are given by the data of the interstellar medium.
But the value of m depends on data on the state observed on the surface of
the star. Let us note with a subscript the corresponding values of various
quantities (74, 7o, T ...)

i 2,.—1
m = Uity .

In order to compute m, 4, and 7, (or 7T, and 7, according to the Bernoulli
equation) must be known. To compare the theory with experimental data, one
must check that the flow on the star is subsonic and that the flow at 7, may
be compatible with the data at infinity thanks to the uniquely defined flow in 5.

Another way to test the validity of such a theory is to notice that data
for various stars must be fitted as explained above with the same interstellar
medium. ‘

Discussion:

—_ ’A. J. DEUTSCH:

I should like to clarify several points. First, I think it is not quite correct
to say that there is a controversy between PARKER and myself. As I under-
stand the situation, there is 'not necessarily any controversy. We depart from
different sets of observations, with different physical problems in view, and
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