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SUMMARY 

The linear dynamical instability at the origin of convec

tion in stars is reviewed and shown to depend essentially on the sign 

of 

A _ J_ dp_ 1_ d_£ 
p dr r p dr 

which is the usual argument of convection criteria. The case of two 

or more superadiabatic regions separated by subadiabatic ones might 

well deserve more detailed attention. 

Once this instability is partially removed by the setting 

in of convection its effects must be balanced by dissipation terms 

if a stationary state is to result. This yields th_e value of a Ray-

leigh number. 

If energy generation is included in the non-conservative 

terms, possibilities are somewhat enriched including a case of dyna

mical instability in presence of A<0 (usually stable) but very small 

in absolute value. 

1 . THE GENERAL PROBLEM 

In the context of this conference we are not interested in 

dynamical instability towards purely radial modes since convection 

cannot manifest itself through these modes. We are thus left with the 

problem of the response of the star to non radial perturbations which 
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we shall assume very small to allow a linear treatment. 

Of course, non linear effects may be of very great interest 

and importance and are at least partially included in some of the ap

proaches to steady convection as, for instance, in the mixing length 

theory or various numerical attempts usually with other simolifying 

hypothesis and simple geometry (cf. Spiegel 1971, 1972 Nordlund, 1976). 

One of the most recent and most direct attacksin general stellar cir

cumstances is due to Deupree (1974, 1975 a-b, 1976). As far as I am 

aware it has not revealed new instabilities such as may occur for 

instance in metastable situations. It has not either restricted the 

domain of significant dynamical instabilities but it has yielded 

interesting information on the development of these instabilities 

such for instance as a strong asymmetry between upward and downward 

motions . 

The study of non radial stellar oscillations does not go 

far back. If we exclude Lord Kelvin's discussion of the homogeneous 

incompressible sphere (Thomson, 1863) and some more or less timid 

references by Moulton (1909) and Shapley (1914), the first significant 

paper is that of Pekeris (1938) in which he solved the problem of the 

non radial perturbation of the homogeneous compressible »onere. 

Pekeris used the usual separation in time and spherical 

coordinates of the Euclidian perturbations f'(p',p', T',*') and of 

the radial component of the displacement Sr 

f (r.e. + .t) - f'(r)Pm(cose)e
im<(,eiot, - K m a 

He showed that, for each value of the degree I of the spherical har

monic, apart from a positive spectrum with an accumulation point at 
2 

infinity corresponding to the pressure modes (or p modes, a ), there 
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existed a negative spectrum corresponding to gravity modes (or g 

modes, a2) with an accumulation point at zero, all these modes being 

(2fc+l) degenerate with respect to m. An illustration of the distribu

tion of the o2 as function of I and the order of the modes can be 

found for instance in Ledoux (1974). 

Of course, in this case, all the g modes (o2<0) are unstable 

but I don't think that the connection with convection was pointed out. 

Note that Pekeris choice of dependent variable (cc=» dlv 5r) led him to 

miss the so called fundamental mode (or f mode or Kelvin mode) which, 

in this case, is exactly the same as the unique mode (for a given i.) 

of the incompressible sphere (a-0) . 

The next important paper Is that of Cowling (1941) in which 

he tackled the case of the general polytrope of index n(p= Kp ). 

In this case, the general problem is of the fourth order as it does 

not split into two second order differential equations which can be 

solved successively as for the homogeneous model. However Cowling 

noted that, except for the lowest modes and lowest values of i., the 

perturbation of the gravitational field can be neglected without 

serious effects. With this approximation, the problem reduces again 

to the second order and, as Cowling showed, can be assimilated to a 

Sturm-Liouville problem for large enough a2 (high p modes) or small 

enough |oz| (high g modes), the f mode for each I falling in between 

the corresponding p and g spectra. 

Furthermore if the generalized ratio of specific heats T1 

(or y in a pure gas) satisfies the inequalities 

Fl> "5- (l) 

all th.e o2 are positive (stable g modes : g ) while, if 
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n + 1 

(2) 

they are all negative leading to instability (unstable g modes : g ) 

But the criterion for convective instability in terms of 

A - — iS- - 1 dp 
p dr r.p dr 

(3) 

can be written very generally, even in the relatlvlstlc case (Thorne, 

1966, Kovetz, 1967, Islam, 1970) 

A >0 (4) 

and becomes in a polytrope, with the usual notation, 

A 1 de , n+1. . 
A - ? dE (n " — } >0 (5) 

or since (d0/d5) is negative 

n+1 r. < 
1 n 

(6) 

which is identical to condition (2). Thus all the a are negative 

(dynamical instability towards non radial perturbations) provided the 

criterion for convective instability (4) or (5) be satisfied every

where in the star. 

The negative g spectrum in the homogeneous model may be 

interpreted in the same way since in that case 

r p dr 
4^>o 
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But apparently, it was only slowly (Ledoux, 1949), at least 

In astrophysics, that the connection between dynamically unstable g 

modes and the sign of A became to be recognized and that convection 

became to be considered as the end effect of this instability. 

In the general case, it is not difficult to have A appear 

explicitly in the equations which can be written 

«£. = £l + «£ dP . _ dlv £r (7) 
P P p dr 

2 * t>' r r i P -*• 
a Sv - grad (<(>' + *—) + - A — — dlv Sr = 

° p r P 

- ̂ i - grad p(e- - dlv ?) ' - — dlv e7(lr) (8) 
l a p 6 p p 

p' + rlP (^- + A«r) = I3_l p ( e _ I div f). (9) 

T'-T (12-^-A £l + S«r) = •+=- (e- ± div ?) 
r2 p l a C

p
 p 

(10) 

A*' = 4TTGP' (11) 

where 

N v p IK 1 k 

represents the total heat liberated per second by nuclear reactions 

and viscosity. 

One may note that A is related to the Brunt-Vaisala frequency 

N by 

N 2 - - gA 
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and to 

r? - 1 1_ d£ _ 1_ dT (, ,v 
r2 p dr T dr

 V ' 

by 

-lig+Iii (13) 
u dr 

if g is the ratio of the gas pressure to the total pressure. 

The adiabatic approximation (right hand members neglected 

in (8), (9), (10)) is sufficient to discuss dynamical stability and 

it should enable us to understand the correlation noted above between 

the sign of A and the stability of the g modes. 

If we neglect §\ we can for instance write a second order 

differential equation for £• Sr/r • 

2 2 
d £ dg rb_ X_ d £ 1 d , p r •,•) 
, 2 d r I t p d r r -, d r yT,pJ> 
d r { ) ly 

. , r o^_p_ _ 1(1 + 1) o2 + Ag 6 d_ ,£_p_ . 
* T I P r 2 a 2 r 2 d r (T1P > 

r lp dr / | dl r l P ^ (• -J Tjp dr ^rlP
;' u (L*} 

where 

f 1 = f * U + D pr2 i 

For high p modes,a2 large, the equation simplifies very 

much and shows the acoustic character of these modes. However, they 

are without interest in the present context since, in realistic stel-
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lar conditions, all the o2 are always positive. But in the same way 

if one considers high g modes, | a2 \ small so that terms proportional 

to o2 can be neglected, the only term left over which contains a2 

is the second one in the coefficient of 5 In (14), I.e. 

_ 8.(11 + 1) Ag_ 
2 2 

rz az 

and the problem is essentially of the Sturm-Liouville type with a 

parameter A- 1/a2 . It is well known in that case that if A keeps 

the same sign throughout, the eigenvalue (A = l/JJ2 )will be of the oppo

site sign. In other words,if A is positive (convective instability), 

at least the small a2 will be negative. But it has been accepted 
g 

generally that all the o2 will have this same sign, because it is 

difficult to see how the sign of o2 could change in going from small 

to larger values if the sign of its coefficient is constant. Anyway 

fairly recently Grisvard, Souffrln and Zerner (1972) using the second 

order system 

dv r&( l + 1) pr2 i p 2 / F l ,.,.. 
» —- '- - •£ •£ w = aw (15) 

dr <• 2 r l P > p 

dw _ ,_z. .., , _ _ ... ( 1 6 ) 
dr " (°2+ A « ) - 2 2/ri

 V - bv 
r P 

equivalent to (14) managed to prove without any assumption as to the 

order of magnitude of o2 that the latter are all real positive if A 

Is everywhere negative. Thus a necessary condition for dynamical in

stability is that A be positive at least in some part of the star. 

In that case, the authors succeeded in establishing an upper limit for 

the modulus of any negative o2 
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o2| < Max (Ag) (17) 
& 

where the maximum is taken on the region where A>0. They showed also 

that |o2| increases with I, i.e. when the horizontal wave length 

decrease s. 

However if the investigation of Grisvard et al is free of 

any asymptotic restriction, it still treats the perturbation of the 

gravitational potential <f>' as negligible. Would the previous results 

hold if ij>' is not neglected, especially for the lowest modes and har

monics? Lebovltz (1965 a-b, 1966) tackled this general problem on the 

basis of the variational principle established earlier by Chandrasek-

har (1964) which expresses a2 as the extremum of Integrals exten

ded to the whole configuration. This enabled him to show first that if 

A<0 everywhere (convective stability) all the o2 are positive which 

is thus a sufficient condition for dynamical stability towards non -

radial perturbations. It is also a necessary condition as he showed 

later, since the existence of a region however small with A>0 entails 

negative eigenvalues. This implies also that one can find solutions 

of the differential equations with appreciable amplitudes in that re

gion only. 

In this respect^the work of Ledoux and Smeyers (1966) was 

more or less complementary since they pointed out Indeed that when A 

changes sign in 0^r«R the asymptotic form (a2 small, g modes) of equa

tion (14) has a turning point in A = 0 and that the g spectrum splits 

then into two : one of positive eigenvalues (a >0) corresponding to 

modes oscillating in space with appreciable amplitudes in the convec-

tively stable region (A<0) and decaying exponentially in the unstable 

region (A>0) while the other spectrum of negative eigenvalues (o2 <0) 
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corresponds to modes oscillating in the convectively unstable 

region (A>0) and decaying in the stable one. 

Using equations (15) and (16), Scuflaire (1974, cf. also 

Osakl 1975) showed that these properties of the unstable modes sub

sist even for the first few modes, i.e. they oscillate only in the 

unstable region. However, it may happen that stable modes oscillate 

In a slightly superadlabatic region, as for instance in a condensed 

model where the stable g modes characteristic of the central stable 

core may continue to oscillate in an external convection zone. 

2. MULTIPLE UNSTABLE ZONES 

The unstable modes are of greatest interest here and an 

interesting problem arises as to their behaviour if there are two 

or more regions with A>0 separated by stable zones (A<0). Tassoul 

and Tassoul (1968) in a discussion of asymptotic g modes suggested 

that there should be as many distinct unstable g spectra as there 

are unstable regions. 

However, this is not obvious since even in the simplest 

case of two turning points (for instance two convectively unstable 

regions separated by a stable one) the usual analysis of a single 

turning point in terms of Bessel functions cannot be simply repea

ted (Langer, 1959) at each of the two turning points. A solution 

should rather be sought in terms of Weber functions allowing to cross 

the two turning points at once.A considerable amount of literature 

exists on the subject and a very recent paper by Olver (1975) opens 

the way to straightforward applications. They may bring to our 

attention, at least in special cases, unstable solutions which^in 

the above case, may have large and comparable amplitudes in the two 

unstable regions with a relatively minor reduction of this amplitude 
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across the stable region especially If the latter Is fairly narrow 

with a density gradient only slightly subadlabatic. Such modes could 

be particularly efficient in mixing the whole star. This conjecture 

Is somewhat supported by some simplified or numerical investigations. 

For instance, Goosens and Smeyers (1974) have found more or less 

"accidental resonances" between some of the stable g modes of two 

stable regions separated by an unstable one (just the opposite of 

the case considered above) giving rise to a stable mode with large 

amplitudes in both stable regions decreasing only moderately in bet

ween in the unstable region. 

Other examples have been treated by students in Liege 

which lead to similar conclusions. Consider for Instance, the case 

of a heterogeneous incompressible model composed of superposed layers 

of different densities presenting two unstable discontinuities, 

(p. - p _)<0, separated by a stable one. The behaviour of the in ext r J 

eigenfunctions associated with the two negative eigenvalues can 

depend drastically on the closeness of these eigenvalues. In general, 

i.e. as long as those two o2 are not very close, each of the eigen-

functlons has a single maximum at the unstable iiLter_face with which 

it is associated. Sowever when the parameters of th.e discontinuities 

are varied, one of these solutions may acquire a secondary strong ma

ximum at the other discontinuity, the minimum between the two remai

ning apprecia&ie wb-en thj.s eigenvalue becomes very close to that cor

responding to the other discontinuity. 

3. THE EFFECTS OF THE DYNAMICAL MOTIONS AND THE REDUCTION OF THE 

SUPERADIABATIC GRADIENT 

Many of the examples where dynamically unstable modes have 

been found are artificial because the superadlabatlclty (A) has been 

fixed a priori at a much larger value than is ever likely to occur 

https://doi.org/10.1017/S0252921100112333 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100112333


97 

In stars. In such cases, the time-scales of the growing motions 

-1/2 which are proportional to (A) are ratHer short. Of course in the 

end, these violent motions lead to the establishment of a convective 

zone through which A is reduced to a very small value just sufficient 

to allow the residual energy no longer transferred by radiation to 

be carried by convective currents. This implies important readjust

ments in the internal structure of the star including transfer of 

mass to deeper layers and various feed-back effects which may in

crease considerably the extent of the convection zone with respect 

to the initial superadiabatic region. For instance, in going from 

an homogeneous compressible sphere to a polytrope n = 3/2(r1=5/3), 

the energy released, if the mass and the radius are those of the sun, 

is of the order of 0.1 GMQ /R - 5.10 ergs in a short time of the 

order of one hour. Of course this is an extreme case, but even if the 

energy release is reduced by a factor 10 and the duration increa

sed by a few orders of magnitude, it would still remain a fairly 

spectacular phenomenon which was considered at one time (Biermann, 

1939; Schatzman, 1946) significant for the interpretation of novae. 

In any case, I suppose that there are no serious doubts 

that the readjustments contemplated above would lead in the end to 

the same model as the one that could be built a priori using the 

usual method of having a convective adiabatic zone initiated at the 

point where the radiative gradient becomes exactly equal to the adia

batic one (A = 0). 

In fact things are a little more subtle as the reduction 

of the superadiabaticlty must proceed only so far that the subsisting 

excess provides the necessary buoyancy force to balance the energy 

dissipated by viscosity and conduction (radiative or otherwise). Of 

course, when A and |a2| are still large, the effects of these dissl-
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patlon terms could be evaluated by a perturbation method (similar 

to that used for vibrational stability when cr2>0) yielding a damping 

coefficient a' correcting the adiabatic time dependence by a factor 

-o't 

But one knows how cumbersome (cf. Ledoux 1974), the ex

pression of o' is. To illustrate the situation, it seems better to 

revert to a simple case as, for instance, the plane layer with cons

tant coefficients. Let < and n represent respectively the thermome-

trie conductivity and the kinematic coefficient of viscosity. Assu-

s t 

ming a time dependence e , one finds for the g modes, if A is posi

tive and larger than <,n or <+n 

2 

2 i (̂f gA3,/2- (S±_V2 d8) 
k 

2 2 2 
where k„ and k (k = k + k ) are respectively the horizontal and 

II Z £1 Z 

the vertical wave number. In this case, dissipation simply hinders 

a little convection but does not affect it very much. 

On the other hand, when convection is established, the 

effects of the dissipation forces are of the same order as those of 

the residual buoyancy and the above formula is no longer significant. 

In that case and if one includes the rate of energy generation £ 

(significant in the deep Interior), one gets an equation equivalent 

to that of Defouw (1970) with 

T - - JiS. T 
LT ~ ' Lp 

where v represents the sensitivity of e to T,v »(dloge) /dlog T. 
P 

2 
After separating a secular root s. = -n k , the dispersion relation 

for g modes, gives solutions 
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s = - ~( (n + K)k2 - ̂ - (v - l) ) 
P 

k2 
I d (Oc - n)k2 - ̂  (v - l))2 + -f gA}1 / 2 (19) 

4 p k 

which for vanishing e reduces to the ordinary Raylelgh solution of 

the Benard problem 

k2 1/7 
1 9 + 1 0 L H ' 

s => - ± (n + K)k'
s -{i (< - n ) V + -^ gA} (20) 

k 

which y i e l d s back (18) If ( k 2 / k 2 )gA>>< 2 k 4 and n2k4 

tl 

On the other hand, If we approach the marginal case 

2 2 (s=0), then (k„/k )gA must take the appropriate value to make the 
tl 

square root exactly equal to the first term, i.e. 

k2 
—j gA - K nk - tik — - (v-1) 
k p 

If £ is negligible this condition becomes 

gAd k d 
<n k2 

KH 

where the depth d of the layer has been introduced. If k =ir/d and 

a • k„d, one gets finally 

. ,4 , 2A 2.3 
g A d _ (IT •*• a ) _ R 

K n 2 a 

which is the usual value of the Raylelgh number. The energy genera

tion could reduce somewhat the value of R. In this marginal case, 
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the time-scale- 1/s Becomes infinite but a circulation sets in with 

a finite turn-over time. 

Thus convection^although originating essentially in a dy

namical instability (conservative terms) with a short time scale,initi

ates fast motions to modify the medium itself in such a way as to 

reduce gA finally to the same order as the dissipative (non conser

vative) forces. 

As Defouw (1970) pointed out, the energy generation term 

has a destabilizing influence (cf.19) and if 

•— (v-l)> (n+*)k2 

P 

it contributes directly to the instability. If A,>0, this effect 

simply reinforces the buoyancy. 

On the other hand if k<0, and such that 

k2 , 
--§ gA^-rOk2 - ^ (v-l))Z 

k p 

vibrational instability (or 

(v-1)}2 

it seems that a growing non-oscillatory motion would arise which 

might lead to some kind of convection, although A<0. 

the effect would correspond to a case of 

over stability) of stable g modes. But if 

•-§ gA4((K-T,)k2 - <j% 
k p 
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