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Homological Dimensions of Local
(Co)homology Over Commutative
DG-rings

Liran Shaul

Abstract. Let A be a commutative noetherian ring, let a € A be an ideal, and let I be an injective
A-module. A basic result in the structure theory of injective modules states that the A-module
T'q (I) consisting of a-torsion elements is also an injective A-module. Recently, de Jong proved a
dual result: If F is a flat A-module, then the a-adic completion of F is also a flat A-module. In
this paper we generalize these facts to commutative noetherian DG-rings: let A be a commutative
non-positive DG-ring such that H’(A) is a noetherian ring and for each i < 0, the H’(A)-module
H'(A) is finitely generated. Given an ideal @ ¢ H°(A), we show that the local cohomology functor
RIg associated with @ does not increase injective dimension. Dually, the derived a-adic completion
functor LAg does not increase flat dimension.

1 Introduction

1.1 Torsion of Injective Modules

Let A be a commutative noetherian ring, and let a € A be an ideal. The a-torsion
functor is the functor I, (M) := lim Homy (A/a", M), which maps an A-module M
to its submodule consisting a-torsion elements. An important consequence of Matlis’
structure theory of injective modules is the following result.

Theorem A  Let A be a commutative noetherian ring, let a C A be an ideal, and let |
be an injective A-module. Then Tq(]) is also an injective A-module.

This basic result depends on A being noetherian. It is false in general if A is not
noetherian, even if a is finitely generated (see Remark 3.6).

We denote by D(A) the unbounded derived category of A-modules, and by D®(A)
its full triangulated subcategory of complexes with bounded cohomology. For M «
D(A), its injective dimension, denoted by injdim, (M) was defined in [1, Defini-
tion 2.1.I]. The functor Iy has a right derived functor

RI,:D(A) - D(A).

It is calculated using K-injective resolutions. The following result is an immediate
corollary of Theorem A.
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Corollary 1.1 Let A be a commutative noetherian ring, and let a C A be an ideal.
Then for any M € D®(A), we have the following inequality:

injdim, (RT4(M)) < injdim ,(M).

We now switch our attention to commutative non-positive noetherian DG-rings.
The definition of a commutative DG-ring is recalled in Section 2.1. Just as commu-
tative rings represent affine schemes, commutative DG-rings represent affine derived
schemes. Given a commutative DG-ring A, the fact that A’ = 0 for i > 0 implies that
H(A) is a commutative ring. Following [11], we set A := H°(A). A commutative
DG-ring A is called noetherian if the commutative ring A is noetherian, and H'(A)
is a finitely generated A-module for every i < 0. We will denote by D(A) the un-
bounded derived category of DG-modules over A, and by D®(A) its full triangulated
subcategory of DG-modules with bounded cohomology.

Commutative noetherian DG-rings arise naturally in algebraic geometry. If K is
a commutative noetherian ring and A, B are finite type K-algebras, then A ®% B is
a commutative noetherian DG-ring, and if K is not a field, it often cannot be repre-
sented using ordinary commutative rings.

Let A be a commutative DG-ring, and let a € A be a finitely generated ideal. In our
recent paper [9] we introduced a triangulated functor

RI5:D(A) - D(A)

called the right derived a-torsion or local cohomology at @ functor. When A is a
commutative noetherian ring, this functor coincides with the usual local cohomol-
ogy functor. The definition of RIg, as well as an explicit construction of it using the
telescope complex, is recalled in Section 2.2. With any M € D(A) we can associate
its injective dimension, denoted by injdim, (M). The definition is recalled in Sec-
tion 2.3.

The first main result of this paper generalizes Corollary 1.1 to commutative
noetherian DG-rings.

Theorem 1.2  Let A be a commutative noetherian DG-ring, and let a € H°(A) be an
ideal. Then for any M € D°(A), there is an inequality

injdim, (R[(M)) < injdim, (M).
We will prove this result in Theorem 3.5.
1.2 Completion of Flat Modules

Given a commutative ring A and a finitely generated ideal a € A, the a-adic comple-
tion functor is the functor Aq(M) := l(ﬂlA/ a” ®4 M. This construction is dual to
the a-torsion functor. This is best demonstrated by the Greenlees-May duality [5],
which states that if A is noetherian, then the derived functors of a-torsion and a-adic
completion are adjoint to each other. This intimate connection between a-torsion
and a-adic completion raises the question: is there a dual result to Theorem A for the
a-adic completion functor? We have the following result.
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Theorem B Let A be a commutative noetherian ring, let a C A be an ideal, and let F
be a flat A-module. Then A, (F) is also a flat A-module.

Theorem A is a classical result that has been known for many decades. In contrast,
Theorem B was first proved by de Jong in 2013 (see [10, Tag 0OAGW]). If F is a finitely
generated A-module, then this result is trivial. Prior to de Jong’s proof, the best known
result was by Enochs, who showed in [3] that this holds under the additional assump-
tion that A has finite Krull dimension. After de Jong’s proof, other proofs were given
by Gabber and Ramero, and by Yekutieli ([12, Theorem 0.1]).

For a complex of A-modules M, its flat dimension, denoted by fldim4 (M) was
defined in [1, Definition 2.1.F]. The functor A, has a left derived functor

LAq.:D(A) - D(A).

It is calculated using K-flat resolutions. The following is an immediate corollary of
Theorem B.

Corollary 1.3  Let A be a commutative noetherian ring, and let a C A be an ideal.
Then for any M € D°(A),
fldim, (LAq(M)) < fldims(M).

Now let A be acommutative DG-ring. Given a finitely generated ideal @ C A, there
is a triangulated functor

LAz D(A) > D(A)

called the derived a-adic completion functor. Its definition is recalled in Section 2.2
below. If A is a commutative noetherian ring, it coincides with the usual left derived
functor of adic completion. With any M € D(A) we can associate its flat dimension,
denoted by fldim4 (M). The definition is recalled in Section 2.3.

The second main result of this paper generalizes Corollary 1.3 to commutative noe-
therian DG-rings.

Theorem 1.4  Let A be a commutative noetherian DG-ring, and let a € H°(A) be an
ideal. Then for any M € D°(A),

fldimy (LAg(M)) < fldima(M).
This will be proved in Theorem 4.3.
2 Preliminaries
In this section we recall some basic facts concerning commutative DG-rings.

2.1 Commutative DG-rings

A DG-ring AisaZ-graded ring A = @;>__, A" together with an additive differential

d:A — A of degree +1, such that d o d = 0 and such that the Leibniz rule holds:
d(a-b)=d(a)-b+ (1) -a-d(b)forallae A’ and b € AJ. A DG-ring A is called
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non-positive if A* = 0 for all i > 0. We say that A is commutativeif b-a = (-1)"7-a-b
foralla € A” and b € A/, and moreover a - a = 0 if i is odd.

In this paper, all DG-rings are assumed to be commutative and non-positive. Given
a commutative DG-ring A, a DG-module over it is graded A-module M with a dif-
ferential d: M — M of degree +1 satisfying a graded Leibniz rule. The category of
all DG-modules is denoted by DGMod(A). Inverting quasi-isomorphisms in it, we
obtain the derived category of DG-modules over A, denoted by D(A).

If A is a commutative DG-ring, recall from the introduction that we denote by A
the commutative ring H°(A). The DG-ring A is called noetherian if A is noetherian
and H'(A) is a finitely generated A-module for all i < 0.

2.2 Local (Co)homology Over Commutative DG-rings and the Telescope Complex

Let A be a commutative DG-ring, and let @ € A be a finitely generated ideal. The
category of derived a-torsion DG-modules, denoted by Dg_o (A), is the full triangu-
lated subcategory of D(A), consisting of DG-modules M, such that for all n € Z, the
A-module H" (M) is a-torsion.

According to [9, Theorem 2.13(1)], the inclusion functor iz : Dg_io:(A) — D(A)
has a right adjoint Fz: D(A) = Dg_to(A). The composition iz o Fz: D(A) — D(A)
is denoted by RIz: D(A) — D(A) and called the local cohomology functor of A with
respect to a.

By [9, Theorem 2.13(2)], the functor RIy has a left adjoint LAz:D(A) — D(A)
called the derived completion (or local homology) functor of A with respect to a.

Below, we will give explicit formulas for the functors RI'y and LAg.

Remark 2.1 If A is an ordinary commutative noetherian ring, by [6, Theorem 7.12],
these constructions of local cohomology and derived completion with respect to @
coincide with the usual right derived functor of the functor I'y and left derived functor
of AE~

To give an explicit formula for the local cohomology RI'z and derived completion
LAg, we recall the construction of the telescope complex from [6, Section 5]. Given a
commutative ring A and some a € A, the telescope complex Tel(A; a) is the cochain
complex

o0 d o0
0—PA—PA—0
i=0 i=0

with non-zero components in degrees 0,1. Letting {&; | i > 0} be the basis of the
countably generated free A-module @77, A, the differential d is defined by

a6 = 8o ifi=0,
Yol —a-é; ifixl

Given a finite sequence a = (ai,. .., a,) of elements of A, the telescope complex as-
sociated with a is the complex

Tel(A;a) := Tel(Asa;) ®4 Tel(A;a,) ®4 -+ ®4 Tel(A; a,).
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This is a bounded complex of free A-modules. The telescope complex has the fol-
lowing base change property: if f: A — B is a homomorphism between commutative
rings, and b = (f(a1), f(az),..., f(an)), there is an isomorphism of complexes of
B-modules Tel(A;a) ® 4 B = Tel(B;b).

Let A be a commutative DG-ring, and let @ C A be a finitely generated ideal. Let
a=(a,...,a,) bea finite sequence of elements in A that generates @, and using the
surjection A’ — A, choose some lifts a = (ay,...,a,) of a to the commutative ring
A", By [9, Proposition 2.4] and the base change property of the telescope complex,
there are isomorphisms

(21) RFH(—) = Tel(AO;a) ® g0 —,
(2.2) LAg(-) = Hom o ( Tel(A%a), —)
of functors D(A) - D(A).

2.3 Homological Dimensions Over Commutative DG-rings

Let A be a commutative DG-ring. Given a DG-module M over A, we set
inf(M) :=inf{i e Z | H' (M) # 0}, sup(M) :=sup{ieZ|H (M) # 0},

and amp(M) := sup(M) — inf(M).
Let M be a DG-module over A. Following [1, Section 2.I], we let the injective
dimension of M, denoted by inj dim , (M) to be the number

inf{n € Z | Ext}, (N, M) = 0 for any bounded DG-module N and any i > n — inf N},

where Ext), (N, M) := H'(RHom4 (N, M)). By [l, Theorem 2.4.1]' this coincides
with the usual definition in case A is a commutative ring. Similarly, we let the flat
dimension of M, denoted by fldim4 (M) be the number

inf{n € Z | Tor’, (N, M) = 0 for any bounded DG-module N and any i > n — inf N}

where Tor, (N, M) = H/(N ®} M). The projective dimension of M, denoted by
projdim , (M) is defined similarly.

2.4 Subcategories of D(A)

Given a commutative DG-ring A, we denote by D™ (A) (resp. D*(A)) the full triangu-
lated subcategory of A consisting of DG-modules with bounded above (resp. bounded
below) cohomology. The full triangulated subcategory of DG-modules with bounded
cohomology is D*(A) = D™(A) n D*(A). Assume further that A is noetherian. In
particular, A is a noetherian ring. We say that M € D(A) has finitely generated coho-
mology if for all i € Z, H' (M) is a finitely generated A-module. The full triangulated
subcategory of D(A) consisting of DG-modules with finitely generated cohomologies
is denoted by D¢(A). Welet Df (A) = D*(A) nD¢(A), D (A) = D™ (A) nD¢(A) and
D2(4) = D*(4) n Dy (A).

Unlike [1], in this paper we use a cohomological notation, hence the difference between the
formulas.
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2.5 The Tensor-evaluation Morphism

Let Abe acommutative DG-ring. Given M, N, K € D(A), there is a natural morphism
nm..k: RHomy (M, N) ®%; K - RHomy (M, N ®% K)

in D(A), defined as follows. Let P ~ M be a K-projective resolution, and let F ~ K be
a K-flat resolution. Then 7, N,k is the composition

RHom (M, N) ®% K = Homu(P,N) ®4 F —

Homu (P, N ®4 F) 2 RHomyu (M, N @Y K),
where the map ¢ is the usual tensor-evaluation morphism (see [11, Equation (5.6)] for
its formula in the DG-case). The next result generalizes [8, Proposition 6.7].
Proposition 2.2 Let A be a commutative noetherian DG-ring, and let M,N,K €
D(A). Assume one of the following holds:

(i) M eD;(A), NeD®(A) and fldims(K) < oo,
(ii) projdim,(M) < co, N € D*(A) and K € Df (A).
Then the morphism
na.N.x: RHomy (M, N) ®5 K - RHom, (M, N ®} K)

is an isomorphism in D(A).

Proof (i) Fixing such N, K, we have a natural morphism
{m:RHom4(M,N) ®4 K - RHomu (M, N &} K).

These assumptions on N and K ensure that the functors RHom4(—, N) ®% K and

RHomy (-, N ®% K) are both contravariant way-out right functors. Clearly, {4 is an

isomorphism. Hence, by a DG-version of the lemma on way-out functors (for in-

stance, [11, Theorem 2.11]), we deduce that {» is an isomorphism for any M € D; (A).
(ii) Fixing such M, N, we have a natural morphism

tx: RHomy (M, N) ®4 K - RHomy (M, N ®) K).

These assumptions on M and N ensure that the functors R Hom4 (M, N) ®% — and
RHomyu (M, N ®IA —) are both covariant way-out left functors, and it is clear that 14
is an isomorphism. Hence, by the lemma on way-out functors, (g is an isomorphism
for any K € D (A). [ |

3 Injective Dimension of Local Cohomology

In this section we will prove Theorem 1.2. We begin by proving some basic results
about injective dimension over commutative DG-rings.

Proposition 3.1 Let A — B be a homomorphism between commutative DG-rings,
and let M be a DG-module over A. Then

inj dim( R Homu (B, M)) < injdim, (M).
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Proof This follows from the adjunction

RHomjp (-, RHomy (B, M)) ~ RHomy (-, M). |

Over a commutative ring A, it is well known that one can detect the injective di-
mension of a complex M by checking the vanishing of Ext’, (N, M) for all A-modules
N (thatis, complexes with zero amplitude). The proof of the next result is based on the
same idea over a DG-ring A, together with the observation that a DG-module whose
amplitude is zero is isomorphic in the derived category to the shift of an A-module.

Theorem 3.2  Let A be a commutative DG-ring, and let M be a DG-module over A.
Then there is an equality

inj dim , (M) = inj dimy, ,) (R Hom, (H"(4), M)).

Proof Applying Proposition 3.1 to the map A — A, we have that
injdim , (M) > injdimz( R Homu (4, M)).

To prove the converse, assume injdimz(RHoms(A,M)) = n < oo. Let N be a
bounded DG-module. We must show that Ext’, (N, M) = 0 for all i > n — inf N.
We will prove this by induction on amp N. If amp N = 0, there is some m € Z such
that N ~ H"(N)[-m]. It follows by adjunction that

RHomyu(N, M) ~ RHomy (H™(N)[-m], M)
~ RHomy (H™(N)[-m],RHom4 (4, M))

so the fact that injdim-(R Hom, (A, M)) = n implies that Ext} (N, M) = 0 for all
i>n—inf N.

Given [ > 0, assume now that for any bounded DG-module N with amp N < [ we
have that Eth(N, M) =0forall i > n—inf N, and let N be a bounded DG-module

with amp N = [.

According to [4, p. 299], using truncations, the DG-module N fits into a distin-
guished triangle
(3.1) N'— N — N" — NI1]

in D(A), such that the amp N’ < I, amp N” < I, and moreover inf N’ > inf N and
inf N” > inf N. Applying the contravariant triangulated functor RHomy (-, M) to
the triangle (3.1), we obtain a distinguished triangle

(3.2) RHomyu(N”,M) — RHomyu(N, M)
—> RHomy, (N, M) — RHomy, (N", M)[1].

The result now follows from the induction hypothesis and the long exact sequence in
cohomology associated with the distinguished triangle (3.2). ]

Before stating the next lemma, we shall need the following terminology.
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Remark 3.3 If Ais a commutative DG-ring, and @ C A is a finitely generated ideal,
we can form the local cohomology functor of A with respect to @ and the local coho-
mology functor of A with respect to @. The former is a functor D(A) - D(A), while
the latter is a functor D(A) — D(A).

According to our notation, both should be denoted by RI. In cases where there
will be such ambiguity, we solve it by using the notation

RT2:D(A) - D(A)

for the local cohomology functor of A with respect to @, and the notation
RT2:D(A) — D(A)

for the local cohomology functor of A with respect to @. Similarly, we will write
LAZ:D(A) - D(A)

for the derived completion functor of A with respect to @, and
LAZ:D(A) —» D(A)

for the derived completion functor of A with respect to @.

Lemma 3.4 Let A be a commutative noetherian DG-ring, and let @ ¢ H°(A) be an
ideal. Then for any DG-module M over A with bounded cohomology, there is a natural
isomorphism

RTZ(RHomy (4, M)) = RHom, (A, RIZ(M))
in D(A).
Proof Leta be a finite sequence of elements of the ring A” whose image in A gener-

ates the ideal @, and let a be its image in A. The latter is a finite sequence of elements
of the ring A. By (2.1), there is a natural isomorphism

RTZ (R Homy (4, M)) 2 Tel(4;3) ®; R Hom (4, M).

By the base change property of the telescope complex, there is an isomorphism of
complexes of A-modules

Tel(A%a) ® 40 A = Tel(A;2).
This implies that
Tel(A;a) ®; RHomy (A, M) = Tel(A%;a) ® 40 RHomy (A, M).

Set T := A® 40 Tel(A%;a). Since Tel(A% a) is a K-flat complex of finite flat dimension
over AY, it follows that the DG-module T is K-flat over A and that fldim4(T) < oco.
Hence, it holds that

Tel(A%a) ® 40 RHoms (A, M) = T ® RHomy (A, M).

Let M = I be a K-injective resolution over A, let I®4 T = ] be a K-injective resolution
over A, and let A > B = A be a semi-free DG-algebra resolution of A over A. In
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particular, B is K-projective over A. These resolutions and the naturality of the tensor
evaluation morphism induce a commutative diagram in DGMod(A):

Hom(A,I)®4 T L— Hom (A, 1®4 T) A Hom (4, ])

Homyu(B,I) ®, T — Homyu(B,I®4 T) - Homy(B,]).

Since I is K-injective over A and T is K-projective over A4, it follows that « is a quasi-
isomorphism. Similarly, since B is K-projective over A, it follows that y is a quasi-
isomorphism. K-injectivity of J over A implies that y is a quasi-isomorphism. Finally,
since A is noetherian and T has finite flat dimension over A, it follows by Propo-
sition 2.2(i) that y is a quasi-isomorphism. Hence, by the 2-out-of-3 property, the
A-linear map ¢ o f3 is also a quasi-isomorphism. Hence, there are natural isomor-
phisms

RHomy (A, M) ®4 T 2 Homa (A, I) ®4 T
= Homy (4,]) 2 RHoma (A, M ®4 T)
in D(A). Finally, note that
M®sT=M®, (A®4 Tel(A%a)) = M ® 40 Tel(A%a) = R[2(M).
Combining all the above natural isomorphisms gives the required result. ]

We now prove the first main result of this paper.

Theorem 3.5 Let A be a commutative noetherian DG-ring, and let a € H°(A) be an
ideal. Then for any M € D®(A), there is an inequality

injdim ,( RTz(M)) < injdim,(M).
Proof According to Theorem 3.2, we have that
injdim, (RT5(M)) = injdim, (RIZ(M))
= injdimy (RHomu (A, RTZ2(M))).
Using Lemma 3.4, we have that
inj dim; (R Hom (4, RTZ(M))) = injdimy ( RTA(R Hom (4, M))),
and by Corollary 1.1 we obtain that
inj dim-; (RTZ (R Hom, (4, M))) < injdimy (R Homy (4, M)) = injdim,, (M),

where the last equality follows from Theorem 3.2. Combining all of the above, we
obtain that

injdim, (RI5(M)) < injdim, (M),

as claimed. |
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Remark 3.6 Given a commutative ring A, and a finitely generated ideal a < A,
unlike Remark 2.1, if A is non-noetherian, in general the right derived functor of the
a-torsion functor I'; might be different from the local cohomology functor with re-
spect to a from Section 2.2. However, if a satisfies a technical condition called weak
proregularity (see [6, Definition 4.21]), these functors coincide. In [7, Proposition 3.1],
there is an example of a commutative ring A, a finitely generated (in fact, principal)
weakly proregular ideal a € A, and an injective A-module I such that I';(I) is not an
injective A-module.

4 Flat Dimension of Derived Completion
The aim of this section is to prove Theorem 1.4. The next result is dual to Theorem 3.2.

Theorem 4.1 Let A be a commutative DG-ring, and let M be a DG-module over A.
Then there is an equality

fldimy (M) = fldimgo 4y (H°(A) ®5 M).

Proof Forany N € D(A), the isomorphism
N @i M =N e (Aey M)
shows that
fldim, (M) > fldimz (A ®% M).
To prove the converse, assume that fl diim(A®% M) = n < 0o, and let N be abounded
DG-module. If amp(N) = 0, there is an isomorphism N = H™(N)[-m] for some
m € Z, which implies that
M@} N = (M&j A) 8- H"(N)[-m].
Hence, the fact that
fldim(A®% M) =n
implies that in this case Tor,(N, M) = 0 for all i > n — inf N. Now, proceeding by

induction on amp(N) exactly as in the proof of Theorem 3.2, we obtain the general
case for an arbitrary bounded DG-module N. ]

We will now use the terminology introduced in Remark 3.3.

Lemma 4.2 Let A be a commutative noetherian DG-ring, and let a € H°(A) be an
ideal. Then for any DG-module M over A with bounded cohomology, there is a natural
isomorphism

LAZ(AY M) 2 A} (LAZ(M))
in D(A).
Proof Leta be a finite sequence of elements of the ring A” whose image in A gener-

ates the ideal @, and let a be its image in A. The latter is a finite sequence of elements
of the ring A. By (2.2), there is a natural isomorphism

LA?(Z QL M) = Homx( Tel(A;a), A ®% M) .
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As in the proof of Lemma 3.4, setting T := Tel(A%a) ®40 A, observing that T is

K-projective over A, and using adjunctions, this is naturally isomorphic to
Homy (T, A ®%5 M).

Let P = M be a K-flat resolution over A, let F = Homu (T, P) be a K-flat resolution
over A, and let A — B = A be a semi-free DG-algebra resolution of A over A. We
obtain a commutative diagram in DGMod(A):

FouA—" Homu(T,P) ®4 A ——> Hom(T, P ®4 A)

F®sB — Hom,(T,P) ®4 B — Hom, (T, P ®4 B).

The fact that F is K-flat over A implies that « is a quasi-isomorphism, while K-flatness
of B over A implies that y is a quasi-isomorphism. The fact that P is K-flat over A
and T is K-projective over A implies that y is a quasi-isomorphism. Finally, since A
is noetherian and projdim ,(T) < oo, by Proposition 2.2(ii), the map y is a quasi-
isomorphism. It follows by the 2-out-of-3 property that the A-linear map ¢ o 8 is a
quasi-isomorphism. Hence, there are natural isomorphisms

RHomy (T,M) ® A= F®, A= Homy(T,P®4A)
= RHomy (T, M ®% A)

in D(A). The result now follows by combining all these isomorphisms and using the
fact that there is a natural isomorphism LAZ(M) = RHom, (T, M) in D(A). [ |

Here is the second main result of this paper.
Theorem 4.3  Let A be a commutative noetherian DG-ring, and let a € H°(A) be an
ideal. Then for any M € D®(A), there is an inequality
fldim, (LAg(M)) < fldims(M).

Proof By Theorem 4.1,
fldima(LAg(M)) = fldima(LAZ(M))
= fldimg( A ®; LAZ(M)).
Using Lemma 4.2, we have that
fldim; (A ®% LAZ(M)) = fldimy (LAZ(A &% M)),
and by Corollary 1.3 we obtain that
fldim;( LAZ(A @4 M)) < fldimy (A ®% M) = fldim,(M),

where the last equality follows from Theorem 4.1. Combining all of the above, we
obtain that
fldimy (LAg(M)) < fldimy (M),
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as claimed. |

Remark 4.4  Asin Remark 3.6, this result is false in general if the (DG-)ring is not
assumed to be noetherian (even if the ideal is finitely generated by a regular sequence).
See [12, Theorem 6.2] for an example.

Remark 4.5 Let Abea commutative noetherian ring such that the Krull dimension
of Ais > 1, and let B = A[x]. Then B is a projective B-module, and it follows from
[2, Theorem 1] that the B-module A (B) is not projective.

We finish the paper with an important application of Theorem 4.3. A basic result
in commutative algebra states that if A is a commutative noetherian ringand a ¢ A is
an ideal, then the canonical map A — A from A to its a-adic completion is flat. Here
is the analogue of this result in derived commutative algebra.

Let A be a commutative noetherian DG-ring, and let @ € A be an ideal. The de-
rived @-adic completion of A is a commutative DG-ring, denoted by LA(A, @). It was
defined in [9, Theorem 0.2]. It is a derived analogue of the a-adic completion A. There
is a natural map A — LA(A, @), but this is not a map of DG-rings. Instead, it only
exists in a suitable homotopy category (see [9] for details). Concretely, one can realize
it as follows: there is a commutative DG-ring P, a quasi-isomorphism P - A, and a
natural map of DG-rings P — LA(A,@). Since P and A are quasi-isomorphic, the
triangulated categories D(A) and D(P) are isomorphic. Using this isomorphism and
the map P — LA(A, @), we can view LA(A, @) as an object of D(A). According to
[9, Proposition 3.58], this object is isomorphic to LAg(A).

The above paragraph explains that the analogue of the number fl dim 4 (A) in de-
rived commutative algebra is the number fl dim4 (LAz(A)). This explains the impor-
tance of our final result.

Corollary 4.6  Let A be a commutative noetherian DG-ring, and assume that A has
bounded cohomology. Let @ € H°(A) be an ideal. Then

fldimy (LAz(A)) =0.

Proof Since fldimy(A) = 0, it follows from Theorem 4.3 that
fldimu (LAz(A)) <.
On the other hand, by [9, Proposition 6.1], we have that
H°(LAg(A)) = Ag(H(A)) £ 0.
Hence, sup(LAz(A)) = 0, and we deduce that
H°(LAg(A) @5 H'(A)) #0,

which implies that
fldim, (LAg(A)) > 0. n
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