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THE TYPE I PART OF THE REGULAR
REPRESENTATION

EDWARD FORMANEK

Let G be a discrete group and let H = L?(G), with norm | |. Let B(H) be
the ring of bounded operators on H with the norm

[|7]] = sup{|T" (x)| : x € H, || = 1}.

The right regular representation of G on H induces an injection p: C[G] —
B(H), and W(G) is the closure of the image of p in the weak operator topology
on B(H) (C = complex numbers). Using p, we identify C[G] with its image in
W(G). The techniques of this paper are taken from [3], so familiarity with it
would be helpful. [4] is a general reference for W*-algebras.

W(G) is a W*-algebra of finite type. Hence there are mutually orthogonal
central projections e, ey, €2, ...in W(G) whose least upper bound is the
identity, and such that e W(G) is of type II and ¢,W(G) is of type I,; more
precisely, ¢,W(G) is isomorphic to the ring of » X # matrices over its center.
Kaniuth has characterized those groups for which W(G) is purely of type I
or type II as follows.

TrEOREM 1 (Kaniuth [2]; Smith [3]). Let A be the subgroup of G consisting
of those elements with only finitely many conjugates. Then
(A) W(G) s of type 11 if and only if either
(1) [G: A] = o0, or
(i1) [G : A] < o0 and A is infinite.
(B) W(G) is of type I if and only if G has an abelian subgroup of finite index.

Martha Smith'’s later proof is more direct than Kaniuth’s original proof and
reveals two interesting facts: (1) The support of all the central projections
e, ey, €2, . . . lies in a finite subgroup of G; (2) There are only finitely many =
for which e, is nonzero. We will use these facts and the methods of [3] to prove
the following result, which identifies the type I part of W(G) when it is
nonzero.

THEOREM 2. Suppose G is a group with [G : A] < o0 and A’ finite. Let
1
K=N{L:[G:L] <}, eK=|f|Z {g:2 € K.

Then ex W (G) s the type 1 part of W(G).
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The rest of the paper is devoted to proving Theorem 2. Note that since
[G: A] < © and A’ is finite, K is a finite subgroup of A. Thus [G : C¢(K)] <
00 ; moreover

K=N{(ANL)Y :[G:L] < o}

and since K and each such (A M L)’ is finite there must be a finite set Ly, . . .,
L, of such L such that K = N (AN L;). Then

N=ANLN..NLNCq(K)

is a subgroup of finite index in C¢(K) such that N = K. Further,
(1) N isof finite index in G;
(2) N is nilpotent of class < 2;
(3) N’ = K, a finite group in the center of N;
(4) If L is a subgroup of finite index in N, L' = K.

LeEmMA 3. Suppose L is a subgroup of finite index in G. Then every h € K
is a commutator h = x~y~xy = (x, y) of two elements of L.

Proof. We can assume L € N, and we choose a finite generating set for K
recursively as follows: let xi, ¥1 € L be such that {xi, y1) = hy, by # 1. If
K = gp(h1), we are done; if not, note that [G: Cp(x1,y1)] < 0, so
Cr(x1, y1)" = K and we can choose xs, ¥s € Cyr(x1, y1) with (x2, y2) = hs, hy ¢
gp (h1). If K 5 gp(hy, hs), continue by choosing x3, v3 € Cr(x1, ¥1, X2, ¥2) with
(x3, ¥3) = hs, hs & gp(hy, hs), etc. Since K is finite we eventually get gp (A4, . .
h,) = K and the elements x1, y1, . . . , %4, ¥, Wwe have chosen satisfy

(X4 ¥:) = hy,
(4, ¥5) = (x4, %5) = (Vo ¥5) = Lfora = j.
Finally, suppose & € K, and let & = hy®t. ..k, It is easy to see that the
commutativity conditions above imply that 2 = {x;"1 ... %, y1...9,).
Let .Sy, denote the standard identity
Son(X1, . o vy Xop) = Z =+ Xrq) - - Xren),

where the sum is over all permutations = of {1,...,2nr} and the sign is
positive for even permutations and negative for odd permutations, and let
A2,(G) denote the ideal of W(G) generated by all Sy, (x1, . . . , X2,), x; € W(G).

LEMMA 4. Foralln, 1 — ex € A2,(G).

Proof. Let B = (1 — ex) C[K]. B is the augmentation ideal of C[K], the
ideal generated by all {1 — &, » € K}. We are going to show that

A%(G) 2 B" C[G] = (1 — ex)"CIG] = (1 — ex)C[G].

First note that B" is generated by all #-fold products (; — 1) ... (h, — 1)
with Ay, ..., 5k, € K and choose x1,¥1,...,%, ¥, € G as follows, using
Lemma 3: let Ay = (%1, ¥1), h2 = (X3, ¥2) where x2,y: € Ce(x1,v1), ks =
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(x3, v3), where x3,v; € Cq(x1, y1, %2, y2) etc. Letting [x,y] = xy — yx =
yx ({x,y) — 1), these elements satisfy
(%) [xoyd =yxi(hs — 1)
(o ;) = X3, %5) = Yoy, = 1fori ;.
Next consider the standard identity

Son(g1, + vy 8o) = D, £ G - -+ Gr2w-

It can be re-expressed as

S2n(g11 e ey g2n) = Z &+ [gi‘n'(l)r gjf(l)] .. [giar(n)y gf’f(n)]

where the sum ranges over all partitions of the set {gi, . . ., g2,} into # disjoint
two-element sets {gi1, g1} . . - {gum, gin} (labelled arbitrarily) and all permuta-
tions 7 of {1,..., n}. The sign in front of each product depends only on the
partition and the choice of labelling for {g;;, g;;}. It is independent of = since
gisgisgug e and g,,8 5,8 ,.8;, (corresponding to a transposition of pairs) differ by
an even permutation when considered as permutations of all four letters.

When we use the above expression to evaluate Ss,(x1, ¥1, .. ., %,, ¥,) and
invoke the commutativity relations (), we see that the only surviving terms
of the right hand side are permutations of [xy, ¥1], . . ., [%,, ¥»] and these all
have the sign +1. Moreover, for any permutation = of {1, ..., #n} invoking
(*) yields

[rwy, Y] « - - %2y Ve ]

= Ve %r ) ey — 1)+ o+ Ve X ey — 1)
= (i —1)... (", — D)yix1 ... Y%,

Therefore,

S (@1, Y1, -+ 3 Xy V) = 25 s Ve ] - o+ e Yeem]
=nlth; — 1) ... (hy — 1)yixs ... v%n.
Recalling that B" is generated by all n-fold products (4, — 1) ... (b, — 1)
with &y, ..., h, € K, this shows that
A2, (G) D B"C[G] = (1 — ex)"C[G] = (1 — ex)CIG].
Proof of Theorem 2. Since K is finite, there is a natural homomorphism
w(G) — W(G/K).

G/K contains an abelian subgroup of finite index and hence W(G/K) is of
type I, by Theorem 1(B). The kernel of the above homomorphism is (1 — ex)
W(G) and its restriction to ex W (G) induces an isomorphism between ex W (G)
and W(G/K). Thus exW(G) is a type I summand of W(G).

Now Theorem 2 will be proved if we show that (1 — ex) W(G) contains no
type | summand. Suppose conversely that it contains a nonzero type I, part
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fW(G) for some n. Then f,W(G) is isomorphic to the ring of # X # matrices
over its center and hence satisfies the standard identity Ss, [1]. This says that
fal 2,(G) = 0 and contradicts Lemma 4, which says that 1 — ex € 45,(G).
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