THE TYPE I PART OF THE REGULAR REPRESENTATION

EDWARD FORMANEK

Let G be a discrete group and let $H=L^{2}(G)$, with norm $|\mid$. Let $B(H)$ be the ring of bounded operators on H with the norm

$$
\|T\|=\sup \{|T(x)|: x \in H,|x|=1\}
$$

The right regular representation of G on H induces an injection $\rho: C[G] \rightarrow$ $B(H)$, and $W(G)$ is the closure of the image of ρ in the weak operator topology on $B(H)$ ($C=$ complex numbers). Using ρ, we identify $C[G]$ with its image in $W(G)$. The techniques of this paper are taken from [3], so familiarity with it would be helpful. [4] is a general reference for W^{*}-algebras.
$W(G)$ is a W^{*}-algebra of finite type. Hence there are mutually orthogonal central projections e, e_{1}, e_{2}, \ldots in $W(G)$ whose least upper bound is the identity, and such that $e W(G)$ is of type II and $e_{n} W(G)$ is of type I_{n}; more precisely, $e_{n} W(G)$ is isomorphic to the ring of $n \times n$ matrices over its center. Kaniuth has characterized those groups for which $W(G)$ is purely of type I or type II as follows.

Theorem 1 (Kaniuth [2]; Smith [3]). Let Δ be the subgroup of G consisting of those elements with only finitely many conjugates. Then
(A) $W(G)$ is of type II if and only if either
(i) $[G: \Delta]=\infty$, or
(ii) $[G: \Delta]<\infty$ and Δ^{\prime} is infinite.
(B) $W(G)$ is of type I if and only if G has an abelian subgroup of finite index.

Martha Smith's later proof is more direct than Kaniuth's original proof and reveals two interesting facts: (1) The support of all the central projections e, e_{1}, e_{2}, \ldots lies in a finite subgroup of G; (2) There are only finitely many n for which e_{n} is nonzero. We will use these facts and the methods of [3] to prove the following result, which identifies the type I part of $W(G)$ when it is nonzero.

Theorem 2. Suppose G is a group with $[G: \Delta]<\infty$ and Δ^{\prime} finite. Let

$$
K=\cap\left\{L^{\prime}:[G: L]<\infty\right\}, \quad e_{K}=\frac{1}{|K|} \sum\{g: g \in K\} .
$$

Then $e_{K} W(G)$ is the type I part of $W(G)$.

Received February 23, 1973 and in revised form, June 6, 1973. This research was supported by NRC Grant A-7171.

The rest of the paper is devoted to proving Theorem 2. Note that since $[G: \Delta]<\infty$ and Δ^{\prime} is finite, K is a finite subgroup of Δ. Thus $\left[G: C_{G}(K)\right]<$ ∞; moreover

$$
K=\cap\left\{(\Delta \cap L)^{\prime}:[G: L]<\infty\right\}
$$

and since K and each such ($\Delta \cap L)^{\prime}$ is finite there must be a finite set L_{1}, \ldots, L_{k} of such L such that $K=\cap\left(\Delta \cap L_{i}\right)^{\prime}$. Then

$$
N=\Delta \cap L_{1} \cap \ldots \cap L_{k} \cap C_{G}(K)
$$

is a subgroup of finite index in $C_{G}(K)$ such that $N^{\prime}=K$. Further,
(1) N is of finite index in G;
(2) N is nilpotent of class $\leqq 2$;
(3) $N^{\prime}=K$, a finite group in the center of N;
(4) If L is a subgroup of finite index in $N, L^{\prime}=K$.

Lemma 3. Suppose L is a subgroup of finite index in G. Then every $h \in K$ is a commutator $h=x^{-1} y^{-1} x y=\langle x, y\rangle$ of two elements of L.

Proof. We can assume $L \subseteq N$, and we choose a finite generating set for K recursively as follows: let $x_{1}, y_{1} \in L$ be such that $\left\langle x_{1}, y_{1}\right\rangle=h_{1}, h_{1} \neq 1$. If $K=\operatorname{gp}\left(h_{1}\right)$, we are done; if not, note that $\left[G: C_{L}\left(x_{1}, y_{1}\right)\right]<\infty$, so $C_{L}\left(x_{1}, y_{1}\right)^{\prime}=K$ and we can choose $x_{2}, y_{2} \in C_{L}\left(x_{1}, y_{1}\right)$ with $\left\langle x_{2}, y_{2}\right\rangle=h_{2}, h_{2} \notin$ $\operatorname{gp}\left(h_{1}\right)$. If $K \neq \operatorname{gp}\left(h_{1}, h_{2}\right)$, continue by choosing $x_{3}, y_{3} \in C_{L}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ with $\left\langle x_{3}, y_{3}\right\rangle=h_{3}, h_{3} \notin \mathrm{gp}\left(h_{1}, h_{2}\right)$, etc. Since K is finite we eventually get $\mathrm{gp}\left(h_{1}, \ldots\right.$, $\left.h_{n}\right)=K$ and the elements $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$ we have chosen satisfy

$$
\begin{aligned}
& \left\langle x_{i}, y_{i}\right\rangle=h_{i}, \\
& \left\langle x_{i}, y_{j}\right\rangle=\left\langle x_{i}, x_{j}\right\rangle=\left\langle y_{i}, y_{j}\right\rangle=1 \text { for } i \neq j .
\end{aligned}
$$

Finally, suppose $h \in K$, and let $h=h_{1}{ }^{i_{1}} \ldots h_{n}{ }^{i_{n}}$. It is easy to see that the commutativity conditions above imply that $h=\left\langle x_{1}{ }^{i_{1}} \ldots x_{n}{ }^{i_{n}}, y_{1} \ldots y_{n}\right\rangle$.

Let $S_{2 n}$ denote the standard identity

$$
S_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)=\sum \pm x_{\pi(1)} \ldots x_{\pi(2 n)}
$$

where the sum is over all permutations π of $\{1, \ldots, 2 n\}$ and the sign is positive for even permutations and negative for odd permutations, and let $A_{2_{n}}(G)$ denote the ideal of $W(G)$ generated by all $S_{2_{n}}\left(x_{1}, \ldots, x_{2 n}\right), x_{i} \in W(G)$.

Lemma 4. For all $n, 1-e_{K} \in A_{2 n}(G)$.
Proof. Let $B=\left(1-e_{K}\right) C[K] . B$ is the augmentation ideal of $C[K]$, the ideal generated by all $\{1-h, h \in K\}$. We are going to show that

$$
A_{2_{n}}(G) \supseteq B^{n} C[G]=\left(1-e_{K}\right)^{n} C[G]=\left(1-e_{K}\right) C[G] .
$$

First note that B^{n} is generated by all n-fold products $\left(h_{1}-1\right) \ldots\left(h_{n}-1\right)$ with $h_{1}, \ldots, h_{n} \in K$ and choose $x_{1}, y_{1}, \ldots, x_{n}, y_{n} \in G$ as follows, using Lemma 3: let $h_{1}=\left\langle x_{1}, y_{1}\right\rangle, h_{2}=\left\langle x_{2}, y_{2}\right\rangle$ where $x_{2}, y_{2} \in C_{G}\left(x_{1}, y_{1}\right), h_{3}=$
$\left\langle x_{3}, y_{3}\right\rangle$, where $x_{3}, y_{3} \in C_{G}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ etc. Letting $[x, y]=x y-y x=$ $y x(\langle x, y\rangle-1)$, these elements satisfy
(*) $\left[x_{i}, y_{i}\right]=y_{i} x_{i}\left(h_{i}-1\right)$
$\left\langle x_{i}, y_{j}\right\rangle=\left\langle x_{i}, x_{j}\right\rangle=\left\langle y_{i}, y_{j}\right\rangle=1$ for $i \neq j$.
Next consider the standard identity

$$
S_{2 n}\left(g_{1}, \ldots, g_{2 n}\right)=\sum \pm g_{\pi(1)} \ldots g_{\pi(2 n)}
$$

It can be re-expressed as

$$
S_{2 n}\left(g_{1}, \ldots, g_{2 n}\right)=\sum \pm\left[g_{i \pi(1)}, g_{j \pi(1)}\right] \ldots\left[g_{i \pi(n)}, g_{j \pi(n)}\right]
$$

where the sum ranges over all partitions of the set $\left\{g_{1}, \ldots, g_{2 n}\right\}$ into n disjoint two-element sets $\left\{g_{i 1}, g_{j 1}\right\} \ldots\left\{g_{i n}, g_{j n}\right\}$ (labelled arbitrarily) and all permutations π of $\{1, \ldots, n\}$. The sign in front of each product depends only on the partition and the choice of labelling for $\left\{g_{i t}, g_{j t}\right\}$. It is independent of π since $g_{i s} g_{j s} g_{i t} g_{j t}$ and $g_{i t} g_{j t} g_{i s} g_{j s}$ (corresponding to a transposition of pairs) differ by an even permutation when considered as permutations of all four letters.

When we use the above expression to evaluate $S_{2 n}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ and invoke the commutativity relations (*), we see that the only surviving terms of the right hand side are permutations of $\left[x_{1}, y_{1}\right], \ldots,\left[x_{n}, y_{n}\right]$ and these all have the sign +1 . Moreover, for any permutation π of $\{1, \ldots, n\}$ invoking (*) yields

$$
\begin{aligned}
& {\left[x_{\pi(1)}, y_{\pi(1)}\right] \ldots\left[x_{\pi(n)}, y_{\pi(n)}\right]} \\
& \quad=y_{\pi(1)} x_{\pi(1)}\left(h_{\pi(1)}-1\right) \ldots y_{\pi(n)} x_{\pi(n)}\left(h_{\pi(n)}-1\right) \\
& \quad=\left(h_{1}-1\right) \ldots\left(h_{n}-1\right) y_{1} x_{1} \ldots y_{n} x_{n} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
S_{2 n}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right) & =\sum\left[x_{\pi(1)}, y_{\pi(1)}\right] \ldots\left[x_{\pi(n)}, y_{\pi(n)}\right] \\
& =n!\left(h_{i}-1\right) \ldots\left(h_{n}-1\right) y_{1} x_{1} \ldots y_{n} x_{n} .
\end{aligned}
$$

Recalling that B^{n} is generated by all n-fold products $\left(h_{1}-1\right) \ldots\left(h_{n}-1\right)$ with $h_{1}, \ldots, h_{n} \in K$, this shows that

$$
A_{2 n}(G) \supseteq B^{n} C[G]=\left(1-e_{K}\right)^{n} C[G]=\left(1-e_{K}\right) C[G] .
$$

Proof of Theorem 2. Since K is finite, there is a natural homomorphism

$$
W(G) \rightarrow W(G / K)
$$

G / K contains an abelian subgroup of finite index and hence $W(G / K)$ is of type I, by Theorem $1(\mathrm{~B})$. The kernel of the above homomorphism is $\left(1-e_{K}\right)$ $W(G)$ and its restriction to $e_{K} W(G)$ induces an isomorphism between $e_{K} W(G)$ and $W(G / K)$. Thus $e_{K} W(G)$ is a type I summand of $W(G)$.

Now Theorem 2 will be proved if we show that $\left(1-e_{K}\right) W(G)$ contains no type I summand. Suppose conversely that it contains a nonzero type I_{n} part
$f_{n} W(G)$ for some n. Then $f_{n} W(G)$ is isomorphic to the ring of $n \times n$ matrices over its center and hence satisfies the standard identity $S_{2_{n}}[\mathbf{1}]$. This says that $f_{n} A_{2 n}(G)=0$ and contradicts Lemma 4 , which says that $1-e_{K} \in A_{2 n}(G)$.

References

1. S. A. Amitsur and J. Levitski, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449-463.
2. E. Kaniuth, Der Typ der regulären Darstellungen diskreter Gruppen, Math. Ann. 182 (1969), 334-339.
3. M. Smith, Regular representations, J. Functional Analysis 11 (1972), 401-406.
4. S. Sakai, C^{*}-algebras and W^{*}-algebras (Springer-Verlag, New York, 1971).

Carleton University, Ottawa, Canada

