THE TYPE I PART OF THE REGULAR REPRESENTATION

EDWARD FORMANEK

Let G be a discrete group and let $H = L^2(G)$, with norm | |. Let B(H) be the ring of bounded operators on H with the norm

 $||T|| = \sup\{|T(x)| : x \in H, |x| = 1\}.$

The right regular representation of G on H induces an injection $\rho: C[G] \to B(H)$, and W(G) is the closure of the image of ρ in the weak operator topology on B(H) (C = complex numbers). Using ρ , we identify C[G] with its image in W(G). The techniques of this paper are taken from [3], so familiarity with it would be helpful. [4] is a general reference for W^* -algebras.

W(G) is a W^* -algebra of finite type. Hence there are mutually orthogonal central projections e, e_1, e_2, \ldots in W(G) whose least upper bound is the identity, and such that e W(G) is of type II and $e_n W(G)$ is of type I_n ; more precisely, $e_n W(G)$ is isomorphic to the ring of $n \times n$ matrices over its center. Kaniuth has characterized those groups for which W(G) is purely of type I or type II as follows.

THEOREM 1 (Kaniuth [2]; Smith [3]). Let Δ be the subgroup of G consisting of those elements with only finitely many conjugates. Then

(A) W(G) is of type II if and only if either

(i) $[G:\Delta] = \infty$, or

(ii) $[G:\Delta] < \infty$ and Δ' is infinite.

(B) W(G) is of type I if and only if G has an abelian subgroup of finite index.

Martha Smith's later proof is more direct than Kaniuth's original proof and reveals two interesting facts: (1) The support of all the central projections e, e_1, e_2, \ldots lies in a finite subgroup of G; (2) There are only finitely many n for which e_n is nonzero. We will use these facts and the methods of [3] to prove the following result, which identifies the type I part of W(G) when it is nonzero.

THEOREM 2. Suppose G is a group with $[G : \Delta] < \infty$ and Δ' finite. Let

$$K = \cap \{L' : [G:L] < \infty\}, \quad e_K = \frac{1}{|K|} \sum \{g : g \in K\}.$$

Then $e_{\kappa}W(G)$ is the type I part of W(G).

Received February 23, 1973 and in revised form, June 6, 1973. This research was supported by NRC Grant A-7171.

The rest of the paper is devoted to proving Theorem 2. Note that since $[G:\Delta] < \infty$ and Δ' is finite, K is a finite subgroup of Δ . Thus $[G:C_G(K)] < \infty$; moreover

$$K = \bigcap \{ (\Delta \cap L)' : [G:L] < \infty \}$$

and since K and each such $(\Delta \cap L)'$ is finite there must be a finite set L_1, \ldots, L_k of such L such that $K = \bigcap (\Delta \cap L_i)'$. Then

$$N = \Delta \cap L_1 \cap \ldots \cap L_k \cap C_G(K)$$

is a subgroup of finite index in $C_{\mathcal{G}}(K)$ such that N' = K. Further,

- (1) N is of finite index in G;
- (2) N is nilpotent of class ≤ 2 ;
- (3) N' = K, a finite group in the center of N;
- (4) If L is a subgroup of finite index in N, L' = K.

LEMMA 3. Suppose L is a subgroup of finite index in G. Then every $h \in K$ is a commutator $h = x^{-1}y^{-1}xy = \langle x, y \rangle$ of two elements of L.

Proof. We can assume $L \subseteq N$, and we choose a finite generating set for K recursively as follows: let $x_1, y_1 \in L$ be such that $\langle x_1, y_1 \rangle = h_1, h_1 \neq 1$. If $K = \operatorname{gp}(h_1)$, we are done; if not, note that $[G: C_L(x_1, y_1)] < \infty$, so $C_L(x_1, y_1)' = K$ and we can choose $x_2, y_2 \in C_L(x_1, y_1)$ with $\langle x_2, y_2 \rangle = h_2, h_2 \notin \operatorname{gp}(h_1)$. If $K \neq \operatorname{gp}(h_1, h_2)$, continue by choosing $x_3, y_3 \in C_L(x_1, y_1, x_2, y_2)$ with $\langle x_3, y_3 \rangle = h_3, h_3 \notin \operatorname{gp}(h_1, h_2)$, etc. Since K is finite we eventually get $\operatorname{gp}(h_1, \ldots, h_n) = K$ and the elements $x_1, y_1, \ldots, x_n, y_n$ we have chosen satisfy

$$\langle x_i, y_i \rangle = h_i, \langle x_i, y_j \rangle = \langle x_i, x_j \rangle = \langle y_i, y_j \rangle = 1 \text{ for } i \neq j.$$

Finally, suppose $h \in K$, and let $h = h_1^{i_1} \dots h_n^{i_n}$. It is easy to see that the commutativity conditions above imply that $h = \langle x_1^{i_1} \dots x_n^{i_n}, y_1 \dots y_n \rangle$.

Let S_{2n} denote the standard identity

$$S_{2n}(x_1,\ldots,x_{2n}) = \sum \pm x_{\pi(1)}\ldots x_{\pi(2n)},$$

where the sum is over all permutations π of $\{1, \ldots, 2n\}$ and the sign is positive for even permutations and negative for odd permutations, and let $A_{2n}(G)$ denote the ideal of W(G) generated by all $S_{2n}(x_1, \ldots, x_{2n}), x_i \in W(G)$.

LEMMA 4. For all $n, 1 - e_K \in A_{2n}(G)$.

Proof. Let $B = (1 - e_K) C[K]$. B is the augmentation ideal of C[K], the ideal generated by all $\{1 - h, h \in K\}$. We are going to show that

$$A_{2n}(G) \supseteq B^n C[G] = (1 - e_K)^n C[G] = (1 - e_K) C[G].$$

First note that B^n is generated by all *n*-fold products $(h_1 - 1) \dots (h_n - 1)$ with $h_1, \dots, h_n \in K$ and choose $x_1, y_1, \dots, x_n, y_n \in G$ as follows, using Lemma 3: let $h_1 = \langle x_1, y_1 \rangle$, $h_2 = \langle x_2, y_2 \rangle$ where $x_2, y_2 \in C_G(x_1, y_1)$, $h_3 =$ $\langle x_3, y_3 \rangle$, where $x_3, y_3 \in C_G(x_1, y_1, x_2, y_2)$ etc. Letting $[x, y] = xy - yx = yx(\langle x, y \rangle - 1)$, these elements satisfy

(*)
$$[x_i, y_i] = y_i x_i (h_i - 1)$$

 $\langle x_i, y_j \rangle = \langle x_i, x_j \rangle = \langle y_i, y_j \rangle = 1 \text{ for } i \neq j.$

Next consider the standard identity

$$S_{2n}(g_1,\ldots,g_{2n}) = \sum \pm g_{\pi(1)}\ldots g_{\pi(2n)}.$$

It can be re-expressed as

$$S_{2n}(g_1,\ldots,g_{2n}) = \sum \pm [g_{i\pi(1)},g_{j\pi(1)}]\ldots [g_{i\pi(n)},g_{j\pi(n)}]$$

where the sum ranges over all partitions of the set $\{g_1, \ldots, g_{2n}\}$ into *n* disjoint two-element sets $\{g_{i1}, g_{j1}\} \ldots \{g_{in}, g_{jn}\}$ (labelled arbitrarily) and all permutations π of $\{1, \ldots, n\}$. The sign in front of each product depends only on the partition and the choice of labelling for $\{g_{i1}, g_{j1}\}$. It is independent of π since $g_{is}g_{js}g_{i1}g_{j1}$ and $g_{i1}g_{j1}g_{is}g_{js}$ (corresponding to a transposition of pairs) differ by an even permutation when considered as permutations of all four letters.

When we use the above expression to evaluate $S_{2n}(x_1, y_1, \ldots, x_n, y_n)$ and invoke the commutativity relations (*), we see that the only surviving terms of the right hand side are permutations of $[x_1, y_1], \ldots, [x_n, y_n]$ and these all have the sign +1. Moreover, for any permutation π of $\{1, \ldots, n\}$ invoking (*) yields

$$\begin{aligned} & [x_{\pi(1)}, y_{\pi(1)}] \dots [x_{\pi(n)}, y_{\pi(n)}] \\ &= y_{\pi(1)} x_{\pi(1)} (h_{\pi(1)} - 1) \dots y_{\pi(n)} x_{\pi(n)} (h_{\pi(n)} - 1) \\ &= (h_1 - 1) \dots (h_n - 1) y_1 x_1 \dots y_n x_n. \end{aligned}$$

Therefore,

$$S_{2n}(x_1, y_1, \ldots, x_n, y_n) = \sum [x_{\pi(1)}, y_{\pi(1)}] \ldots [x_{\pi(n)}, y_{\pi(n)}]$$

= $n!(h_i - 1) \ldots (h_n - 1)y_1x_1 \ldots y_nx_n$

Recalling that B^n is generated by all *n*-fold products $(h_1 - 1) \dots (h_n - 1)$ with $h_1, \dots, h_n \in K$, this shows that

$$A_{2n}(G) \supseteq B^n C[G] = (1 - e_K)^n C[G] = (1 - e_K) C[G].$$

Proof of Theorem 2. Since K is finite, there is a natural homomorphism

 $W(G) \rightarrow W(G/K).$

G/K contains an abelian subgroup of finite index and hence W(G/K) is of type I, by Theorem 1(B). The kernel of the above homomorphism is $(1 - e_K)$ W(G) and its restriction to $e_K W(G)$ induces an isomorphism between $e_K W(G)$ and W(G/K). Thus $e_K W(G)$ is a type I summand of W(G).

Now Theorem 2 will be proved if we show that $(1 - e_{\kappa})W(G)$ contains no type I summand. Suppose conversely that it contains a nonzero type I_n part

 $f_nW(G)$ for some *n*. Then $f_nW(G)$ is isomorphic to the ring of $n \times n$ matrices over its center and hence satisfies the standard identity S_{2n} [1]. This says that $f_nA_{2n}(G) = 0$ and contradicts Lemma 4, which says that $1 - e_K \in A_{2n}(G)$.

References

- 1. S. A. Amitsur and J. Levitski, *Minimal identities for algebras*, Proc. Amer. Math. Soc. 1 (1950), 449-463.
- 2. E. Kaniuth, Der Typ der regulären Darstellungen diskreter Gruppen, Math. Ann. 182 (1969), 334-339.
- 3. M. Smith, Regular representations, J. Functional Analysis 11 (1972), 401-406.
- 4. S. Sakai, C*-algebras and W*-algebras (Springer-Verlag, New York, 1971).

Carleton University, Ottawa, Canada