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THE TYPE I PART OF THE REGULAR 
REPRESENTATION 

EDWARD FORMANEK 

Let G be a discrete group and let H = L2(G), with norm | |. LetB(H) be 
the ring of bounded operators on H with the norm 

| |r|| = sup{|r (x)| :xeH,\x\ = i}. 
The right regular representation of G on H induces an injection p : C[G] —-> 
B(H), and W(G) is the closure of the image of p in the weak operator topology 
on B(H) (C = complex numbers). Using p, we identify C[G] with its image in 
W(G). The techniques of this paper are taken from [3], so familiarity with it 
would be helpful. [4] is a general reference for l^*-algebras. 

W{G) is a W*-algebra of finite type. Hence there are mutually orthogonal 
central projections e, eu e2, . . . in W(G) whose least upper bound is the 
identity, and such that e W(G) is of type II and enW(G) is of type In; more 
precisely, enW(G) is isomorphic to the ring of n X n matrices over its center. 
Kaniuth has characterized those groups for which W{G) is purely of type I 
or type II as follows. 

THEOREM 1 (Kaniuth [2]; Smith [3]). Let A be the subgroup of G consisting 
of those elements with only finitely many conjugates. Then 

(A) W(G) is of type 11 if and only if either 
(i) [G : A] = oo, or 

(ii) [G : A] < oo and A' is infinite. 
(B) W(G) is of type I if and only if G has an abelian subgroup of finite index. 

Martha Smith's later proof is more direct than Kaniuth's original proof and 
reveals two interesting facts: (1) The support of all the central projections 
e, e±, e2l . . . lies in a finite subgroup of G; (2) There are only finitely many n 
for which en is nonzero. We will use these facts and the methods of [3] to prove 
the following result, which identifies the type I part of W(G) when it is 
nonzero. 

THEOREM 2. Suppose G is a group with [G : A] < oo and A' finite. Let 

K= n{L':[G:L]< co}, eK =~ £ {g : g G K\. 

Then eKW(G) is the type I part of W(G). 
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The rest of the paper is devoted to proving Theorem 2. Note that since 
[G : A] < oo and A' is finite, K is a finite subgroup of A. Thus [G : CG(K)] < 
co ; moreover 

K = n{ ( A H L)' : [G:L] < oo} 

and since K and each such (A H L) ' is finite there must be a finite set Lu . . . , 
Lk of such L such that K = (~) (A C\ Lty. Then 

N = A n Lx r\... n Lk r\ cG (K) 
is a subgroup of finite index in CG{K) such that iV = K. Further, 

(1) N is of finite index in G ; 
(2) N is nilpotent of class ^ 2; 
(3) N' = K, a finite group in the center of N; 
(4) If L is a subgroup of finite index in TV, U = K. 

LEMMA 3. Suppose L is a subgroup of finite index in G. Then every h G K 
is a commutator h = x~1y~1xy = (x, y) of two elements of L. 

Proof. We can assume L Ç N, and we choose a finite generating set for K 
recursively as follows: let Xi, yi G L be such that (xi, yi) = hi, hi ^ 1. If 
K = gp(hi), we are done; if not, note that [G : CL(xi,yi)] < oo, so 
CL(x1, yi)f = K and we can choose x2, y2 G CL(xi, yi) with (x2, y2) = h2, h2 Ç? 
gp(hi). If K 5* gp(hu h2), continue by choosing x3, 3>3 G CL(xi, ylt x2, y2) with 
{̂ 3, 3̂ 3) = h3, hz G gp(hi, ^2) , etc. Since K is finite we eventually get gp(hi, . . . , 
hn) = K and the elements Xi, yi, . . . , xn, yn we have chosen satisfy 

\%u yi) = hi, 

(*i> yù = (xi> XJ) = (yty Ji) = 1 f o r i ^ i-

Finally, suppose h £ K, and let h = hx
il . . . hn

in. It is easy to see that the 
commutativity conditions above imply that h = (xiil . . . xn

in, yx . . . yn). 
Let S2n denote the standard identity 

S2n\Xi, . . . , X2n) = ^ ± #T(1) . . . XT(2n), 

where the sum is over all permutations -K of {1, . . . , 2n} and the sign is 
positive for even permutations and negative for odd permutations, and let 
A2n{G) denote the ideal of W(G) generated by all S2n(xi, . . . , x2n), xt G W(G). 

LEMMA 4. For all n, 1 — eK G A2n(G). 

Proof. Let B = (1 — eK) C[K\. B is the augmentation ideal of C[K], the 
ideal generated by all {1 — h, h G K}. We are going to show that 

A2n{G) 2 Bn C[G] = (1 - e * m C ] = (1 - ^)C[G]. 

First note that Bn is generated by all n-io\d products (hi — 1) . . . (/zra — 1) 
with hi, . . . ,hn £ K and choose xi, yi, . . . , xw, yn £ G as follows, using 
Lemma 3: let &i = (xi,3>i), h2 = (x2,y2) where x2, y2 G CG(xi, yi), hz = 
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(x3, yz), where x3, 3/3 G CG(xu yu x2, y2) etc. Let t ing [x,y] = xy — yx = 
3^x((x, 3;) — 1), these elements satisfy 

(*) [Xi,yî\ = y&i(hi - 1) 

<*<>:y*} = (xuXj) = (yuyj) = 1 fori =̂  j . 

Next consider the s tandard ident i ty 

S2n(gU • • • » g2n) = 2 ^ ± &r(l) • • • gir(2n)' 

I t can be re-expressed as 

S2n(gh • • • » g2n) = 2-f =*= [&MD> ^(1)1 • • • [&M»), #M»i)] 

where the sum ranges over all par t i t ions of the set {gi, . . . , g2n} into n disjoint 
two-element sets {ga, gji} . . . {g*w, g^n} (labelled arbi t rar i ly) and all pe rmuta 
tions 7T of {1, . . . , n\. T h e sign in front of each product depends only on the 
par t i t ion and the choice of labelling for {giu gjt}. I t is independent of TT since 
gisgjsgugjt and gugjtgisgjs (corresponding to a transposit ion of pairs) differ by 
an even permuta t ion when considered as permuta t ions of all four let ters. 

When we use the above expression to evaluate S2W(ffi, 3>i, . . . , xn, yn) and 
invoke the commuta t iv i ty relations (*), we see t h a t the only surviving terms 
of the right hand side are permuta t ions of \xu y j , . . . , [xn, yn] and these all 
have the sign + 1 . Moreover, for any permuta t ion T of {1, . . . , n\ invoking 
(*) yields 

[**(i),:yT(i)] • • • [^T(»),y«-(n)] 

= ^(1)^(1) (Kœ — 1) . . . 3V0,)ffx(n) (*T(n) — 1) 

= (hi — 1) . . . (hn — l)yiX! . . . ynxn. 

Therefore, 

52»(Xi, yi, . . . , Xn, yn) = ] £ [**(Df yx(l)] • • • [*T(n)i 3V(n)] 

= »!(A< — 1) . . . (hn — l)yixx. . . ynxn. 

Recalling t h a t Bn is generated by all n-io\d products (hi — 1) . . . (hn — 1) 
with hi, . . . , hn G K, this shows t h a t 

A2n(G) 2 S»C[G] = (1 - eKyC[G] = (1 - ^ ) C [ G ] . 

Proof of Theorem 2. Since i£ is finite, there is a na tura l homomorphism 

W(G) -> I ^ ( G / X ) . 

G/ i£ contains an abelian subgroup of finite index and hence W(G/K) is of 
type I, by Theorem 1(B) . T h e kernel of the above homomorphism is (1 — eK) 
W(G) and its restriction to eKW(G) induces an isomorphism between eKW(G) 
and W(G/K). T h u s eKW(G) is a type I summand of W(G). 

Now Theorem 2 will be proved if we show t h a t (1 — eK)W(G) contains no 
type I summand. Suppose conversely t h a t it contains a nonzero type In p a r t 
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fnW(G) for some n. Then fnW(G) is isomorphic to the ring of n X n matrices 
over its center and hence satisfies the standard identity S2n [1]. This says that 
fnA2n(G) = 0 and contradicts Lemma 4, which says that 1 — eK Ç A2n(G). 
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