
ON INTEGRATION OF VECTOR-VALUED FUNCTIONS 

D. O. SNOW 

1. Introduction. Among the variety of integrals which have been devised 
for integrating vector-valued functions the most widely used is that of Bochner 
(2), perhaps because of the simplicity of its formulation. Other approaches, 
including one by Birkhoff (1), have yielded more general integrals yet none 
of them seems to have supplanted the Bochner integral to a significant extent. 

Another simple approach is that of Graves (4). This is an adaptation of the 
Riemann definition, and the resulting integral has most of the properties of 
the ordinary Riemann integral. A noteworthy exception is that there exist 
functions which are everywhere discontinuous and yet are Graves integrable. 
In sharp contrast to the real variable case the Bochner (Lebesgue) integral 
does not include the Graves (Riemann) integral. Neither does the Graves 
integral include that of Bochner. 

In the present paper we show that the Graves integral can be generalized 
in a simple way to produce an integral which includes the Bochner integral 
as a special case, and is equivalent to the Birkhoff integral for functions defined 
on a bounded Lebesgue measurable set in ^-dimensional Euclidean space. 
This generalization stems from the fact that the Lebesgue measurability of a 
finite real-valued function / , on a measurable set E, is equivalent to the 
validity of the well-known Lusin condition (9, p. 72) for/. It has been pointed 
out by Hildebrandt (6) that a definition of the Lebesgue integral due to 
Hahn (5) is based on the Lusin property and that this suggests an alternate 
approach to the Bochner integral. Bourbaki (3, p. 180) gives a definition of 
measurability for a function/, defined on a locally compact space E with values 
in an arbitrary topological space F, which is also based on the Lusin condition 
in that / is required to be continuous on each of a collection of compact sets 
with total measure approximating that of E. It turns out that when the range 
space is a Banach space this definition is equivalent to Bochner measurability 
(3, Theorem 3, p. 189). We notice, however, that there exist fairly simple 
functions which are Graves (Riemann) integrable but not measurable in the 
Bochner or Bourbaki senses, nor in any sense that implies the Lusin property. 
The classical example is that of Graves (4, p. 166) which involves the space 
M of bounded real functions f(t) on 0 < t < 1, with 

mm = SUPO<KI|/WI. 

Let x(a) = fa(t) where fa(t) = 0 on 0 < t < a, and fa{i) = 1 on a < t < 1. 
Thus x(d) is defined on 0 < a < 1 and is everywhere discontinuous there. 
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On the other hand, this function is integrable in the sense of Birkhoff and of 
Jeffery (7). These facts suggest a weakening of the Lusin condition in which 
we replace the sets on which the function is required to be continuous (5; 6; 3) 
by sets over which the function is integrable in the Graves sense (generalized 
in a natural way so as to be defined on closed sets), and hence may in some 
cases be everywhere discontinuous on these sets. A definition of measurability 
is based on this weakened condition and the Hahn approach is then used in 
defining our generalized integral. 

2. Notation. Throughout this paper X will denote an arbitrary linear 
normed complete space, or Banach space, R the space of real numbers, x(a), 
y (a) functions valued in X, and / ( a ) , g (a) real-valued functions. The symbol 
[a, b] will denote a closed interval on the real line, P , P ' , F closed subsets of 
[a, b], and \E\ the Lebesgue measure of a measurable set E. 

3. A Graves integral defined over a closed set. 

Definition 3.1. Let x{a) be defined and bounded on P. Let T be a subdivision 
of [a, b] into subintervals («*_!, at); let A«i denote the closed interval [a0, ai] 
and Aau i> 1, denote the half-open interval (a*_i, «J . Let Nw be the maximum 
of the differences at — a*_i, called the norm of ir. If X contains an element 
L such that for every e > 0 there exists 8 > 0 with 

£ *ttoiPn àaf\ -L < € 

for every subdivision with Nir < <5, and every choice of £* in P C\ Acti(i = 1, 
2, . . . , n) then L is the Graves integral, or G-integral, of x(a) over P and we 
write 

(G) I x(a) da = L. 

It is not difficult to see that when P is a closed interval the G-integral reduces 
to the original Graves integral. 

Because of the frequency and importance of its uses in the remainder of 
this paper we state the following rssult, which has been proved in a variety of 
ways by several writers including Birkhoff (1), Jeffery (7), and Macphail 
(8). 

THEOREM 3.1. Let ei, e2, . . . , en be any n disjoint Lebesgue measurable sets 
on a measurable set E, \E\ < °°, £* any point on eu and S = ]£ x{^\ei\ where 
x is a bounded function on E with values in a space X. Let 

en, £i2, • • . , eiki 

be a subdivision of et into disjoint measurable sets, and £0-, £'i;- any points on 
eij. Then 
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£ £ Wfii) - *(£'ij)}kul 
i=l ;=1 

< sup E {*(*<)-*(*'<)}|«* 

awd 

i=i ;=i 
< sup E {*(*<)-*(*\)} M 

One consequence of this result is the following theorem. 

THEOREM 3.2. Letx(a) be defined and bounded on P. A necessary and sufficient 
condition for the existence of the G-integral of x (a) over P is that there exist a 
sequence of subdivisions irn of [a, b] such that 

lim £ * y | ^ n àani\ 

exists, %ni any point on P C\ Aani. 

Proof. The necessity is obvious in view of definition 3.1. To prove the 
sufficiency choose any e > 0 and consider a sequence {wn} which yields a 
limit / . Then there exists an w0 such that for n > n0 we have | |ST n — J\\ 
< | e. If n > n0 is fixed and %ni, %ni are allowed to be any points in P P\ 
Aawz it follows that 

£ {*(£.<) -x(S'ni)}\PnAOni\ < €. 

Then let wk be any subdivision of [a, b], not necessarily in the sequence, with 
Nwk sufficiently small to insure that the total length of the intervals of irk 

which contain points of subdivision of wn is less than e/M, where M = sup 
||x(a)||, a on P. Suitable applications of Theorem 3.1 show that ||2TJb — J\\ 
is less than a fixed multiple of e. 

In the next theorem we list several properties of the G-integral which we 
shall use in making our generalization. The proofs follow from the definition 
and Theorem 3.1 by standard arguments and are omitted. 

THEOREM 3.3. (a) If x, y, and f are G-integrable over P, and | |x(a)|| < / ( « ) 
for a on P, then 

(i) 

(ii) 

(G) f (x + y)da = (G) f xda + (G) f yda, 
*J P «/ p %/ p 

(G) f xda\ < (G) f fda. 

(b) If P C\ Pf = 0 and x(a) is G-integrable over the sets P and Pf then it is 
integrable over P \J P' and 

(G) I xda = (G) ) xda + (G) I xda, 
*J PuP' *)p %) p' 

https://doi.org/10.4153/CJM-1958-039-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-039-9


402 D. 0. SNOW 

(c) If Pr is contained in P then x(a) is G-integrable over P' if it is G-integrable 
over P and 

(G) I xda — (G) I xda 
•J P *) p' I 

< M\P - P'\, M = sup«eP | |*(a)| 

(d) If xn(a) (n = 1, 2, . . .) is G-integrable over P and if xn{a) converges 
uniformly to x(a) on P then x(a) is G-integrable over P and 

(G) I xn(a)da —» (G) I x(a)da. 
«/ p *) p 

4. The generalized Graves integral. In this and the remaining sections 
E, Et will denote bounded Lebesgue measurable sets of the real line. 

Definition 4.1. A function x(a) defined on a set E with values in X is P e -
measurable on E if for every e > 0 there exists a closed set P, contained in 
E, such that (i) \E — P\ < e, and (ii) x{a) is G-integrable over P . 

This is a generalization of the classical Lusin condition, to which it is 
equivalent when X = R. For arbitrary X we observe that if x(a) is con­
tinuous on P contained in E, with \E — P\ < e, it is Graves integrable on 
P and therefore Pe-measurable. Conversely, if a real-valued function x(a) is 
P€-measurable on E and hence G-integrable on P' 3 E, \E — P'\ < ^e, a 
standard argument shows that the measure of the set of its discontinuities on 
P' is zero. Then there exists a set P in E, on which x(a) is continuous with 
\E- P\< e. 

On the other hand, the function cited in the introduction is Pe-measurable 
without satisfying the Lusin condition. 

Definition 4.2. If x(a) is Pe-measurable on E and if there is an element / 
in X such that given 77 > 0 there exists e > 0 with 

(G) I x(a)da <V 

for every P contained in E, \E — P\ < e, over which x(a) is G-integrable, 
then we say that / is the G*-integral of x(a) over E and denote it by (G*) 
J Ex(a)da. 

THEOREM 4.1. If x(a) is P^-measurable on E a necessary and sufficient con­
dition for 

(G*) ( x(a)da 
«/E 

to exist is that for every rj > 0 there exist ô > 0 such that if P and Pf are two 
closed sets in E, with measures greater than \E\ — 5, for which 

(G) I xda, (G) I xda 
%)p */ p' 
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exist then 

(4.1) (G) I xda — (G) I xda 
Up Up' I <v-

r P %) p> 

The proof is easily obtained by a standard argument and will be omitted. 

THEOREM 4.2. If x(a) is G*-integrable over E it is G*-integrable over every 
measurable subset e contained in E. 

Proof. Given e > 0, let P be a closed set with \E — P\ < \e and such that 
x(a) is G-integrable over P. Let e be any measurable subset of E. Then eP is 
measurable and so it contains a closed set P' with \eP — Pf\ < Je. Moreover 

\e - eP\ <\E - P\ < ie. 

Then \e — Pf\ < e. Since x(a) is G-integrable over P' by Theorem 3.3(c) 
our conclusion follows. 

We next prove the analogue of the fact, basic in real variable theory, that 
every bounded Lebesgue measurable function on a set E is Lebesgue integrable. 

THEOREM 4.3. If x(a) is bounded and P ^-measurable on E it is G*'-integrable 
over E. 

Proof. Let M = sup||x(û:)|| for a in E. Let r\ > 0 be given and let P and 
P' be closed sets, contained in E, on which x(a) is G-integrable and such that 
the measure of each set is greater than |E| — {r\/2M). Then x(a) is G-integrable 
over P C\ P' by Theorem 3.3(c). Moreover 

\p'-(pnp')\<^,\p-(Pnp')\<^. 

Hence, by the second part of Theorem 3.3(c), 

J c 11 
xda — (G) I xdal 

p J p ' I I 

< (G) J xda - (G) f xda \\ + \\ (G) f xda - (G) f 
«/P JPnp' II II JpnP' *s p> 

xda\ 
!pt\pf I I I I i / P n P ' « / P ' I 

<M-ût+M-ûï = *-
THEOREM 4.4. If Ex P\ E2 = 0, and if x(a) is G*-integrable over E\ and E2 

then it is G*-integrable over £ i U £ 2 and 

(4.2) (G*) f xda = (G*) ( xda+(G*) f xda. 

Proof. Let {Pn}, {Pn) be sequences of sets over each of which x(a) is G-
integrable and with Pn C ^ i , Pn C E2, for all n. Suppose that 

Then |PW + P n ' | —> |Ei + E2\. For each w, by Theorem 3.3(b), 
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(G) I xda + (G) I xda = (G) I xda. 

If x(a) is G*-integrable on Ei U E2 it follows that (4.2) holds. 
It remains to be shown that x{a) is G*-integrable on E\ \J E2. Let / denote 

the right side of (4.2). Given rj > 0 there exists e > 0 such that if P and P ' 
are closed sets contained in Eu E2 respectively, with \Ei — P\ < e, |E2 — P'\ 
< e, and if x(a) is G-integrable on P and P ' , we have 

(G) I xda — (G*) I xda\ < §rç, (G) I xda — (G*) I xda 
Jp J El II I ! t /f» ' t/^2 

< ii?. 

Now, suppose F is any closed set contained in E\ VJ E2j with | (E± U £2) 
— F| < ^e, and on which x(a) is G-integrable. It follows that 

\E, - (FnE1)\ = \E, - F\< \(E, U E2) - F\ < \e. 

Similarly \E2 - (F H E2)\ < | e . Then let P , P' contained in F C\ Eu F H E2 

respectively, be such that 

\E, -P\<t, |£2 - P'\ < «, \F - (P U P')\ < ^ , 

where M = sup||x(a)|| on F. x(a) is G-integrable on the sets P and P ' by 
Theorem 3.3(c). Hence 

f I I 
( G ) I xda — III 

•J F I I 

(G) f xda - (G) f *d« + (G) f «da - (G*) f 

+ 1(G) f xda- (G*) f xda 
I I J P' JEl M 

Definition 4.3. If a set function v is defined on the class of Lebesgue measur­
able subsets of E with values in X, and if for every e > 0 there exists 8 > 0 
such that ||v(e)|| < e for every subset e of E with |e| < 5, then we say that 
v is absolutely continuous over the measurable subsets of E. 

THEOREM 4.5. Suppose x(a) is G*-integrable over a set E. Then the G*-integral 
is an absolutely continuous function of the measurable sets e contained in E. 

Proof. Let 77 > 0 be given. Fix ô > 0 so that condition (4.1) of Theorem 
4.1 holds. Now consider any set e contained in E with \e\ < 8. Let P be any 
closed set contained in e such that 

< xda 

(G*) I xda — (G) I xda\ 
J e J p I 

< Ï 7 . 

Also let F be a closed set contained in E-e, with \E — F\ < e, and on which 
x(a) is G-integrable. Then 
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(G) f xda\\ = (G) f xda - (G) f 
*s P II II *s P u F *J 1 

xdal < i » 

and 

(G*) (xdal < (G*) fxda - (G) f*do 
«^ e II II t/ e «/p 

Since 77 is arbitrary our conclusion follows. 

+ (G) I xdal 
J p I 

< 2rj. 

THEOREM 4.6. If x(a) is G*-integrable over E, and e represents a measurable 
subset of E, then 

(G*) f x(a) da 

is a completely additive set function over E. 

Proof. Let ei, e2, . . . be a sequence of disjoint measurable sets on E and 
let ei + . . . + en = En and 

00 

X et = e. 

Then x{a) is G-integrable over e and En by Theorem 4.2, and by Theorem 4.4 
we have 

Ê (G*) f «da = (G*) f xJa 
1=1 J ei J En 

and 

(G*) f xda + (G*) f xda = (G*) f xJa. 
J En J e—En ** e 

Now \e — En\ - > 0 a s w-> œ, Hence, by Theorem 4.5, 

^2 (G) I xda = lim (G*) I xda = (G*) I xda. 
i= l «/e» n-»oo J En *J e 

Although we have restricted ourselves to sets on the real line for the sake 
of simplicity in writing, it is clear that the above definitions and theorems 
can be extended to a function with its values in X and defined on any bounded 
Lebesgue measurable set in an ^-dimensional Euclidean space. In addition, 
the usual procedure of taking limits would lead to a definition of the G*-
integral in cases where E is not bounded and \E\ is not finite. 

5. Sequences of P € -measurable funct ions . We now consider two im­
portant properties of sequences of Pe-measurable functions which generalize 
corresponding results in the Lebesgue theory. 

Definition 5.1. A sequence of functions {xn(a)\ defined on E converges to 
x{a) in E almost uniformly if, given e > 0, there exists a set Er contained in 
E such that \E — E'\ < e and xn(a) converges uniformly to x(a) in E'. 
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LEMMA 5.1. Let {xn(a)\ be a sequence of P ^-measurable functions defined on 
E with values in X. If xn(a) converges to x(a) in E almost uniformly then x(a) 
is P ^-measurable on E. 

Proof. Suppose e > 0 is given. Then there exists a set E', contained in E, 
on which xn(a) converges to x(a) uniformly and such that \E — E'\ < e/2. 
Now for each n there exists a closed set Pn contained in E with \E — Pn\ 
< e/2n+2 and such that xn(a) is G-integrable over Pn. Furthermore, there 
exists a closed set Pn

f in the measurable set Er such that \Ef — Pn'\ < e/2n+2. 
Hence we may set Fn — Pn C\ Pn' for each n and xn (a) will be G-integrable on 
Fn, by Theorem 3.3(c), with \E' - Fn\ < e/2n+1. Then the intersection 
of the sequence of sets {Fn} is a closed set F such that \E — F\ < e and each 
xn(a) is G-integrable on F. Hence (G) JFX(O) da exists by Theorem 3.3(d). 
Since e is arbitrary it follows that x(a) is Pc-measurable on E. 

LEMMA 5.2. If x(a) is G*-integrable over a set E and if f{a) is a real-valued 
summable function over E, with ||x(o:)|| < f(a) for every a in E, then 

(G*) ( x(a)da\ < (G*) ( f(a)da. 

Proof. This follows immediately from the second part of Theorem 3.3(a) 
and the definition of the G*-integral. 

THEOREM 5.1. Let {xn(a)} be a sequence of Pt-measurable functions defined 
on E with values in X. Suppose \\xn(a)\\ < f(a) for all values of n, and all a 
in E, where f(a) is a real-valued summable function over E. Suppose also that 
xn{a) converges to x{a) in E almost uniformly. Then xn{a) is G*-integrable over 
E for each n, x(a) is G*-integrable over E, and 

(5.1) lim (G*) I xn(a)da = (G*) I x(a)da. 
W_AQn • / E *S E 

Proof. x(a) is PÉ-measurable on E by Lemma 5.1. Furthermore, given i\ > 0 
there exists 8 > 0 such that for e contained in E and \e\ < 8, 

(G*) j f(a)da <h-

Let P and P' be any two closed sets in E, on each of which x(a) is G-integrable, 
and such that \E - P\ < 8, \E - Pf\ < 8. Then 

(G) 

< 

xda xda — (G) I o 
J P> 

(G*) f xda - (G*) f xdo 
•J P *) p' 

(G*) f xda- (G*) f 
«/ p—p' *s p' 

(G*) f xda + (G*) f 
*J P—P' I II *J p'—l 

xda 

xda <y. 

https://doi.org/10.4153/CJM-1958-039-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-039-9


INTEGRATION OF VECTOR-VALUED FUNCTIONS 407 

Hence x(a) is G*-integrable over E by Theorem 4.1, and the same argument 
shows that for each n, xn(a) is G*-integrable over E. 

Finally, let x(a) = xn(a) — yn(a). By our hypothesis there exists a set 
E* contained in E, such that \E — Ef\ < 5, and a fixed positive integer N 
such that for n > N we have 

\x{a) - xn(a)\\ < 
2LEI 

on Er. Then 

(G*) {x{a) - xn(a)}da 

(G*) f yn(a)da + (G*) f yn(a)da 
•J E' *) E—E' 

< 

< 

(G*) fy.(a)da 
•SE' 

(G*) f yB(a)<fo 

+ (G*) f yn(a)da 
I I •/E—E' 

+ (G*) f 2/(a)da 

< 2 | £ ] ' | £ ' l + § " < ' ? -

This completes the proof. 

COROLLARY. If {xn{a)} is uniformly bounded on E, and xn(a) converges to 
X(OL) in E almost uniformly, then (5.1) holds. 

For a sequence of real-valued Lebesgue measurable functions on a bounded 
set E, convergence almost everywhere is equivalent to convergence almost 
uniformly. It is clear then that Theorem 5.1 is a generalization of the well-
known dominated convergence theorem of Lebesgue. However, because of 
the failure of a theorem of the Egoroff type to hold, in general, for P«-measur­
able functions the traditional hypothesis of the Lebesgue theorem cannot 
be retained, and we must require specifically that the functions converge 
almost uniformly. 

6. The equivalence of the G*-integral and the Birkhoff integral. It 
is easy to show directly that the G*-integral includes the Bochner integral. 
However, the Birkhoff integral also includes that of Bochner and is more 
general than the latter. For this reason we shall compare the G*-integral with 
that of Birkhoff. 

Macphail (8) points out that if x(a) is bounded on E the infinite partitions 
of Birkhoff may be replaced by finite partitions. If $ is a finite partition of 
E into measurable subsets eu and if we define 

sm = £<*(É<)hl,£0P) = E«[*(É/) - *(Éi")]|«f|, 

and co($) = sup||Z>(<»P)||, where £f, £/, £/ ' are arbitrary points in et the diam­
eter of the integral range which appears in Birkhoff's definition (1, p. 367) 
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is precisely w($). Then a bounded function x(a) is Birkhoff integrable if and 
only if there exists (1, Theorem 13) a sequence of partitions {tyn} such that 
w($n) —> 0. The following lemmas are consequences of the above definitions, 
with the aid of Theorem 3.1. 

LEMMA 6.1. If ty is any finite partition of E on which a bounded function 
x(a) is (Bk)-integrable then 

(Bk) f xda - S ($ ) 
«/ E 

< * ( $ ) . 

LEMMA 6.2. If Q is a set consisting of a selection O of the subsets comprising 
$ then 

(Bk) I xda 
*)o 

5(Q) < W(Q) < « ( $ ) . 

In (1) the function x(a) is considered to be defined on an abstract domain 
on which a measure is defined. However, as in the previous sections, we 
restrict the present discussion to a function defined on a bounded Lebesgue 
measurable linear set, observing that the same proofs hold for w-dimensional 
sets. The Birkhoff integral of x(a) over E will be denoted by (Bk) jEoc(a)da. 

THEOREM 6.1. If x(a) is Birkhoff integrable over a set E then it is also G*-
integrable over E to the same value. 

Proof. Suppose first that x(a) is bounded on E, and let M > 0 be such that 
||x(o:)|| < M for all a in E. Let {̂ Jn} be a sequence of finite partitions of the 
set E which yield a Birkhoff integral. That is, for each n, E = en\ + en2 + 
• • • + en1c. Then, given e > 0 we can choose closed sets ec

ni contained in the 
eni such that the measure of Ec

n = ec
ni + ec

n2 + . . . + ec
nJc differs from the 

measure of E by less than e/2n. 
Let F = Eci P\ Ec

2 r\ . . . . This is a closed set and its measure differs from 
that of E by less than e. We show that 

lim J2 x(Zt)\Fr\ ec
ni\ = (Bk) x(a)da. 

First of all (1, Theorem 14), x(a) is (Bk)-integrable on F. Also, the sets 
F r\ ec

ni form a partition of F which we may denote by ^n(F)- Clearly ^n(F) 
consists of a selection of sets from ^JV, the partition of E formed by the sets 

F Pi ec
ni, ec

ni — F, and eni — ec
ni, i = 1 , 2 , . . . , kn. 

Moreover, tyn' is a refinement of the partition tyn of E. Then, by Lemma 6.2, 

(Bk) f xda- jï x(ïi)\F H ec
ni\ 

= (Bk) f xda - S(ft,(«) 

< «(&,(,)) < œ(%'), 
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and by Theorem 3.1, w($n') < co($re), where o)(^n) is associated with the 
original sequence {^n} and approaches zero as n—» <». This leads to the 
desired conclusion. Then, given 77 > 0 we can find and fix an m, depending on 
rj, such that 

S x(ïi)\Fnec
: 

i=l •/ F 
(Bk) xda < « ( $ » ) < t]. 

Now the closed sets ec
mi are disjoint and finite in number. Let d be the 

minimum of the distances between any two of these closed sets. Then, taking 
an interval [a, b] containing E divide it into subintervals of length less than 
d, that is, 

a = ao < «i < . . . < an = b. 

Consider sets of the form F C\ Aat where the Aat are as described in definition 
3.1. We see that each set F P i Aat(i = 1, 2, . . . , n) is equivalent to a set 
F C\ ec

mj Pi Acci for some j , and the collection of such sets forms a refinement 
of the partition tymiF). Then it follows that 

n s* 

E x(.tt)\Fn Aa,\ - (Bk) x(a)da 
i=l J F 

n km 

< L « t t O l ^ n Aa*| - £ x(^)\Fn ec
mi\ 

I I 1 = 1 Z = l 

+ 2 x(i,)\Fn ec
mt\ - (Bk) f x(a)da\ 

< 2coO(D < 277. 

Thus x(a) is G-integrable on the closed set F where \E — F\ < e. Hence 
x(a) is iVmeasurable over E and being bounded it is G*-integrable over E 
by Theorem 4.3. Further, the G-integral equals the Birkhoff integral on F. 
Hence, as \E — F\ -+ 0, we have (G) fFxda approaching the limit (Bk) 
JExda since the Birkhoff integral is absolutely continuous and a completely 
additive set function on E. Therefore, 

(G*) I xda = (Bk) J xda. 

If x(a) is unbounded on E but is Birkhoff integrable there it is also Birkhoff 
integrable on every measurable set e contained (1) in E and it follows that 

LEI, as e 

(Bk) j xda -> (Bk) I xda. 
J e J E 

Now, given e > 0, if E! is a measurable subset of E over which x(a) is bounded 
and such that \E — E'\ < Je then (Bk) fE'%da exists and hence (G*) fEr xda 
exists. Then there is a closed set P contained in E' with \Ef — P\ < Je and 
such that (G) j P xda exists. Hence x(a) is Pc-measurable on E. Then, given 
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rj > 0 there exists ô > 0 such that for P , P' contained in E, with \E — P\ 
< ô, \E — P'\ < 5, and on each of which x(a) is G-integrable, 

(G) I xda — (G) I xda\ 
«/ p *) p' | I 

(Bk) I xda - (Bk) I x d J 
II */p %) pf I 

< 
( j B^J. xJa + (5*) J X&K < i / . 

Thus x(a) is G*-integrable on E. 
Finally, since x(a) is Pc-measurable on E there is a sequence of closed sets 

{Pn} with \Pn\ —* \E\ and on each of which x(a) is G-integrable. Hence 

(Bk) I xda = lim (5£) I xda = lim (G) I xda = (G*) I xda. 
•SE \Pn\^\E\ J Pn \Pn\->\E\ ' J Pn "E 

COROLLARY. If x(a) is Bochner integrable over E then it is also G*-integrable 
over E to the same value. 

This follows at once from our theorem and the proof that Birkhoff's integral 
includes that of Bochner (1, p. 377). 

The fact that the everywhere discontinuous function given in the introduc­
tion is G*-integrable, being Pe-measurable and bounded, but is not Bochner 
(strongly) measurable, shows that the converse does not hold. 

THEOREM 6.2. If x(a) is G*-integrable over E then it is also Birkhoff integrable 
over E to the same value. 

Proof. First suppose that x(a) is bounded on E, ||x(o:)|| < M for all a in 
E. Given e > 0 there exists a closed set P , with 

\E - P\ < 
4M' 

on which x(a) is G-integrable. By a suitable subdivision T we can partition 
this set into sets et = P C\ Aat and have 

Z [*(**') -*tt")]k< < 2 ' 

for all £/, £ / ' in e^ Now by taking a set J, the complement of P in E, plus the 
sets et, we have a partition $ of the whole set E and can form the sum 

D(^) = Z [*(£/) - *(£/')]kfl + U*tti) - * (&)] | / | , fc,Mn / } ' 

Then 

sup Dm < H + l h • 2M = «• 2 4M 
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By starting with a sequence {en} such that en —» 0 as n —> <» we can con­
struct a sequence of partitions ^n such that 

co OP J = s u p | | Z ? ( ^ ) H - ^ 0 . 

Thus the Birkhoff integral over E exists and is clearly equal to (G*) jExda. 
Next, suppose that x(a) is unbounded on E. Then, given e > 0, we have to 

find a partition under which £ ff(£*)|e*| is unconditionally summable and the 
diameter of the integral range is less than e. 

Let Eiy E2, . . . be non-overlapping sets in E such that £|-E^| = \E\ and 
x(a) is bounded on each Ej. For each Ej let @; be a partition into sets en 

such that co((§̂ ) < €j, X) e^ = ie- Let 5 > 0 be such that for a measurable set 
£ with \e\ < 5 we have 

(G*) f *(a)da < * € . 

Choose iV such that \EN\ + |£jv+i| + . . . is less than ô. Next, choose any 
finite set of the ejU with j > N, and denote it by S: (eu e2, . . . , ek). Let 

Then 

exists and hence 

e =* ei + e2 + . . . + ek. 

(G*) ( x(a)da 

(Bk) I x(a)da 

exists by the first part of the proof, and by Lemma 6.1 we have 

(Bk) J xda- 5(@) < «((8) < E «(G,) < Z *y = K 

Also, since e is contained in £ # + E^+i + • • • we have 

(G*) f x ( a V a = \(Bk) f x(a)da <h-
Then 

| | S ( g ) | | = (Bk) f xda - (Bk) f X<£a + 5(<g) 

< (££) I x d J + (Bjfe) I xda 
•Je ' I ' I v e 

S(<g) 

< $c + h = «• 
Hence £<y x(^j{)\eJt\ is unconditionally summable. Finally, the diameter of 
the integral range corresponding to the set of partitions (2 ,̂ which we shall 
denote by & {ILij x(Çji) \ejt\\, satisfies the condition 

@{?Lii x(Sn) k i l l < 2 co (g,) < 2 e, = Je. 
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Since these are the conditions for Birkhoff integrability (1, Theorem 13) the 
proof of the theorem is complete. 
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