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We show how a complete mathematical model of a physical process can be learned
directly from data via a hybrid approach combining three simple and general ingredients:
physical assumptions of smoothness, locality and symmetry, a weak formulation of
differential equations and sparse regression. To illustrate this, we extract a complete
system of governing equations of fluid dynamics – the Navier–Stokes equation, the
continuity equation and the boundary conditions – as well as the pressure-Poisson and
energy equations, from numerical data describing a highly turbulent channel flow in
three dimensions. Whether they represent known or unknown physics, relations discovered
using this approach take the familiar form of partial differential equations, which are easily
interpretable and readily provide information about the relative importance of different
physical effects. The proposed approach offers insight into the quality of the data, serving
as a useful diagnostic tool. It is also remarkably robust, yielding accurate results for very
high noise levels, and should thus be well suited for analysis of experimental data.

Key words: machine learning

1. Introduction

Physical theories are traditionally constructed in an iterative manner. At each step,
discrepancies between predictions and existing experimental observations are used to
improve the theory, making it more general and accurate. These improvements are
usually instructed and constrained by first principles, including both general and domain
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knowledge. After this, new predictions are made and new experiments are designed to test
these predictions, closing the loop. Humans play a key role in all aspects of this traditional
procedure and can become a weak link when the amount of data becomes overwhelming
or the patterns in the data are too complex. Recent advances in machine learning have
started to change the scientific paradigm guiding the construction of physical theories
by gradually taking humans out of the loop. For low-dimensional systems, physical
relations in the form of algebraic and even differential equations can be constructed using
symbolic regression directly from experimental data without using any physical intuition
(Crutchfield & McNamara 1987; Bongard & Lipson 2007; Schmidt & Lipson 2009). For
high-dimensional systems such as fluid flows, purely data-driven approaches often become
intractable, and some physical intuition becomes necessary to guide the process (Karpatne
et al. 2017).

The question is therefore what physical considerations can and should be used to
constrain the problem sufficiently for the data-driven analysis to become tractable while
leaving enough freedom to enable identification of physically meaningful relationships.
Among the most general and least restrictive physical constraints are smoothness, locality
and the relevant symmetries. In fact, some or all of these constraints have been implicitly
assumed in most efforts to identify evolution equations via some form of regression from
synthetic data (Bär, Hegger & Kantz 1999; Xu & Khanmohamadi 2008; Rudy et al. 2017;
Schaeffer 2017; Reinbold, Gurevich & Grigoriev 2020) or experimental data (Reinbold
et al. 2021). However, evolution equations are just one type of a relation that may be
required to fully describe a physical system. Other examples include constraints, such as
the divergence-free condition for the velocity field representing mass conservation for an
incompressible fluid or the curl-free condition for the electric field in electrostatics, as well
as boundary conditions. Previous studies have largely ignored the problem of identifying
these equally important classes of relations for high-dimensional systems.

Sparse linear regression has so far proven to be the most versatile and robust approach
for equation inference. Its original implementations, such as the sparse identification of
nonlinear dynamics (SINDy) algorithm (Brunton, Proctor & Kutz 2016), were aimed
at discovering evolution equations. Generalizations of this algorithm such as SINDy-PI
(Kaheman, Kutz & Brunton 2020), which find sparse solutions to a collection of
inhomogeneous linear systems, can be used to discover other types of relations as well.
A number of alternatives for nonlinear regression aimed at inference of partial differential
equations (PDEs) have been proposed as well. These include Gaussian processes (Raissi
& Karniadakis 2018), gene expression programming (Ferreira 2001; Ma & Zhang 2022;
Xing et al. 2022) and several neural network-based approaches such as equation learner
(Martius & Lampert 2016; Sahoo, Lampert & Martius 2018), neural symbolic regression
that scales (Biggio et al. 2021), PDE-LEARN (Stephany & Earls 2022) and PDE-Net
(Long et al. 2018). While most of these approaches have been validated by reconstructing
canonical PDEs or known governing equations, their potential for discovering previously
unknown physics remains unclear, especially for spatially extended systems in more than
one spatial dimension.

All of the above approaches suffer from inherent sensitivity to noise in the data which
is amplified by spatial and/or temporal derivatives that appear in any physical relation
described by a PDE. When the strong form of PDEs is used, it becomes difficult or even
impossible to correctly identify governing equations involving higher-order derivatives for
noise levels as low as a few per cent (Rudy et al. 2017; Raissi & Karniadakis 2018; Raissi,
Perdikaris & Karniadakis 2019). This sensitivity can be addressed by using the weak form
of the governing equations (Gurevich, Reinbold & Grigoriev 2019), as illustrated by its
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successful application in equation inference approaches employing both linear regression
(Reinbold et al. 2020; Messenger & Bortz 2021; Alves & Fiuza 2022) and nonlinear
regression (Stephany & Earls 2023). Weak formulation was also found to be useful in
problems involving latent variables (Reinbold et al. 2021) and unreliable or missing data
(Golden et al. 2023).

The success of any approach to equation inference ultimately depends on the availability
of a sufficiently rich function library (or, more typically, multiple libraries) which define
the search space for one or more parsimonious relations describing the data. With rare
exceptions, these libraries have previously been constructed in a largely ad hoc manner,
either with little regard for the specifics of the physical problem or, alternatively, relying
too much on the presumed-to-be-known physics. In this article, we describe a flexible
and general data-driven approach for identifying a complete mathematical description
of a physical system, including relevant boundary conditions, which we call sparse
physics-informed discovery of empirical relations (SPIDER). Unlike SINDy and its
variants, SPIDER is more than a linear regression algorithm: it is based on a systematic
procedure for library generation informed by the symmetries of the system. We illustrate
SPIDER by discovering the evolution equations, constraints and boundary conditions
governing the flow of an incompressible Newtonian fluid from noisy numerical data
using only very mild constraints which require no detailed knowledge of the physics.
The implementation of SPIDER described here is publicly available at https://github.com/
sibirica/SPIDER_channelflow.

The paper is organized as follows. Our hybrid equation inference approach is introduced
and illustrated using an example of data representing numerical simulation of a highly
turbulent flow in § 2. The results are discussed in § 3, and our conclusions are presented in
§ 4.

2. Sparse physics-informed discovery of empirical relations

It is well known that, in order for a data-driven approach to identify a sufficiently general
mathematical model, the data must exhibit enough variation to sample the state space of
the physical problem (Schaeffer, Tran & Ward 2018). Here, this is accomplished by using
the numerical solution of a high-Reynolds-number flow through a rectangular channel
from the Johns Hopkins University turbulence database (http://turbulence.pha.jhu.edu/
Channel_Flow.aspx). The data set includes the flow velocity u and pressure p fully resolved
in space and time. The channel dimensions are Lx × Ly × Lz × Lt = 8π × 2 × 3π × 26
(in non-dimensional units) and the data are stored on a spatio-temporal grid of size
2048 × 512 × 1536 × 4000. The (non-dimensional) viscosity is ν = 5 × 10−5 and the
corresponding friction Reynolds number is Reτ ∼ 103. A representative snapshot of the
data is shown in figure 1.

The immense size of the entire data set comprising 2.6 × 1013 ‘measurements’
illustrates the challenges faced by a purely data-driven approach. The locality property
radically reduces the number of possible functional relations between measurements by
constraining these to a small spatio-temporal neighbourhood of a given point. In particular,
for smooth continuous fields, such functional relations have to be expressed in terms of
their local values and local partial derivatives. For systems that are invariant with respect
to spatial and temporal translation, a functional relation can be expressed in the form of a
Volterra series

N∑
n=1

cnfn ≡ c · f = 0, (2.1)
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Figure 1. Snapshot of the velocity component uz in a z = const. plane over a portion of the entire
computational domain. Sample integration domains (shown as dotted boxes) near the edge of the channel
are much narrower than those in the middle due to the non-uniform grid spacing in the y direction.

where cn are coefficients and fn are products of the fields and their partial derivatives. For
systems with translational symmetry in space and time, the most general relations of this
type are nonlinear PDEs with constant coefficients. Most prior work focused on evolution
equations, which are special cases of (2.1) where c1 = 1 and f1 is the first-order temporal
derivative of one of the fields. Other special cases include differential equations that do
not involve temporal derivatives and algebraic relations between the fields that involve no
derivatives at all, which have largely been ignored by the machine learning literature in the
context of spatially extended systems.

Our aim here is to identify a parsimonious mathematical model of the flow in the form
of a system of PDEs, along with appropriate boundary conditions, directly from data
representing the velocity and pressure fields, u and p. The key observation here is that
the form of the functional relations (2.1) can be restricted sufficiently using the rotational
symmetry constraint. All terms fn have to transform in the same way under rotations and
reflections, with the transformation rule corresponding to a particular representation of
the orthogonal symmetry group O(3). For non-relativistic systems, the symmetry group
involves rotations about any axis in three-dimensional space and reflections across any
plane, with the representations corresponding to tensors of various ranks. Here, we will
restrict our attention to the two lowest rank tensors, i.e. scalars and vectors, although the
same approach trivially extends to tensors of any rank (Golden et al. 2023).

2.1. Learning evolution equations and constraints
The functional form of the mathematical model will always depend on the choice of
the variables. The best choice may not be obvious, and this is where relevant domain
knowledge is extremely helpful. In the present problem, we will assume that the variables
are the pressure field p and the velocity field u and that both variables are fully observed.
The pressure is a scalar and the velocity is a vector. The differential operators ∂t and ∇
transform as a scalar and a vector, respectively. Using these four objects, we can construct
tensors of any rank using tensor products and contractions (Golden et al. 2023). For
instance, the terms u, ∂tu and ∇p all transform as vectors. To illustrate the procedure, we
will include all possible terms fn up to cubic in p, u, ∂t and/or ∇ that can be constructed
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from the data and its derivatives, yielding a scalar library

L(3)
0 = {1, p, ∇ · u, ∂tp, p2, u2, p3, u · ∇p, ∇2p, p∂tp, ∂2

t p, p∇ · u, u2p, u · ∂tu}, (2.2)

where u2 = u · u and a vector library

L(3)
1 = {u, ∂tu, ∇p, pu, (u · ∇)u, ∇2u, ∂2

t u, u2u, p2u,

∂t∇p, p∇p, u(∇ · u), (∇u) · u, ∇(∇ · u), p∂tu, u∂tp}, (2.3)

where the superscript denotes the maximal complexity (order, for short) of the terms
included in the library and the subscript, the irreducible representation. Note that the
vector library constructed in this way generalizes the model of flocking in active matter due
to Toner & Tu (1998) by including the most general dependence on the pressure p allowed
by the symmetry. These two libraries, together with the relation (2.1), will form the search
space containing all of the candidate relations describing the fluid physics in the bulk. Note
that scalars and vectors (i.e. rank-0 and rank-1 tensors) are irreducible representations
of the symmetry group O(3). This is not the case for rank-2 tensors, for instance,
which can be broken into three different irreducible representations corresponding to
the symmetric traceless component, antisymmetric component and the trace. Similarly,
scalars and pseudoscalars, or vectors and pseudovectors, belong to different irreducible
representations of O(3). Reflection covariance can be used to exclude pseudoscalars and
pseudovectors such as u · (∇ × u) and ∇ × u from the scalar and vector libraries.

It should be emphasized that no domain knowledge specific to the system, aside from
the symmetry (rotational and translational) and the choice of variables, has been used in
constructing these libraries. For instance, it is not necessary to know that u and p represent
the velocity and pressure of a fluid. This is in direct contrast to most prior studies (Raissi
& Karniadakis 2018; Reinbold et al. 2020, 2021; Messenger & Bortz 2021; Ma & Zhang
2022) that used model libraries directly inspired by first-principles analysis of the fluid
flows considered there.

It is also useful to put the very modest size of libraries L(3)
0 and L(3)

1 in perspective.
In order to identify the evolution equation for the vorticity ω = ∇ × u, Rudy et al.
(2017) used a library analogous to L(3)

1 that was constructed using a brute-force approach
ignoring the symmetries of the problem. The terms that were chosen by the authors
included ∂tω as well as ‘polynomial terms of vorticity and all velocity components
up to second degree, multiplied by derivatives of the vorticity up to second order’,
yielding a set of N = 1 + (1 + 2d + d(d − 1)/2)2 terms in d spatial dimensions. For the
three-dimensional geometry considered here, the corresponding library would contain 101
distinct terms, almost an order of magnitude more than what is included in our more
physically comprehensive library L(3)

1 , which was constructed using symmetry constraints.
In fact, incorporating knowledge of the Galilean invariance in our system would have
allowed for even more compact libraries to be used without loss of expressivity

L(3)
0G = {1, p, ∇ · u, p2, p3, ∂tp + u · ∇p, ∇2p, p∇ · u}, (2.4)

L(3)
1G = {∂tu + (u · ∇)u, ∇p, ∇2u, p∇p, ∇(∇ · u)}. (2.5)

We will, however, use the libraries L(3)
0 and L(3)

1 rather than L(3)
0G and L(3)

1G in the subsequent
analysis to illustrate that, while the knowledge of all the symmetries is useful, it is not
essential.
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2.1.1. The effect of noise
Two common scenarios where equation inference would be of particular value are when
the data are generated experimentally (Reinbold et al. 2021; Joshi et al. 2022; Golden
et al. 2023) or when the data represent coarse graining of the results of direct numerical
simulation. An example of the latter is fully kinetic simulations of plasma used to obtain a
hydrodynamic description (Alves & Fiuza 2022). In both instances, the data will inevitably
be noisy, e.g. due to measurement inaccuracies in experiment or fluctuations of the
computed coarse-grained fields. To investigate the effects of noise, in addition to the
original simulation data downloaded from the turbulence database, we also used synthetic
data with varying levels of additive uniform noise. Specifically, we define the noisy data
fσ = f + σξf sf , where f ∈ { p, ux, uy, uz} are the hydrodynamic fields, σ is the noise level
and ξf is noise independently sampled from the uniform distribution over [−1, 1] at each
space–time point.

Parsimonious scalar and vector relations describing velocity and pressure data can be
identified by performing sparse regression using the libraries L0 and L1, respectively.
In the strong form, the terms involving higher-order derivatives, such as ∇2p and ∇2u,
will be extremely sensitive to noise (Rudy et al. 2017; Reinbold & Grigoriev 2019).
To make the regression more robust, we use the weak form of both PDEs following
the approach introduced in our earlier work (Gurevich et al. 2019). Specifically, we
multiply each equation by a smooth weight function wj(x, t) and then integrate it over
a rectangular spatio-temporal domain Ωi of size Hx × Hy × Hz × Ht. All side lengths of
Ωi are fixed to Hi = 32 grid points of the numerical grid; this size roughly corresponds to
the characteristic length and time scales of the flow field (cf. figure 1).

The derivatives are shifted from the data (u and p) onto the weight functions w whenever
possible via integration by parts, after which the integrals are evaluated numerically using
trapezoidal quadratures. (In the few cases where it is not possible to fully integrate a term
by parts, remaining derivatives are evaluated using finite differences.) For the scalar library
L0, we use scalar weight functions of the form

w(x, t) = w̃(x̄)w̃( ȳ)w̃(z̄)w̃(t̄),
w̃(s) = (1 − s2)β,

}
(2.6)

where the bar denotes non-dimensionalization using the order-preserving affine map
[xmin, xmax] → [−1, 1]. In the case of the vector library L1, we instead use vector weight
functions w(x, t)ek aligned along each of the coordinate axes. Note that, for the term
libraries considered in this problem which involve a Laplacian of p or u, we should have
β ≥ 2, as this allows us to discard the boundary terms generated during integration by
parts. We set β = 8 in our analysis since this choice (i) ensures that all the boundary
terms vanish and (ii) maximizes the accuracy of numerical quadrature along the uniformly
gridded dimensions (Gurevich et al. 2019). The non-uniform grid in the y-direction will
control the error of the quadrature and increasing β further has no benefit. This is
illustrated in figure 2, which shows how the quadrature error scales with β for a test
function cos(2πy). The error decreases quickly with increasing β for the uniform grid,
plateauing at β ≥ 8. In contrast, the error is found to be almost independent of β for the
non-uniform grid.

By repeating this procedure for a number of integration domains Ωi contained within
the full dataset, we construct a feature matrix Q = [q1 · · · qN] whose the columns
qn correspond to the various terms in either L0 or L1. For instance, for the scalar
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Figure 2. Numerical error 
I of the integral Iβ = ∫ 1
−1 cos(2πy)(1 − y2)β dy evaluated using the trapezoid

rule on a 32-point grid. The results are shown for the uniform grid (black squares) and the non-uniform grid
(white squares) representing the y-coordinates of points taken from the middle of the channel.

library L0,

Qij = 1
ViSj

∫
Ωi

w(x, t) fj(x, t) d3x dt, Vi =
∫

Ωi

|w(x, t)| d3x dt, (2.7a,b)

where Sj = S[ fj] is the scale of the library term fj in dimensional units. We estimate the
scales of all library terms using the characteristic time scales Tu, Tp, length scales Lu, Lp,
mean values μu, μp and standard deviations σu, σp of the velocity and pressure fields
across the dataset. For instance, for a vector field u, the length and time scales can be
estimated from the magnitudes of its finite-difference derivatives

Tu ≡ σu√〈∂tu · ∂tu〉 , (2.8)

Lu ≡ σu√〈(∇u) · (∇u)〉 , (2.9)

where the dot products in the denominators are taken over all the indices. We then use
the heuristic that the scale of a library term is the product of the scales of its factors:
S[uv] = S[u]S[v], and for k ≥ 1

S[ p] = μp, S[u] = μu, (2.10a,b)

S[∇kp] = L−k
p σp, S[∇ku] = L−k

u σu, (2.11a,b)

S[∂k
t p] = T−k

p , σp S[∂k
t u] = T−k

u σu. (2.12a,b)

Note that the mass scale does not appear explicitly, as the data are given in units in which
the density ρ = 1. The non-dimensionalization procedure ensures the magnitudes of all
columns are comparable, which can dramatically improve the accuracy and robustness of
regression. The problem of determining the unknown coefficients c = [c1, . . . , cN]� is
cast as the solution of an overdetermined linear system of the form

Qc = 0. (2.13)

In this article, we sample Ωi from a 644-point region of the data lying either in the middle
(i.e. the symmetry plane of the flow) or at the edge of the channel (see table 5). Examples
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of both types of domains are shown in figure 1. We use 256 randomly sampled integration
domains Ωi with 324 gridpoints to construct the system (2.13). This yields M = 256 linear
equations on the coefficients of L0 and 3M = 768 linear equations on the coefficients
of L1. A discussion of how the results are affected by correlated noise, the number of
integration domains used and the resolution of the data can be found in Appendix B.

2.1.2. Selection of parsimonious relations
Note that the linear system (2.13) is homogeneous and treats all terms in the library on
equal terms. This is in contrast to SINDy (Brunton et al. 2016) and its variants (Messenger
& Bortz 2021) that solve an inhomogeneous linear system, or many such systems in
the case of SINDy-PI (Kaheman et al. 2020). Its solutions have a degree of freedom
corresponding to the normalization of c, which can be eliminated by arbitrarily setting
one of the coefficients, say c1, to unity, as done in SINDy, or by fixing the norm of c as in
this study. The solutions of a constrained least squares problem

c = arg min
‖c‖=1

‖Qc‖, (2.14)

are given by the right singular vector of Q corresponding to the smallest singular value. It
is worth noting that, when multiple singular values of Q are small, there may be several
‘good’ independent solutions for c representing different dominant balances. This is a
less restrictive approach compared with SINDy and allows a broader class of functional
relations to be identified. It is also more computationally efficient than SINDy-PI, which
aims to address the same limitation.

In order to obtain a parsimonious physical relation, we must find a sparse coefficient
vector c∗ such that the residual ‖Qc∗‖ is comparable to the residual ‖Qc‖ with dense c
given by (2.14). The identified relations either contain a single term or several terms. If the
matrix Q has been properly non-dimensionalized, single-term relations will correspond
to columns with small norms. We will use the heuristic that fj = 0 is a valid single-term
relation if ‖qj‖ � √

M, where M is the number of integration domains. In particular, for
the data without added noise, the scalar library L0 is found to contain terms with ‖qj‖ ≈
10−6

√
M, which correspond to the incompressibility condition

∇ · u = 0, (2.15)

and its trivial corollary p∇ · u = 0. Both single-term relations are found using data
from the middle of the channel as well as data near the boundary. The single-term
relation heuristic crucially relies on proper non-dimensionalization such that velocity
gradients are O(1). A more general approach is to compare with the characteristic size
of the uncontracted tensor, which in this case is the rate of strain ∇iuj. In contrast,
prior sparsification algorithms such as SINDy (Brunton et al. 2016), implicit SINDy
(Mangan et al. 2016) and SINDy-PI (Kaheman et al. 2020) are unable to identify
single-term relations, as these are not examined separately. Note that direct identification
of single-term relations is both more robust and more computationally efficient than
identification through regression.

Once the library has been pruned, multiple-term relations can be identified by an
iterative greedy algorithm. At each iteration, we use the singular value decomposition
of Q(N) = [q1 · · · qN] to find c(N) as described previously. We also compute the residual
r(N) = ‖Q(N)c(N)‖. Next, we consider all of the candidate relations formed by dropping
one of the terms and eliminating the corresponding column from Q(N). We select
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the candidate relation with N − 1 terms that achieves the smallest residual and then
repeat until only one term remains. This yields a sequence of increasingly sparse
relations described by N-dimensional coefficient vectors c(N), forming an approximately
Pareto-optimal set (Miettinen 2012). Note that the use of the absolute residual r guarantees
that the residual is a monotonic function of the number of terms N, which is not the case
for the relative residual η = r/ maxn ‖cnqn‖ used by Reinbold et al. (2021) and Golden
et al. (2023).

There are many reasonable ways to select a final relation from this sequence based on the
trade-off between their parsimony (i.e. number of terms N) and accuracy, quantified by the
residuals r(N). For instance, one might select the simplest relation which achieves a relative
residual of less than, say, 1 % or the relation for which discarding a single term results
in the largest relative increase in the residual. In this article, we follow Gurevich et al.
(2019): specifically, we choose the relation described by the coefficient vector c(N) where
N = max{n : r(n)/r(n−1) > γ }, where the parameter γ = 1.25 was selected empirically.
Once the functional form of a parsimonious relation is determined, the mean values of
the coefficients and their standard deviations are computed by subsampling Q 128 times,
with each member of the ensemble constructed using one half of the rows of Q selected
at random. Finally, to enhance the interpretability of the result, the equation is rescaled
by setting the largest coefficient to unity, which defines the mean values c̄n and their
uncertainties sn.

After a sparse single-term or multi-term relation has been identified, one may search
for additional sparse relations contained within the same library. Note that the form
of our libraries implies a simple connection between a relation and its direct algebraic
implications: if c · f = 0, then c · (g f ) = 0 and c · (∂s f ) = 0 for any term g in any of the
libraries and set of partial derivatives s. Moreover, iteratively applying these rules produces
all implied relations (with a higher complexity) for a given base relation (of a lower
complexity). Each implied relation is an equation which allows one of the terms, say the
highest-order one, to be eliminated from the respective library without loss of expressivity.
(In principle, this procedure could reduce sparsity of future identified equations if applied
to many-term relations, but in such cases we find that the most complex term is unlikely to
reappear in another independent equation.)

This can be leveraged to devise a simple and efficient algorithm for finding all relations
contained within each library Lm. Consider a nested sequence of sub-libraries: L(1)

m

containing terms up to first order, L(2)
m containing terms up to second order and so on.

On each sub-library, we repeatedly run single-term and multi-term regressions. Whenever
a new relation is identified, we construct all implied relations in each library and then
eliminate from its appropriate library the highest-order term from the base relation as well
as from each implied relation before re-running the regression. For instance, the discovery
of the incompressibility condition ∇ · u = 0 from L(2)

0 would lead to the identification of
the implied relations p∇ · u = 0, u(∇ · u) = 0, and ∇(∇ · u) = 0 and the elimination of
these terms from L(3)

0 and L(3)
1 . If no more relations remain after eliminating terms, we

advance to the next sub-library (either the same-order sub-library from the next library, or
after all sub-libraries of a given order have been exhausted, the next-order sub-library
from the first library), continuing until each library has been completely examined.
This procedure can be used to identify, for instance, the pressure-Poisson equation
and the energy equation from a scalar library of sufficiently high order, as discussed
below.
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(a)

σ ∂tu (u · ∇)u ∇p ∇2u

c̄n 0 % 0.999996 0.999998 1 −4.99996 × 10−5

50 % 0.9928 0.995 1 −5.1 × 10−5

100 % 0.9927 0.99 1 −5.2 × 10−5

sn 0 % 5 × 10−8 3 × 10−6 4 × 10−6 3 × 10−10

50 % 1 × 10−4 5 × 10−3 8 × 10−3 8 × 10−7

100 % 2 × 10−4 1 × 10−2 2 × 10−2 1 × 10−6

χn 0 % 0.79 1 0.50 0.45
50 % 0.79 1 0.51 0.46
100 % 0.82 1 0.51 0.47

(b)

σ ∂tu (u · ∇)u ∇p ∇2u
c̄n 0 % 0.99986 1 0.99986 −5.003 × 10−5

50 % 0.991 0.990 1 0
100 % 0.988 0.986 1 0
300 % 1 0.983 1 0

sn 0 % 2 × 10−7 1 × 10−6 2 × 10−5 2 × 10−8

50 % 1 × 10−4 1 × 10−3 1 × 10−2 0
100 % 2 × 10−4 1 × 10−3 2 × 10−2 0
300 % 6 × 10−4 5 × 10−3 0 0

χn 0 % 0.99 1 0.07 0.006
50 % 0.99 1 0.07 0
100 % 0.99 1 0.07 0
300 % 1 0.99 0 0

Table 1. Coefficients of the momentum equation (2.16) in the presence of varying levels of noise and data
from (a) the edge of the channel and (b) the middle of the channel. The rows show the mean values of the
coefficients c̄n (normalized by the magnitude of the largest one), their uncertainties sn and the magnitudes of
the terms χn (normalized by the magnitude of the largest term).

2.1.3. Identified equations and robustness to noise
Regression performed using the vector library L(3)

1 identifies a single relation representing
momentum balance

c1∂tu + c2(u · ∇)u + c3∇p + c4∇2u = 0. (2.16)

Table 1 lists the surviving terms fn, the corresponding coefficients cn, their uncertainties
sn and the respective magnitudes χn = ‖cnqn‖ of the terms which can be used to
identify dominant balances in different regions. For data from the edge of the channel,
the Navier–Stokes equation with accurate coefficients, including the small viscosity, is
identified for all noise levels. In particular, for noiseless data, the magnitude of the
viscosity is identified correctly to several significant digits, even though the viscous term
involves a second-order derivative, which is the highest in the equation. The corresponding
sequence of residuals r(N) can be found in figure 3(c).

For data from the middle of the channel, different special cases of (2.16) are identified
for different noise levels. For noise levels up to approximately 15 %, sparse regression
still identifies the Navier–Stokes equation. For higher noise levels (up to 100 %), the Euler
equation is identified instead, also with fairly accurate coefficients. For extreme levels of
noise (up to 300 %), the inviscid Burgers equation is identified. Note that the sequence
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Figure 3. Dependence of the residual r on the number of terms N retained in a given relation in the noiseless
case. Black (white) squares represent data collected near the edge (in the middle) of the channel. The identified
relations are (a) the energy equation, (b) the pressure equation and (c) the momentum equation.

in which the terms in the momentum equation stop being recovered, as the noise level is
increased, corresponds to their magnitudes χn in the middle of the channel.

No multi-term relations are found, for any data set, from the scalar library L(3)
0 ,

suggesting it is incomplete. In order to identify any multi-term relations, this library was
expanded by including terms quartic in u and/or ∇
L(4)

0 = L(3)
0 ∪ {∇2(u2), ∇ · [(u · ∇)u], (∇ · u)2, ∇u : ∇u�, ∇u : ∇u, ∇ · (u2u), u4}.

(2.17)

Note that this expanded library is not exhaustive, i.e. it does not include any fourth-order
terms which involve either p or ∂t. Whenever possible, the additional terms were written in
conservative form to decrease numerical error associated with evaluation of higher-order
derivatives in weak form. Two relations are identified from this expanded scalar library via
sparsification

c1∂tE + c2∇ · (uE) + c3u · ∇p + c4∇2E + c5∇u : ∇u = 0, (2.18)

c6∇2p + c7∇ · [(u · ∇)u] + c8 = 0, (2.19)

where E = u2/2 is the energy density. The two relations are discovered robustly for both
data sampled from the edge and the middle of the channel; however, the order in which
they are found depends on the sampled region. The corresponding sequences of residuals
r(N) can be found in figure 3(a,b), and the values of the coefficients cn for different noise
levels are summarized in tables 2 and 3.

For sufficiently low levels of noise (below approximately 10 %), relation (2.18)
corresponds to the well-known energy equation, again with fairly accurate coefficients,
no matter which region of the flow the data comes from. The accuracy of the coefficients
decreases somewhat as the level of noise is increased, as expected. For data from the
middle of the channel, small terms such as ∇u : ∇u start to disappear as the noise level is
increased, similar to what we found for the momentum equation. Relation (2.19) takes the
form of the pressure-Poisson equation for moderately noisy data from both the middle and
the edge of the channel, also with fairly accurate coefficients. The surprising observation is
that, for noiseless data from the middle of the channel, sparse regression reliably identifies
a small correction to the pressure-Poisson equation, a term proportional to unity. We will
therefore refer to relation (2.19) simply as the pressure equation.

Note that neither the energy equation nor the pressure-Poisson equation is an
independent relation; both can be derived from the Navier–Stokes equation and
the incompressibility condition. Further, note that SPIDER is superior to alternative
approaches to equation inference in both versatility and accuracy: for instance, neither
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(a)

σ ∂tE ui∇ip ∇i(uiE) (∇iuj)(∇iuj) ∇2E

c̄n 10 % 1 1.00 0.99418 0.0000404 −0.0000473
sn 10 % 5 × 10−3 2 × 10−2 3 × 10−5 5 × 10−7 7 × 10−7

χn 10 % 0.69 0.27 0.75 1 0.76

(b)

σ ∂tE u · ∇p ∇ · (uE) ∇u : ∇u ∇2E
c̄n 0 % 0.99334 1 0.993162 0.000048 −0.0000494

1 % 0.99361 1 0.993447 0.000050 −0.0000493
10 % 0.9811 1 0.98074 0 −0.000047

sn 0 % 2 × 10−5 5 × 10−4 7 × 10−6 2 × 10−6 2 × 10−7

1 % 3 × 10−5 9 × 10−4 1 × 10−5 3 × 10−6 3 × 10−7

10 % 2 × 10−4 4 × 10−3 6 × 10−5 0 2 × 10−6

χn 0 % 0.99 0.068 1 0.0011 0.0066
1 % 0.99 0.068 1 0.0012 0.0066
10 % 0.99 0.069 1 0 0.0064

Table 2. Coefficients of the energy equation (2.18) in the presence of varying levels of noise and data from (a)
the edge and (b) the middle of the channel. The quantities c̄n, sn, and χn are defined in the caption of table 1.

(a)

σ ∇2p ∇i∇j(uiuj)

c̄n 0 % 0.99995 1
100 % 1.000 1
500 % 0.99 1

sn 0 % 1 × 10−5 4 × 10−9

100 % 5 × 10−3 2 × 10−6

500 % 5 × 10−2 2 × 10−5

χn 0 % 1.00 1
100 % 1.00 1
500 % 0.79 1

(b)

σ ∇2p ∇i∇j(uiuj) 1

c̄n 0 % 1 0.999789 0.00038
10 % 1 0.9965 0
20 % 1 0.9926 0

sn 0 % 6 × 10−5 4 × 10−6 1 × 10−5

10 % 3 × 10−3 2 × 10−4 0
20 % 6 × 10−3 4 × 10−4 0

χn 0 % 1 1.00 0.0016
10 % 1.00 1 0
20 % 0.99 1 0

Table 3. Coefficients of the pressure equation (2.19) in the presence of varying levels of noise and data from
(a) the edge and (b) the middle of the channel. The quantities c̄n, sn and χn are defined in the caption of table 1.

of the two scalar relations would be identified using SINDy, which assumes either ∂tu or
∂tp to be present. The energy equation has the form of an evolution equation but involves a
temporal derivative of u2 rather than u, while the pressure-Poisson equation is a constraint
which involves no temporal derivatives at all. Finally, note that one can also heuristically
identify the incompressibility condition, the pressure-Poisson equation and the energy
equation from the right singular vectors of Q corresponding to the three smallest singular
values without pruning L4

0. These singular vectors are dense, but only the coefficients
associated with the corresponding dominant balances are O(1).

For both sampled regions, all libraries and all noise levels, the residual r asymptotes
to a constant value for large N. In the noiseless case shown in figure 3, the asymptotic
value of the residual is determined by the discretization of the data, both in the numerical
simulations and in evaluating the integrals using quadratures, as shown by Gurevich et al.
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2 6 10 2 6 10

2 6 10 2 6 10

(a) (b)

(c) (d )

N

r

r

N

10–4

10–2

10–1

100

10–2

100

10–2

10–1

10–2

10–3

100

10–1

100

Figure 4. Dependence of the residual r on the number of terms N retained in the momentum equation for
synthetic data with added noise for noise levels of (a) 10 % and (b) 100 %. The Navier–Stokes equation is
identified in all the cases except for data from the middle of the channel with 100 % noise. In that case, the
Euler equation is found instead. The residual for the pressure equation identified from data with 20 % noise
(c) and for the energy equations identified from data with 10 % noise (d). Black (white) squares represent data
collected near the edge (in the middle) of the channel.

(2019). In the noisy case, shown in figure 4, the asymptotic value of the residual is instead
determined by the level of noise and is higher than in the noiseless case, as expected. It
should be emphasized that physically meaningful relations can be identified in the presence
of very high levels of noise, illustrating the robustness of SPIDER.

The power of the weak formulation compared with the strong form is vividly illustrated
by other physical relations containing Laplacians as well. For instance, the vorticity
equation can only be identified correctly in strong form for noise levels up to approximately
1 %, as shown by Rudy et al. (2017). The pressure-Poisson equation (2.19), which also
contains second-order derivatives, can be identified in weak form for noise levels up
to 20 % (500 %) for data from the middle (edge) of the domain. The energy equation
(2.18) can be identified in weak form using the data from the edge of the channel
with up to 10 % noise and using data from the middle of the channel with up to 3 %
noise. The latter equation is more challenging to identify from noisy data due to the
presence of the term ∇u : ∇u which cannot be integrated by parts and was computed
using second-order accurate finite differencing. However, it should be noted that a more
sophisticated procedure for numerically differentiating the data would likely allow this
equation to be identified even at higher noise levels.

Note that, although we used the absolute residual r in sparse regression, it is the
magnitude of the relative residual η that better quantifies the accuracy of the identified
relations (Reinbold et al. 2021). The relative residuals are indeed quite low: 4 × 10−4(2 ×
10−2) for the energy equation, 2 × 10−3(1 × 10−4) for the two-term pressure-Poisson
equation and 4 × 10−5(5 × 10−5) for the Navier–Stokes equation identified using
noiseless data from the middle (edge) of the channel. The three-term pressure equation
has a relative residual of 8 × 10−4 in the middle of the channel, which is less than a half
that of the pressure-Poisson equation.
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2.2. Learning boundary conditions
SPIDER can also be used to discover boundary conditions. In this case, the rotational
symmetry is partially broken: instead of rotations in all three spatial directions, the
problem is only invariant with respect to rotations about the normal n to the boundary. The
reduced symmetry group describing boundary conditions is O(2). The library of terms that
transform as vectors near the boundary includes n in addition to u and ∇. We exclude time
derivatives, because these can be eliminated with the help of the bulk equations. We also
exclude the dependence on p to keep the library to a reasonable size (this dependence is
trivial to restore). Retaining terms that contain each of u and ∇ at most once (n has unit
magnitude and is allowed to appear an arbitrary number of times) yields a vector library

L2
1 = {u, n, (u · n)n, ∇(u · n), (n · ∇)u, n(∇ · u)}. (2.20)

Next, since they transform differently under rotation about the surface normal n, we
separate the normal and tangential components by applying the projection operators
P⊥ = nn and P‖ = 1 − nn to the library (2.20), where nn represents the tensor product
of the normal vectors. We prune all terms which have identically vanishing projections.
Furthermore, we can also prune all terms involving ∇ · u, since we have already identified
the continuity equation (2.15). This results in two libraries for the boundary conditions

L2
‖ = {P‖u, P‖∇(u · n), P‖(n · ∇)u}, (2.21)

L2
⊥ = {n · u, 1, n · ∇(u · n), n · (n · ∇)u}, (2.22)

corresponding, respectively, to the vector and scalar irreducible representations of the
symmetry group O(2).

Since the boundary conditions only hold on the solid walls y = ±1, each projection
of the relation (2.20) is integrated over rectangular (2 + 1)-dimensional domains Ωk of
size Hx × Hz × Ht confined to one of the walls. Correspondingly, the weight functions wj
are constructed as products of three one-dimensional functions w̃(s) where s = x̄, z̄ or t̄.
Note that the derivatives of the data with respect to the wall-normal (y) coordinate cannot
be eliminated using integration by parts in this case; instead, we evaluate them directly
using finite differences, although other alternatives could be used as well. For all noise
levels up to the maximum of 50 %, valid single-term boundary conditions were always
identified. Specifically, for the normal component, the relation u · n = 0 is identified. For
the tangential component, the relation P‖u = 0 is identified. These can be combined into
the algebraically ‘simplest’ boundary condition

u = 0, (2.23)

which is the well-known no-slip boundary condition.
At sufficiently low noise levels, both the correct governing equations and the boundary

conditions can be identified using only a single integration domain in the bulk and
its projection onto the boundary, provided sufficiently many different weight functions
are used. In particular, the no-slip boundary condition u = 0 and the incompressibility
condition (2.15) are always correctly identified.

3. Discussion

Physical constraints – the first key ingredient of SPIDER – play an essential role in
the equation inference approach described here. The procedure used to construct the
libraries of terms crucially relies on the irreducible representations of the symmetry
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group describing the physical problem. For the bulk equations, it is the orthogonal group
O(3) describing rotations and reflections. In particular, the libraries L0 and L1 represent
two of the irreducible representations of O(3) corresponding to tensors of rank 0 and
1. Other irreducible representations of O(3) can be used to identify additional physical
relations. For instance, the vorticity equation would require a library of antisymmetric
rank-2 tensors, which are isomorphic to pseudovectors by contraction with εijk. For
the boundary conditions, the symmetry group is O(2), representing rotations around
the surface normal n and in-plane reflections; L‖ and L⊥ correspond to two different
irreducible representations of O(2), vectors and scalars, respectively.

Fluid flows have additional symmetries: translational invariance in space and time is
responsible for all of the coefficients being constant. Furthermore, all governing equations
should have Galilean invariance. We could have imposed this symmetry as a constraint
from the start when constructing the libraries, which would have reduced the size of both
scalar and vector libraries even further, as discussed in § 2.1. Instead, we have let the data
uncover this symmetry for us: inspection of the coefficients shows that both identified
equations involving temporal derivatives acquire an explicitly Galilean-invariant form

[∂t + u · ∇]u + ∇p − ν1∇2u = 0,

[∂t + u · ∇]E + u · ∇p − ν2∇2E + ν3∇u : ∇u = 0,

}
(3.1)

with some positive coefficients νi after the incompressibility condition is applied.
Physics also dictates that all data not only transform in a particular manner under

various symmetries – pressure as a scalar and velocity as a vector – but have appropriate
dimensions or units. There is no need to explicitly enforce dimensional homogeneity of all
the terms in the relations (2.1); this is accomplished by properly non-dimensionalizing the
terms fn and treating the coefficients cn as dimensionless constants. However, the physical
units determine the scales Si that play an essential role in non-dimensionalization. This
step is absolutely critical to the success of sparse regression, as the magnitudes of the
coefficients cn are only meaningful once the terms fn have been non-dimensionalized using
proper scales. In particular, it would be entirely unclear whether any single-term relation,
such as the incompressibility condition, is appropriate without a proper scale to compare
it with.

The weak formulation – the second key ingredient of our approach – imparts SPIDER
with unprecedented robustness, allowing it identify correct physical relations from data
with extreme levels of noise, making it indispensable for analysing experimental data.
Weak formulation also allows SPIDER to identify extremely subtle physical effects such
as viscous stresses near the midplane of the flow where velocity gradients are small.
Note that all of the coefficients in the energy and momentum balance equations (3.1) are
very close to their true values of either unity or the viscosity ν0 = 5 × 10−5 used in the
numerical simulations. Table 4 shows the deviation of the learned viscosity coefficients νi
from the actual value. In particular, the viscosity ν1 appearing in the momentum equation
is identified with remarkable precision, especially near the boundary, where the velocity
gradients are large. On the contrary, the values of the viscosity ν2 and ν3, which appear
in the energy equation, are substantially less accurate, which reflects the manner in which
the energy dissipation term ∇u : ∇u is computed. There is no way to move all of the
derivatives contained in this term onto the weight function, so these derivatives must be
calculated numerically. In this work, we used central finite differencing for all first-order
derivatives that cannot be eliminated, incurring a substantial error quadratic in the grid
spacing. To obtain ν2 and ν3 with higher accuracy from noiseless data, a higher-order
differentiation scheme could, in principle, be employed.
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ν1/ν0 s1/ν0 ν2/ν0 s2/ν0 ν3/ν0 s3/ν0

edge 0.999992 6 × 10−6 1.04 0.01 1.04 0.01
centre 1.0006 4 × 10−4 0.988 0.004 0.972 0.04

Table 4. The mean values νi and uncertainties si of the coefficients corresponding to viscosity in (3.1), all
normalized by the true viscosity ν0 = 5 × 10−5 of the dataset. The uncertainty is estimated by rerunning the
regression M/2 = 128 times using a random sample of only half of the integration domains and taking the
sample standard deviation of the resulting coefficient vectors.

Sparse regression is the third key ingredient of SPIDER, and our regression algorithm
based on singular value decomposition of the feature matrix has several advantages
compared with SINDy and its various alternatives. First of all, as mentioned previously,
the important dominant balances can be identified by inspecting the smallest singular
values even without performing sparsification. Furthermore, the magnitude of the smallest
singular value can be used to determine, again without performing sparsification, whether
the corresponding library contains any meaningful relations describing the data and,
hence, whether it needs to be expanded.

For the vector library (2.3), very different dominant balances are found in the two
sampled regions, as the magnitudes χn = ‖cnqn‖ of different terms listed in table 1
illustrate. Near the boundary, all four terms in the Navier–Stokes equation are of
comparable magnitude, so it is not surprising that the same relation is identified for all
listed noise levels. For data from the middle of the channel, the dominant balance involves
only the terms ∂tu and u · ∇u. In comparison, the term ∇p is smaller by more than an order
of magnitude, and the viscous term is smaller by more than four orders of magnitude. (That
such a small viscous term can be identified – at noise levels that are as large as 15 % – is due
mainly to the exceptional robustness of the weak formulation.) These large differences in
the magnitudes of different terms explain the order in which the inviscid Burgers equation,
the Euler equation and the Navier–Stokes equation are identified as the noise magnitude is
decreased. All three equations accurately describe the flow in the midplane of the channel
and all three equations belong to the Pareto-optimal set generated by our greedy regression
algorithm. Our choice of stopping criterion is one, but far from the only, way to choose
between these three equations.

Let us comment on one unexpected result pointed out previously. As figure 3(b)
illustrates, for noiseless data from the middle of the channel, SPIDER fairly consistently
identifies a spurious term α in the pressure equation

∇2p + ∇ · [(u · ∇)u] + α = 0. (3.2)

Most commonly, this term is a small constant, as shown in table 3, and its magnitude
χn = O(10−3) is much less than unity. Including this extra term decreases the residual
r by a factor between 1.2 to 2 depending on the sample of integration domains, which
does not always surpass the threshold γ = 1.3 used in the greedy algorithm. However,
(3.2) is consistently identified as the most accurate three-term relation for four of the
five data subsets described in Appendix A. For one subset (centre5), the spurious term
is instead consistently identified as a multiple of E, with a similarly small coefficient
cn and magnitude χn. Including either term does not produce a noticeable improvement
in the residual for noiseless data from the edge of the channel (edge1), where the
residual decreases by a much smaller factor of 1.02. Oversmoothing by the weak
formulation can, in principle, lead to inaccuracy in inferred relations. However, we find
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Figure 5. Dependence of residuals in (a) the pressure equation and (b) the momentum equation on the β

hyperparameter. The solid (dashed) curves correspond to data near the middle (edge) of the channel.

substantial inaccuracy in the pressure-Poisson equation in strong form as well, as shown
in Appendix C. The data presented there instead suggest that the presence of a spurious
term likely reflects the limited resolution of the numerical solution in the middle of the
channel, where the computational grid is the coarsest.

All the results presented here were obtained for the choice of the weight function
exponent β = 8, which in figure 5 we find to roughly minimize the residuals of both the
pressure-Poisson equation and the Navier–Stokes equation in both regions. Any choice in
the range 6 ≤ β ≤ 10 yields comparable residuals. For uniform grids, it is advantageous
to use higher values of β (Gurevich et al. 2019); this improves the accuracy of the
quadratures used in evaluating different library terms in weak from. The increase in the
residual at higher values of β is due to non-uniformity (in the wall-normal direction) of
the computational grid on which the data is available.

Finally, note that the approach presented here could be generalized to identify both
governing equations and boundary conditions with parametric variation in space and/or
time. Parametric variation can be easily detected by applying regression to subsets of
data confined to small spatio-temporal volumes located at different positions. If the same
functional relation is found but the coefficients differ, these variable coefficients could be
replaced with a linear superposition of some basis functions and the regression repeated
on the expanded library, as done by e.g. Rudy et al. (2019).

4. Conclusion

To summarize, we have shown that a combination of very general physical constraints,
weak formulation of PDEs and sparse regression yields an extremely powerful model
discovery tool, which we call SPIDER. It allows one to identify complete and easily
interpretable quantitative mathematical models of continuum systems, such as the highly
turbulent fluid flow considered here, from even very noisy data. Moreover, SPIDER
provides information about the relative importance of different physical effects in various
regimes represented in the data.

The utility of the approach presented here is not limited to fluid dynamics. This same
approach can be used to identify mathematical models of numerous high-dimensional,
nonlinear, non-equilibrium systems that have defied traditional first-principles modelling
approaches. Some examples include high energy density plasmas, as found inside the
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Subset Ix Iy Iz It

centre1 [1024,1088] [256,320] [750,814] [2000,2064]
centre2 [1,65] [256,320] [750,814] [1000,1064]
centre3 [1024,1088] [256,320] [750,814] [500,564]
centre4 [1524,1588] [256,320] [850,914] [500,564]
centre5 [1724,1788] [256,320] [850,914] [500,564]
edge1 [1024,1088] [1,65] [768,832] [2000,2065]

Table 5. The grid indices representing boundaries of the space–time domains from which integration
domains were sampled.

stars and the interior of fusion energy devices, and excitable media such as cardiac or
intestinal muscle tissue and biological neural networks. Other interesting applications
include active matter systems such as animal herds, bird flocks, insect swarms, fish schools,
bacterial aggregates, self-propelled particles and even collections of robots – these are
formally discrete but may possess useful continuum models. Most active matter systems
lack quantitative mathematical models while exhibiting interesting collective behaviours
that could be better understood within the framework of such continuum ‘hydrodynamic’
models (Toner & Tu 1998). Initial data-driven efforts to construct such models have already
been made (Messenger & Bortz 2022; Supekar et al. 2023).
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Appendix A. The sampled data locations

The data used by SPIDER were obtained from the web cutout service of the Johns
Hopkins turbulence database. The grid indices of the space–time regions of the data
are summarized in table 5. Data subsets centre1 and edge1 were used to generate all the
reported results, while subsets centre2 through centre5 where used to investigate spurious
terms in the pressure equation (3.2).

Appendix B. The impact of noise correlation and data sampling

In this section we discuss how the accuracy of our results is affected by varying several
hyperparameters in the model discovery process. The momentum equation (2.16) will
be used to demonstrate the scaling of the relative error in the coefficients, εn = |cinf

n −
cthe

n |/|cthe
n |, where the superscript refers to the inferred (inf ) or theoretical values (the). To

facilitate comparison, the coefficients are scaled such that ‖c‖ = 1 in both cases.
Correlated noise with spatial correlation length �c = k−1

c is generated by applying an
inverse Fourier transform to a source F(k), where F(k) = F∗(−k) is drawn randomly
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Figure 6. The relative error εn in the coefficients of the Navier–Stokes equation. (a) Dependence of εn on the
spatial correlation length �c. (b) Dependence of εn on the number of integration domains M. (c) Dependence
of εn on the subsampling factor S. In all panels, the solid (hollow) triangles correspond to the pressure gradient
∇p (viscous dissipation ∇2u) and the solid (hollow) circles correspond to advection (u · ∇)u (time derivative
∂tu).

from a uniform distribution with zero mean for wavenumbers k ≥ kc and F(k) = 0 for k <

kc. This noise is then rescaled so that the standard deviation is unity, and independently
drawn noise is added to each hydrodynamic field, weighted by the standard deviations of
the respective fields. The impact of spatial correlation on the coefficients can be seen in
figure 6(a), which shows the results computed for noise with 10 % amplitude. As expected,
increasing spatial correlation leads to a (slight) decrease in the accuracy of the coefficients,
with εn saturating for all four coefficients when �c exceeds 10 % of the size �domain of the
integration domain. It is worth noting that weak-form regression was also found to easily
handle noise characteristic of particle image velocimetry in Reinbold et al. (2021) and
Golden et al. (2023).

Note that the scaling of the accuracy of weak-form regression with both the amount
of available data and the resolution of the data has been investigated both empirically
and theoretically in the context of the Kuramoto–Sivashinsky equation by Gurevich et al.
(2019). We repeat the scaling analysis for the channel flow data here. To determine how
the accuracy εn varies with the amount of available data, regression was performed by
constructing a reference Q matrix with 768 rows (integration domains) and using only the
first 3M of these rows. The results for noiseless data are shown in figure 6(b). Note that
increasing M does not bring meaningful improvement in the accuracy of the coefficients,
which reflects that, in the noiseless case, the magnitude of εn is mainly controlled by the
resolution and/or accuracy of the data.

To determine how the accuracy εn is affected by the spatial and temporal resolution of
the data, the gridded hydrodynamic fields were subsampled by a constant factor S. For a
subsampling factor S, every Sth gridpoint (in every direction) is used in the calculation
of weak-form integrals. The physical size of integration domains was held constant, so
O((32/S)4) points were used to approximate the integrals for each S considered. The
results are shown in figure 6(c). Our results suggest that velocity data are reasonably
well resolved in space and time as the accuracy for S = 2 is the same as that for the
computational grid (S = 1). Decreasing the resolution further (S ≥ 3) leads to a substantial
decrease in the accuracy, especially for the coefficient c4 representing viscosity. For S = 4,
the Euler equation is selected instead of Navier–Stokes, which corresponds to c4 = 0 and
ε4 = 1.
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Figure 7. Individual terms in the pressure-Poisson equation and their sum at a random collection of spatial
locations. The first column shows −∇ · [(u · ∇)u], the second column shows ∇2p and the third column shows
the sum ∇2p + ∇ · [(u · ∇)u]. (a–c) Correspond to y = −0.149 and t = 17.084, (d–f ) correspond to y = 0.089
and t = 11.987, (g–i) correspond to y = −0.982 and t = 20.543, ( j–l) correspond to y = −0.989 and t =
12.452. The colour bar for the sum is centred at its spatial mean, which is roughly two orders of magnitude
smaller than the maximum of the sum.

Appendix C. The accuracy of the pressure field data

Spurious terms frequently identified by SPIDER in the pressure equation (3.2) raise a
question about the accuracy and resolution of the pressure data contained in the channel
flow database. To quantify the typical accuracy to which the pressure-Poisson equation is
satisfied, we used the provided MATLAB script that computes, in random x–z planes, the
terms ∇2p, ∇ · [(u · ∇)u] as well as their sum (or residual), ∇2p + ∇ · [(u · ∇)u], which
should vanish for an exact solution. For derivatives evaluated using finite differences, the
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residual of the pressure-Poisson equation is found to be in the range of 5 %–20 % of the
magnitude of either term. Figure 7 shows some representative examples both in the middle
of the channel (a–f ) and near the bottom boundary (g–l). Each plot corresponds to a region
of 25 × 25 grid points, which is comparable to the size of our integration domains. The
spatial structure of the residual suggests that the pressure solution is not fully resolved,
which is entirely consistent with the results of SPIDER. The magnitude of the spurious
term identified by SPIDER is two orders of magnitude smaller than the maximal size
of the residual of the pressure-Poisson equation but is comparable to the mean of the
residual, providing further evidence that the spurious terms reflect the limited resolution
of the pressure data. As indicated in the README documents accompanying the data, the
simulations used spectral differentiation. However, for the finite grid resolution used in
the simulations and for storing the data, evaluation of equation terms that use different
formulations for the differentiations (e.g. finite differencing or weak formulations as
used here) is expected to lead to non-negligible errors, especially for terms involving
higher-order derivatives such as the pressure Laplacian.
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