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ABSTRACT

Usual periodic orbits have periods of the order of magnitude of a few
revolutions. However if we consider much longer periods it is possible
to find, for three given masses, periodic orbits in any neighbourhood
of arbitrary given initial eccentricities and inclinations provided
that the distance of the outer body is sufficiently large with respect
to the mutual distance of the two inmer bodies.

INTRODUCTION

Euler and Lagrange found the first periodic orbits of the 3-body
problem. Later, using the symmetries of the problem, Poincaré described
a very general way for the construction of periodic orbits (Poincaré
1892 - 1893 - 1899) and considered them as our essential key for the
understanding of that problem. He formulated this conjecture : "In the
phase space of the 3-body problem the set of periodic orbits is dense
in the set of bounded orbits'". Since then many families of periodic
orbits have been found both in the restricted case and in the general
case and a method is proposed here for the research of periodic orbits
of arbitrary inclinations and eccentricities, but of very long period.

NOTATIONS

Let us use the ordinary Jacobi decomposition of the 3-body motion into
the "inner motion" (i.e. the relative motion of the two nearest point-
mass my and mg ) and the slower outer motion (i.e. the motion of the
third point-mass m3 with respect to Oi.a the center of mass of m4 and
mg ). The usual osculating elements of the inmer and outer orbits will be:
a,e,iL, N, , M, 83,63 ,t3, 13, w3 , M3 €D
(semi-major axis, eccentricity, inclination, longitude of the node, argu-
m;nt o§ the pericenter, mean anomaly; with subscripts 3 for the orbit
of m3 ).
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Figure 1 - P and Py are the pericenters of inneraand outer orbits.

We will choose the polar reference direction in the direction of
angular momentum, the line of nodes is then in the equatorial plane,
the angles co and wjgare also the angles between the line of nodes and
the pericenters directions (fig. l), the mutual inclination j is equal
to i+ ig and the longitudes& and ) g are related by ﬂ =Q+T

1. PERIODIC ORBITS

The Poincaré conditions of symmetry are :

O0=sinM=sinMg = sin2co = sin (o3 -w) (2)
If they are satisfied at some instant t4 there is a past-future
symmetry : the three mutual distances are even function of time with
respect to ty , if they are also satisfied at some other instant tg
the two symmetries imply the periodicity with the period 2 (ta2 - t4 ).
Hence starting from initial conditions satisfying (2) we shall look
for a second passage at these conditions and thus we shall look for
initial a, e, i, a3 , e3 , i3 leading to such a second passage.

2. FIRST ORDER SECULAR APPROXIMATION

If the ratio (my + mg + mg3 ) aal (my, +mg) ag (1 - e?;)3 is small
the use of Delaunay's variables and a proper Von Zeipel transformation
(Marchal 1977) lead to "secular elements" ag, eq, is , s, Wg

Mg and a2y, ey, iy ,ﬂx,o.,,M.,.very near to the corresponding osculating
elements a, --» M, ag, == M3 but with much smaller short perlod varia-
tions. The ' secular mutual inclination" jg is equal to ig + iy and is
near j = i + iy

The symmetries of the transformation lead to symmetry conditions :

0 = sin Ms = sinMy = sin 2cwg = sin (w.,.—cos) (3)
and in the first order approximation the 3-body problem is integrable :
ag , a-.- s et , dMg /dt, dM; /dt are constant.
ﬂs, T (=Q5+ and . are ignorable and given by final quadratures.
ig and iy are given interms of ag, eg , a-.. , e+ s jg by :

0<¢,\Jss'ﬂ' 3 Oslq.S] < = js (4)

sin ir /sin ig =m,m ma(m +my)” "(m +m +rn3)"“[a (l-e’)/&.,.(l e,-)] (5)
Finally the three remaining e ments e w are related :

(v}: e?)(l-»- sm j,) + Sefsmie sin w; = { isconsgahet ated by (6)

cos jg = e2)""2 _B(i-e2)2
(A and B being two constants : B =0.5m, mgun, m+m,) (”*"k*"‘s)/t//“r(' crjz
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and the variations of ey ,ws, js are glven by the final quadrature :

des Jt K e,(l-e*)/’ sin? Js sin2 ws (8)
with, G being “the constant of the law of n1versa;./attract10n :

K =1.875 62 mg(m,+my)’ 1@s/a (1-e2)]"% constant  (9)
It leads to motions in which eg , jg s ,df)/dt,dw,/dt are generally
periodic (with the same periodmuch larger than that of the mean
anomalies Mg and My ) but sometimes the secular motion is asymptotic
(either to eg = 0 or to js =Wor to sinwg= 0 or to cos ws= 0 for
proper values of the integrals A, B, Z; for instance the motion is
asymptotic to eg= 0 if Z = 2- (A-B) s 14AB=B and 3 > (A-B)(5A-3B)).
With that secular motion it is easy to look for periodic orbits by the
Poincaré method, i.e. to determine initial conditions satisfying the
Poincaré symmetry conditions (3) and leading to a second passage at
these conditions, these "approximated periodic orbits" are even dense
everywhere in the region of interest. However we have only studied a
first order approximation, let us consider now the upper order effects.

3. ANALYSIS OF THE UPPER ORDER EFFECTS

Let us use M-,- as parameter of descrlption instead of the time, it gives:
A) dMs/dM-r is very near to the ratlo ; the mean angular motions ng /ny,
that is [(m,+m,_)a-r/(m,+m9_+m3)as or, in terms of the "quasi
integrals" B and er 2 we can write :

JM;AMT [m3mg (m, +m1+m3)/8m3(m.+m,) *B(-e )/3_](I+O(e)) (10)
With : €= [m,meahay + my(memea3]/[23 (- e 7 inffes @ rHpmrmg] (1)
Note that, since by hypothesis (m, + ma + m3 ) @® / (m, + mg ).
a3 (1 - e3 )® is small, the ratio dMs /dM-r is large.

B) Withx=1 - " we obtam s:.mlla
Jxﬂﬂrs-ﬂﬂ‘m}’ ‘3m3(m.+m,)(m+mg+mg [{Z—2x+(h-3x)’}{(5‘Z)X-3X9‘+(4x'5)(A'3)99' }+°(€§(12)
with the + ugn:-sxgt(o =sign ( - sin 2wg+ 0( €2 )) and :

€9 = [Rsfaves(i- e-r)”*J sup{[nm-m.l/(mm,)] [(m+m,+m3)ag/(m+m,)a1(l ef)] } (13)
On the other hand, with &;= & (1-eg)y'®

deoy/iMr= 6B m,_m?(m-rmg(m,+n§+ng)’[3(5-5‘2*1*);'(209("*3")["' (34T *0(53\] (14)

And finally, w &€y = 72 /inf fey ;e

r)
dwe_ 6P3mjy (mi+m "xV’- X [=-2x+(A-B, A Bi)(ABx-20:3)+ 15)
dMy m? m'i (m+mgt [2+2AB Bt X (1-X)[x -(A-Bx)*]

Note that : A) Jx/dM-r, Jw.,.ﬂM-r ,JwaﬁM‘r are small, of the order of
dMy /dM s or even smaller. The three-body motion of interest is the
composition of two slowly perturbed Keplerian motionms.

B) If we neglect the error terms and the small variations
of the "quasi integrals" ey , A,B,Z, the equation (12) is a quadrature
and we obtain the integrable system of the previous section.

C) es only appears in the error terms and in dMs /dM~y .
Hence, taking account of the continuity of the problem and of the small
variations and the independance of e+ , A,B,Z, if we consider an
"approximate periodic orbit" of the previous section we can obtain a
true periodic orbit by a modification of the initial values of e,

. A,B,Z of the order of sup ( & , €3, €4 ) provided that the three
modifications $A, B and $Z imply independant final modifications
Sw.,. and Soos in the integration of (14) and (15) without error terms
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(as it is everywhere the case except on some submanifolds).
More precisely let us put € =sup ( &, , £3, £4 ) in the interval

(ty 5, t2):
Ime-m|  [(mrmetmyag 772 [ )
. _a ] . | (Mitmgtmg) ds l ; 3 . 3 16)
€= ar (1-e2)5R sup{m_'_mz ’[(M,-rm)a-r i-ef) P e)lr-'g:t'e -gt e¥l-

(t; and t4 are the Poincaré instants of symmetry; eg varies in (t,,tq)).
Then, if & is small with respect to | and if the above condition of
independance of $wg and Sw, is respected, we obtain in the vicinity
of the "approximate periodic orbit" of interest a ome non trivial
parameter family of true periodic orbits (of the same 4M;s,AM, A, ,A e,
per period) inside the region defined by :

$Z ; $(A-Bx) ; 8B/B ; 382 = O (¢) 17)
That is, with the ordinary osculating parameters a, e, azg, es and j
(mutual jinclination) in the regigp defined by :

S(Ln (3/2); $(Y),; $(e3) ; $(cosj)= O (e) (18)
Note 1 - The trué periodic orbits, obtained by this method are sometimes
called "relative periodic orbits" or "periodic orbits in a rotating
frame of reference". The absolute periodicity must take account of the
motion of the elements () and .Qs(with- La= ) +TT ),
In general the absolute periodic orbits are dense along the one-
parameter families of relative periodic orbits, they correspond to
rational values of AQ/21T during one period of the relative motion.
Note 2 - £ is infinite when eg goes to one, hence the method doesn't
work for oscillating orbits of the second kind (Marchal 1977) in which
the bodies m; and my have an infinite number of approaches as close as
desired (but they don't have a strict collision). These orbits fill a
set of positive measure of phase space, one of them has been integrated
by Hadjidemetriou (Hadjidemetriou 1977).
Note 3 - The relation (18) doesn't imply the denseness of periodic orbits
even in the regions of small € and the Poincaré conjecture remain
open. However, if we consider arbitrary orientations, we can select any
small open set of the ll1-dimension space of elements (a, e, i, ™M
e,,i3,{l3,w;3,My) : that set is crossed by periodic orbits for all suf-
ficiently large values of aj .

CONCLUSION

The research of periodic orbits of very long period has led to many
new families of periodic orbits of arbitrary inclinations, eccentrici-
ties and orientations (for any 3 given masses, both in the restricted
and in the general case), the Poincaré conjecture on periodic orbits
remain open but it is likely true.
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