
ON MATRIX COMMUTATORS OF HIGHER ORDER 

D. W. ROBINSON 

Introduction. Let Fn be the collection of n-by-n matrices over a field F. 
For Y in Fn let AY be the mapping on Fn given by XAY = XY — YX. In 
this paper we study the following 

PROPOSITION. Let A and B be in Fn and let m be a positive integer. If BAx
m = 0 

whenever XAA
m = 0, then B is a polynomial in A with coefficients in F. 

The case m = 1 is the classical result that if B commutes with every matrix 
that commutes with A, then B is a scalar polynomial in A (cf. 10, p. 106; 
5, p. 48; or 2, p. 536). The case m = 2 has been investigated by M. Marcus 
and N. A. Khan (4) when F is algebraically closed and of characteristic zero, 
and the proposition itself has been established by M. F. Smiley (8) provided 
F is algebraically closed and of characteristic zero or prime p > n. 

Recently, O. Taussky (9) has asked if this proposition is valid in case .Fis 
not algebraically closed. In this paper we provide an affirmative answer to 
this question. Indeed, with F an arbitrary field of elements, the proposition 
is an immediate corollary of the classical theorem and the two theorems given 
below. 

1. Preliminary considerations. In this section we give the basic facts 
that are needed for the proofs of the theorems. 

First, we call X Ç Fn semi-simple if the minimum polynomial of X is 
relatively prime to its derivative, and prove (8, p. 353 and 6, p. 776) 

LEMMA. If F is a field and X £ Fn is semi-simple, then BAx
m = 0 for some 

positive integer m implies BAX= 0. 

Proof. Let Mix) be the minimum polynomial of X. If BAX
2= 0, then we 

have identically (cf. 7, p. 487) 

0 =BAM(X) = M'(X)(BAX). 

If, moreover, X is semi-simple, then Mf (X) is non-singular and BAX= 0. That 
is, X semi-simple and BAX

2= 0 implies BAX= 0. The lemma now follows by 
induction on m. 

Second, let A and B be in Fn. We say that B has property P in F relative 
to A if XAA

2= 0 and X semi-simple implies BAX= 0. Also, for m a positive 
integer, we say that B has property Pm in F relative to A if XAA

m = 0 implies 
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BAx
m = 0. We observe that the proposition above may now be restated to 

read that B has property Pm in F relative to A only if B is a polynomial in 
A with coefficients in F. Furthermore, we note from the lemma that property 
Pm for m > 1 implies property P. 

Third, we shall have occasion to use the well-known fact that if A G Fn is 
cyclic and commutes with B G Fn, then B is a polynomial in A with coefficients 
in F (5, p. 45). 

Finally, we note that if F is of characteristic prime p, for A and B in Fn 

and / a positive integer, 

J3A, 
* = 0 -O ^ l * ^ - * = B^*' - 4*'B = BAAP

f 

2. The separable case. In this section we consider the case in which the 
minimum polynomial M(x) of A G Fn is separable (i.e., none of the irreducible 
factors of Mix) has a zero derivative (11, p. 65), and prove 

THEOREM 1. Let F be a field and let A G Fn. Assume that the minimum poly­
nomial of A is separable and let B G Fn have property P in F relative to A. Then 
B is a polynomial in A with coefficients in F. 

Proof. We first show that it is sufficient to consider the case in which the 
minimum polynomial M(x) of A has only one irreducible factor. Indeed, let 
Ei, . . . , Ek be the principal idempotents of A associated with the respective 
irreducible factors wi(x), . . . , irk{x) of M(x) (1, pp. 130-132). Since A com­
mutes with each Eu by property P , B also commutes with each Et. It follows 
that Et B has property P relative to Et A in the algebra of matrices of the form 
Et X where Et X = XEt and X G Fn. Thus, by assumption, 

EtB = Qi(Et A) = Et Qi(A) for some Qt(x) G F[x] (i = 1, . . . , k). 

Consequently, since Et = Ri(A) for some Rt(x) G F[x] (i = 1, . . . , k), 

B = £ i G i W ) + . . . + £*G*(^) 
is a polynomial in A. 

Second, wre show that it will suffice to consider the case in which A is 
cyclic. Indeed, let ir(x) of degree r be the sole irreducible factor of M(x). By 
a similarity transformation we may assume that A = diag(^4i, . . . , A t), 
where each A_?• is cyclic with minimum polynomial (ir(x))si, s± > s2 > . . . > st, 
and each A * has the canonical form 

c u 0 . . 0 0 
0 c u . . 0 0 

1 — 
0 0 0 . . c u 
0 0 0 . . 0 c 
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where C is the companion matrix of ir(x) and U is the r-by-r matrix with 1 
in the (r, Imposition and zero everywhere else. If Xj = diag(0, . . . , IrSj, . . . ,0) 
is conformai with A, then property P implies that B commutes with X$ 

(j = 1, . . . , t). Thus, B = diag(.Bi, . . . , Bt) and is conformai with A. Now 
for j ^ 1, let Gj be the block matrix conformai with A such that the (1, 1) 
block is Ir8l, the (1, j ) block is 

[v]. 
and the remaining blocks are all zero. Since 

it is clear that Gj AA = 
that BAGj = 0. Thus, 

0. Also, since Gj is idempotent, property P implies 

Mo' : ] 
Next, it is evident that property P of B relative to A implies that Bi has 
property P relative to A\. Since A\ is cyclic, we have by assumption 

0 Bi = Q(A •>-[°?J ; ] 

c Ir 0 . . . 0 0 
0 c Ir .. . 0 0 

0 0 0 . . . c / , 
0 0 0 . . . 0 c 

for some Q(x) G F[x]. Thus, Bj = Q(Aj) (j = 1, . . . , t) and B = Q(A). 
Finally, to complete the proof of the theorem, let A be cyclic with minimum 

polynomial (7r(x))s, where ir(x) of degree r is irreducible in F[x]. Since ir(x) 
is separable, by a similarity transformation we may assume that 

A = 

where again C is the companion matrix of T(X) (3, p. 115). Also, as in (8), 
let D = diag(/ r , 21 r, . . . , sIT) and N = A — diag(C, C, . . . , C) and find by 
direct calculation that DAA = — N and NAA = 0. 

If the field F is of characteristic zero, then D and D + N are semi-simple 
and property P implies that BAD = BAD+N = 0. If F is of characteristic prime 
p, then D + N is not necessarily semi-simple. However, by introducing 
G = DN, we observe that D + G and Z) + G + iV as well as D are semi-
simple. This is because each has minimum polynomial (x — 1), (x — 2) . . . 
(x — s) when p > 5 and (x — 1) (x — 2) . . . (x — p) when p < s. Thus 
again property P implies that BAD = ^ A ^ ^ = 0. 

Next, partition I? into r-by-r blocks 6^ (i, j = 1, . . . , s). If F is of charac­
teristic zero, then the results of the preceding paragraph easily require that 
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B = diag(6, . . . , 6), where b = bn> Also, if F is of characteristic p, then it 
follows that bij = 61,^+1 if j — i = kp {k = 0, 1, 2, . . .) and btj = 0otherwise; 
that is, if Bkp = diag(&^, . . . , bkp), where bkp = bitkp+h then 

S = £0 J + Bp Np + B2p N2p + . . . . 

Now, since T(X) is separable, S = diag(C, C, . . . , C) is semi-simple. More­
over, it is clear that SAA = 0. Thus, by property P , BAS = 0; that is, 
bAc = 0 and bkp Ac = 0 in the respective cases above. Consequently, because 
C is cyclic, b and bkp are polynomials in C. It follows that BAA = 0, and 
because 4̂ is cyclic, B is a polynomial in A. This completes the proof of 
Theorem 1. 

3. The inseparable case. In this section we drop the separability condi­
tion, but we are required now to replace property P by the stronger property 
p 

THEOREM 2. Let F be a field of characteristic prime p. Suppose that B G Fn 

has property Pm in F relative to A G Fn and let the non-negative integer f be 
determined by pf~l < m < pf. Then B is a polynomial in Apf with coefficients in F. 

Proof. As in the proof of Theorem 1, we note first that it is sufficient to 
consider again the case in which the minimum polynomial of A has only one 
irreducible factor. This follows from the proof above together with the fact 
that with F of characteristic p, the idempotent Et = Rt(A) is expressible 
as a polynomial in Apf. Indeed, 

Et = E? = (Ri(A)Yf = R y\Avf), 

where the coefficients of the polynomial Rt
{pf){x) are simply the pf powers 

of the respective coefficients of Rt(x). 
Furthermore, the second part of the proof of Theorem 1 may be applied 

directly to show that it is again sufficient to consider A to be cyclic. Thus, we 
now assume that A has minimum polynomial (TT(X))S, where w(x) of degree r 
is irreducible over F and n = rs. Furthermore, we suppose T(X) is inseparable 
of degree pe (11, p. 67). Without loss of generality we take 

"0 1 0 . . . 0 
0 0 1 . . . 0 

_a0 a! a2 . . . aw_i_ 

in natural normal form, where 

(TT(X))S = xn — an_i xn~~l — . . . — «i x — ao. 

Because T(X) is inseparable of degree pe, it is expressible as a polynomial in 
xpe; that is, at = 0 unless pe | i. Therefore, for any integer / such that 
1 < pf < pe, it follows that 
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Apf = 

0 
0 

0 
Ipf 

do Ipf apf Ipf a2pf Ipf 

0 
0 

®(nf-l)pf Ipf 

where n = pfnf. Therefore, if F(pf) is defined to be the field of elements of the 
form alpf with a £ F, then Apf may be considered as a matrix over F(pf) 

(1 <p'< pe). 
Furthermore, as we now show by finite induction on / , if pf~l < pe and 

m > pf~1
y then property Pm implies that B may also be considered as a matrix 

over F(pf). Specifically, since it is obvious that B may be considered as a 
matrix over F(p \ suppose that B is a matrix over F(pf) for 1 < pf < pe and 
let m > pf. Define 

D = diag(/p/, 2Ipft . . . , nf Ivf). 

Since p | nf, and at = 0 unless pe \ i, it follows by direct calculation that 

DA/f = DAAP* = -Apf. 

Therefore, since m > pf, DAA
m = 0. Also, by choosing G — DApf, we have 

(D + G)AA
m= 0. Because p \ nf it is easily shown that both D and D + G 

are semi-simple. Therefore, property Pm and the lemma above imply that B 
commutes with both D and D + G. This result, however, implies that B, 
which is considered as a matrix over F(pf\ is partitioned into p-by-p scalar 
blocks over F(pf\ That is, B may be considered as a matrix over F(-pf+l). 

We now complete the proof of the theorem in case m < pe. Thus, suppose 
that pf~x < m < pf < p\ By property P w , BAA

m= 0. Therefore, 

BAAPf = BAA
pf = 0. 

That is, Apf commutes with B. Consequently, since both B and Apf may be 
considered as matrices over F(pf) and Apf is clearly cyclic over F(pf), B is 
necessarily a polynomial in Apf. 

Finally, we consider the case pe < m. Let T(X) = T0(x
pC), n — pen0, and 

r = per0. Also, let 2t = Ape and $ = F(p6). Since SI is a cyclic matrix over g 
of order no = r0 5, and (7r0(x))s is the minimum polynomial of 21 with 7r0(x) 
separable, by a similarity transformation we may consider 

§1 = 

<E 3,„ o . . . 0 0 
0 S 3ro • . . 0 0 

0 0 0 . . 6 s, 
0 0 0 . . 0 6 

where S is the companion matrix of w0(x) over g, 3v0 is the fo-by-r0 identity 
matrix over g> and there are 5 blocks of E on the main diagonal (3, p. 115). 
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As a consequence of the proof of Theorem 1 above it follows that B is a 
polynomial in 21; specifically, 

B = S5o 3 + » , W + 932p 9Ï2P + . . . , 

where 5X1 = 31 — diag(E, © , . . . , © ) and $$kp = diag(6^, bfcp, . . . , hkp) with &fcp 
some polynomial in S. We now show in fact that m > pe+i~l implies that 

B = So 3 + 3V 9^;' + 332pi 5ft2pi + . . . . 

Indeed, since the case j = 1 is given above, we proceed by induction on j 
and assume that m > pe+U+v-i, Let 5 = pjq + t, 0 < t < p\ and choose 

pj pj t 
^ _ A ^ ^__ _ A ^ _ A .. 

2) = diag(3 r o , . . . , 3,0, . . . , g3 r o , . . . , q$ro, (q + l)3fro, . . . , (g + l )3 r o ) . 

By direct calculation, 

which is a polynomial in 31. Thus, since m > pe+J\ it follows by property Pm 

that UAs)m= 0. Since 3) is semi-simple, B commutes with SD. Consequently, 
33i = 0 unless £y+1|z, which provides the desired conclusion. 

Now, with pe < pe+j~l < m < £e+:/, we show that B is a polynomial in 
APe+j = W^ L e t @ = d i a g ( g ) g, . . . f g) . Then §P5' = &>j + Wpi and 
typh = (&ph for some sufficiently large h > j . Suppose X commutes with %vi. 
Then X commutes with 2P* = ©*\ That is XA®** = 0. But, since the mini­
mum polynomial TQ(X) of © is irreducible and separable, @ is semi-simple and 
ZA@ = 0. Therefore, X commutes with %lpj = Wj - ©pJ. Also, since $8kpj is 
a polynomial in ©, X commutes with 93fcpj. Therefore, from the form of B 
obtained above, X commutes with B. That is, B commutes with every matrix 
that commutes with Ap6 + J. Consequently, by the classical theorem, B is a 
polynomial in Av&+\ This completes the proof of Theorem 2. 

The author expresses his appreciation to the referee for his very helpful 
suggestions. 
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