Differential forms on universal $\boldsymbol{K} \mathbf{3}$ surfaces

By SHOUHEI MA ${ }^{\dagger}$
Department of Mathematics, Tokyo Institute of Technology, Tokyo 152-8551, Japan. e-mail: ma@math.titech.ac.jp

(Received 14 August 2023; accepted 20 March 2024)

Abstract

We give a vanishing and classification result for holomorphic differential forms on smooth projective models of the moduli spaces of pointed $K 3$ surfaces. We prove that there is no nonzero holomorphic k-form for $0<k<10$ and for even $k>19$. In the remaining cases, we give an isomorphism between the space of holomorphic k-forms with that of vector-valued modular forms ($10 \leq k \leq 18$) or scalar-valued cusp forms (odd $k \geq 19$) for the modular group. These results are in fact proved in the generality of lattice-polarisation.

2020 Mathematics Subject Classification: 14J28 (Primary); 14J15, 11F55 (Secondary)

1. Introduction

Let $\mathcal{F}_{g, n}$ be the moduli space of n-pointed $K 3$ surfaces of genus $g>2$, i.e., primitively polarised of degree $2 g-2$. It is a quasi-projective variety of dimension $19+2 n$ with a natural morphism $\mathcal{F}_{g, n} \rightarrow \mathcal{F}_{g}$ to the moduli space \mathcal{F}_{g} of $K 3$ surfaces of genus g, which is generically a $K 3^{n}$-fibration. In this paper we study holomorphic differential k-forms on a smooth projective model of $\mathcal{F}_{g, n}$. They do not depend on the choice of a smooth projective model, and thus are fundamental birational invariants of $\mathcal{F}_{g, n}$. We prove a vanishing result for about half of the values of the degree k, and for the remaining degrees give a correspondence with modular forms on the period domain.

Our main result is stated as follows.
THEOREM 1•1. Let $\overline{\mathcal{F}}_{g, n}$ be a smooth projective model of $\mathcal{F}_{g, n}$ with $g>2$. Then we have a natural isomorphism:

$$
H^{0}\left(\overline{\mathcal{F}}_{g, n}, \Omega^{k}\right) \simeq \begin{cases}0 & 0<k \leq 9 \\ M_{\wedge^{k}, k}\left(\Gamma_{g}\right) & 10 \leq k \leq 18 \\ 0 & k>19, k \in 2 \mathbb{Z} \\ S_{19+m}\left(\Gamma_{g}, \text { det }\right) \otimes \mathbb{C} \mathcal{S}_{n, m} & k=19+2 m, 0 \leq m \leq n\end{cases}
$$

Here Γ_{g} is the modular group for $K 3$ surfaces of genus g, which is defined as the kernel of $\mathrm{O}^{+}\left(L_{g}\right) \rightarrow \mathrm{O}\left(L_{g}^{\vee} / L_{g}\right)$ where $L_{g}=2 U \oplus 2 E_{8} \oplus\langle 2-2 g\rangle$ is the period lattice of $K 3$
"Supported by KAKENHI 21 H 00971 and 20H00112.
surfaces of genus g. In the second case, $M_{\wedge^{k}, k}\left(\Gamma_{g}\right)$ stands for the space of vector-valued modular forms of weight $\left(\wedge^{k}, k\right)$ for Γ_{g} (see [4]). In the last case, $S_{19+m}\left(\Gamma_{g}\right.$, det) stands for the space of scalar-valued cusp forms of weight $19+m$ and determinant character for Γ_{g}, and $\mathcal{S}_{n, m}$ stands for the right quotient $\mathfrak{S}_{n} /\left(\mathfrak{S}_{m} \times \mathfrak{S}_{n-m}\right)$, which is a left \mathfrak{S}_{n}-set. Theorem $1 \cdot 1$ is actually formulated and proved in the generality of lattice-polarisation (Theorem 2.6).

In the case of the top degree $k=19+2 n$, namely for canonical forms, the isomorphism (1-1) is proved in [2]. Theorem $1 \cdot 1$ is the extension of this result to all degrees $k<19+2 n$. The spaces in the right-hand side of $(1 \cdot 1)$ can also be geometrically explained as follows. In the case $k \leq 18, M_{\wedge^{k}, k}\left(\Gamma_{g}\right)$ is identified with the space of holomorphic k-forms on a smooth projective model of \mathcal{F}_{g}, pulled back by $\mathcal{F}_{g, n} \rightarrow \mathcal{F}_{g}$. In the case $k=19+2 m$, $S_{19+m}\left(\Gamma_{g}\right.$, det $)$ is identified with the space of canonical forms on $\overline{\mathcal{F}}_{g, m}$, and the tensor product $S_{19+m}\left(\Gamma_{g}\right.$, det $) \otimes \mathbb{C} \mathcal{S}_{n, m}$ is the direct sum of pullback of such canonical forms by various projections $\mathcal{F}_{g, n} \rightarrow \mathcal{F}_{g, m}$. Therefore Theorem $1 \cdot 1$ can be understood as a kind of classification result which says that except for canonical forms, there are essentially no new differential forms on the tower $\left(\mathcal{F}_{g, n}\right)_{n}$ of moduli spaces. In fact, this is how the proof proceeds.

The space $S_{l}\left(\Gamma_{g}\right.$, det) is nonzero for every sufficiently large l, so the space $H^{0}\left(\overline{\mathcal{F}}_{g, n}, \Omega^{k}\right)$ for odd $k \geq 19$ is typically nonzero (at least when k is large). On the other hand, it is not clear at present whether $M_{\wedge^{k}, k}\left(\Gamma_{g}\right) \neq 0$ or not in the range $10 \leq k \leq 18$. This is a subject of study in the theory of vector-valued orthogonal modular forms.

The isomorphism (1-1) in the case $k=19+2 m$ is an \mathfrak{S}_{n}-equivariant isomorphism, where \mathfrak{S}_{n} acts on $H^{0}\left(\overline{\mathcal{F}}_{g, n}, \Omega^{k}\right)$ by its permutation action on $\mathcal{F}_{g, n}$, while it acts on $S_{19+m}\left(\Gamma_{g}\right.$, det $) \otimes$ $\mathbb{C} \mathcal{S}_{n, m}$ by its natural left action on $\mathcal{S}_{n, m}$. Therefore, taking the \mathfrak{S}_{n}-invariant part, we obtain the following simpler result for the unordered pointed moduli space $\mathcal{F}_{g, n} / \mathfrak{S}_{n}$, which is birationally a $K 3^{[n]}$-fibration over \mathcal{F}_{g}.

Corollary 1.2. Let $\overline{\mathcal{F}_{g, n} / \mathfrak{S}_{n}}$ be a smooth projective model of $\mathcal{F}_{g, n} / \mathfrak{S}_{n}$. Then we have a natural isomorphism:

$$
H^{0}\left(\overline{\mathcal{F}_{g, n} / \mathfrak{S}_{n}}, \Omega^{k}\right) \simeq\left\{\begin{array}{ll}
0 & 0<k \leq 9 \\
M_{\wedge^{k}, k}\left(\Gamma_{g}\right) & 10 \leq k \leq 18 \\
0 & k>19, k \in 2 \mathbb{Z} \\
S_{19+m}\left(\Gamma_{g}, \text { det }\right) & k=19+2 m, 0 \leq m \leq n
\end{array} .\right.
$$

The universal $K 3$ surface $\mathcal{F}_{g, 1}$ is an analogue of elliptic modular surfaces ([6]), and the moduli spaces $\mathcal{F}_{g, n}$ for general n are analogues of the so-called Kuga varieties over modular curves ([7]). Starting with the case of elliptic modular surfaces [6], holomorphic differential forms on the Kuga varieties have been described in terms of elliptic modular forms: [7] for canonical forms, and [1] for the case of lower degrees (somewhat implicitly). Theorem $1 \cdot 1$ can be regarded as a $K 3$ version of these results.

As a final remark, in view of the analogy between universal $K 3$ surfaces and elliptic modular surfaces, invoking the classical fact that elliptic modular surfaces have maximal Picard number ([6]) now raises the question if $H^{k, 0}\left(\overline{\mathcal{F}}_{g, n}\right) \oplus H^{0, k}\left(\overline{\mathcal{F}}_{g, n}\right)$ is a sub \mathbb{Q}-Hodge structure of $H^{k}\left(\overline{\mathcal{F}}_{g, n}, \mathbb{C}\right)$. This is independent of the choice of a smooth projective model $\overline{\mathcal{F}}_{g, n}$.

The rest of this paper is devoted to the proof of Theorem 1•1. In Section $2 \cdot 1$ we compute a part of the holomorphic Leray spectral sequence associated to a certain type of $K 3^{n}$-fibration.

This is the main step of the proof. In Section 2.2 we study differential forms on a compactification of such a fibration. In Section $2 \cdot 3$ we deduce (a generalised version of) Theorem $1 \cdot 1$ by combining the result of Section 2.2 with some results from [2-5]. Sometimes we drop the subscript X from the notation Ω_{X}^{k} when the variety X is clear from the context.

2. Proof

2•1. Holomorphic Leray spectral sequence

Let $\pi: X \rightarrow B$ be a smooth family of $K 3$ surfaces over a smooth connected base B. In this subsection X and B may be analytic. We put the following assumption:

Condition $2 \cdot 1$. In a neighbourhood of every point of B, the period map is an embedding.
This is equivalent to the condition that the differential of the period map

$$
T_{b} B \rightarrow \operatorname{Hom}\left(H^{2,0}\left(X_{b}\right), H^{1,1}\left(X_{b}\right)\right)
$$

is injective for every $b \in B$, where X_{b} is the fiber of π over b.
For a natural number $n>0$ we denote by $X_{n}=X \times_{B} \cdots \times_{B} X$ the n-fold fiber product of X over B, and let $\pi_{n}: X_{n} \rightarrow B$ be the projection. We denote by $\Omega_{\pi_{n}}$ the relative cotangent bundle of π_{n}, and $\Omega_{\pi_{n}}^{p}=\wedge^{p} \Omega_{\pi_{n}}$ for $p \geq 0$ as usual.

Proposition 2.2. Let $\pi: X \rightarrow B$ be a K3 fibration satisfying Condition 2•1. Then we have a natural isomorphism:

$$
\left(\pi_{n}\right)_{*} \Omega_{X_{n}}^{k} \simeq \begin{cases}\Omega_{B}^{k} & k \leq \operatorname{dim} B \\ 0 & k>\operatorname{dim} B, k \not \equiv \operatorname{dim} B \bmod 2 \\ K_{B} \otimes\left(\pi_{n}\right)_{*} \Omega_{\pi_{n}}^{2 m} & k=\operatorname{dim} B+2 m, 0 \leq m \leq n\end{cases}
$$

This assertion amounts to a partial degeneration of the holomorphic Leray spectral sequence. Recall ([8, section 5.2]) that $\Omega_{X_{n}}^{k}$ has the holomorphic Leray filtration $L^{\bullet} \Omega_{X_{n}}^{k}$ defined by

$$
L^{l} \Omega_{X_{n}}^{k}=\pi_{n}^{*} \Omega_{B}^{l} \wedge \Omega_{X_{n}}^{k-l}
$$

whose graded quotients are naturally isomorphic to

$$
\operatorname{Gr}_{L}^{l} \Omega_{X_{n}}^{k}=\pi_{n}^{*} \Omega_{B}^{l} \otimes \Omega_{\pi_{n}}^{k-l}
$$

This filtration induces the holomorphic Leray spectral sequence

$$
\left(E_{r}^{l, q}, d_{r}\right) \Rightarrow E_{\infty}^{l+q}=R^{l+q}\left(\pi_{n}\right)_{*} \Omega_{X_{n}}^{k}
$$

which converges to the filtration

$$
L^{l} R^{l+q}\left(\pi_{n}\right)_{*} \Omega_{X_{n}}^{k}=\operatorname{Im}\left(R^{l+q}\left(\pi_{n}\right)_{*} L^{l} \Omega_{X_{n}}^{k} \rightarrow R^{l+q}\left(\pi_{n}\right)_{*} \Omega_{X_{n}}^{k}\right)
$$

By [8, proposition 5.9], the E_{1} page coincides with the collection of the Koszul complexes associated to the variation of Hodge structures for π_{n} :

$$
\left(E_{1}^{l, q}, d_{1}\right)=\left(\mathcal{H}^{k-l, l+q} \otimes \Omega_{B}^{l}, \bar{\nabla}\right)
$$

Here $\mathcal{H}^{*, *}$ are the Hodge bundles associated to the fibration $\pi_{n}: X_{n} \rightarrow B$, and

$$
\bar{\nabla}: \mathcal{H}^{*, *} \otimes \Omega_{B}^{*} \rightarrow \mathcal{H}^{*-1, *+1} \otimes \Omega_{B}^{*+1}
$$

are the differentials in the Koszul complexes (see [8, section 5•1•3]). For degree reasons, the range of (l, q) in the E_{1} page satisfies the inequalities

$$
0 \leq l \leq \operatorname{dim} B, \quad 0 \leq k-l \leq 2 n, \quad 0 \leq l+q \leq 2 n .
$$

The first two can be unified:

$$
\begin{equation*}
\max (0, k-2 n) \leq l \leq \min (\operatorname{dim} B, k), \quad 0 \leq l+q \leq 2 n . \tag{2.2}
\end{equation*}
$$

We calculate the E_{1} to E_{2} pages on the edge line $l+q=0$.

Lemma 2.3. The following holds:

(1) $E_{1}^{l,-l}=0$ when $l \leq \min (\operatorname{dim} B, k)$ with $l \not \equiv k \bmod 2$;
(2) $E_{2}^{l,-l}=0$ when $l<\min (\operatorname{dim} B, k)$;
(3) For $l_{0}=\min (\operatorname{dim} B, k)$ we have $E_{1}^{l_{0},-l_{0}}=E_{2}^{l_{0},-l_{0}}=\cdots=E_{\infty}^{l_{0},-l_{0}}$.

Proof. By (2.1), we have $E_{1}^{l,-l}=\mathcal{H}^{k-l, 0} \otimes \Omega_{B}^{l}$. By the Künneth formula, the fiber of $\mathcal{H}^{k-l, 0}$ over a point $b \in B$ is identified with

$$
\begin{equation*}
H^{k-l, 0}\left(X_{b}^{n}\right)=\bigoplus_{\left(p_{1}, \cdots, p_{n}\right)} H^{p_{1}, 0}\left(X_{b}\right) \otimes \cdots \otimes H^{p_{n}, 0}\left(X_{b}\right) \tag{2•3}
\end{equation*}
$$

where $\left(p_{1}, \cdots, p_{n}\right)$ ranges over all indices with $\sum_{i} p_{i}=k-l$ and $0 \leq p_{i} \leq 2$.
(1) When $k-l$ is odd, every index $\left(p_{1}, \cdots, p_{n}\right)$ in (2.3) must contain a component $p_{i}=1$. Since $H^{1,0}\left(X_{b}\right)=0$, we see that $H^{k-l, 0}\left(X_{b}^{n}\right)=0$. Therefore $\mathcal{H}^{k-l, 0}=0$ when $k-l$ is odd.
(3) Let $l_{0}=\min (\operatorname{dim} B, k)$. By the range (2.2) of (l, q), we see that for every $r \geq 1$ the source of d_{r} that hits $E_{r}^{l_{0},-l_{0}}$ is zero, and the target of d_{r} that starts from $E_{r}^{l_{0},-l_{0}}$ is also zero. This proves our assertion.
(2) Let $l<\min (\operatorname{dim} B, k)$. In view of (1), we may assume that $l=k-2 m$ for some $m>0$. By (2.2), the source of d_{1} that hits $E_{1}^{l,-l}$ is zero. We shall show that $d_{1}: E_{1}^{l,-l} \rightarrow E_{1}^{l+1,-l}$ is injective. By ($2 \cdot 1$), this morphism is identified with

$$
\begin{equation*}
\bar{\nabla}: \mathcal{H}^{2 m, 0} \otimes \Omega_{B}^{l} \rightarrow \mathcal{H}^{2 m-1,1} \otimes \Omega_{B}^{l+1} \tag{2.4}
\end{equation*}
$$

By the Künneth formula as in (2•3), the fibers of the Hodge bundles $\mathcal{H}^{2 m, 0}, \mathcal{H}^{2 m-1,1}$ over $b \in B$ are respectively identified with

$$
\begin{gather*}
H^{2 m, 0}\left(X_{b}^{n}\right)=\bigoplus_{|\sigma|=m} H^{2,0}\left(X_{b}\right)^{\otimes \sigma}, \tag{2.5}\\
H^{2 m-1,1}\left(X_{b}^{n}\right)=\bigoplus_{\left|\sigma^{\prime}\right|=m-1} \bigoplus_{i \notin \sigma^{\prime}} H^{2,0}\left(X_{b}\right)^{\otimes \sigma^{\prime}} \otimes H^{1,1}\left(X_{b}\right) \tag{2.6}\\
=\bigoplus_{|\sigma|=m} \bigoplus_{i \in \sigma} H^{2,0}\left(X_{b}\right)^{\otimes \sigma-\{i\}} \otimes H^{1,1}\left(X_{b}\right) .
\end{gather*}
$$

In (2.5), σ ranges over all subsets of $\{1, \cdots, n\}$ consisting of m elements, and $H^{2,0}\left(X_{b}\right)^{\otimes \sigma}$ stands for the tensor product of $H^{2,0}\left(X_{b}\right)$ for the j th factors X_{b} of X_{b}^{n} over all $j \in \sigma$. The notations σ^{\prime}, σ in (2.6) are similar, and $H^{1,1}\left(X_{b}\right)$ in (2.6) is the $H^{1,1}$ of the i th factor X_{b} of X_{b}^{n}.

Let us write $V=H^{2,0}\left(X_{b}\right)$ and $W=\left(T_{b} B\right)^{\vee}$ for simplicity. The homomorphism (2.4) over $b \in B$ is written as

$$
\begin{equation*}
\bigoplus_{|\sigma|=m}\left(V^{\otimes \sigma} \otimes \wedge^{l} W \rightarrow \bigoplus_{i \in \sigma} V^{\otimes \sigma-\{i\}} \otimes H^{1,1}\left(X_{b}\right) \otimes \wedge^{l+1} W\right) . \tag{2.7}
\end{equation*}
$$

By [8, lemma 5.8], the (σ, i)-component

$$
\begin{equation*}
V^{\otimes \sigma} \otimes \wedge^{l} W \rightarrow V^{\otimes \sigma-\{i\}} \otimes H^{1,1}\left(X_{b}\right) \otimes \wedge^{l+1} W \tag{2.8}
\end{equation*}
$$

factorises as

$$
\begin{aligned}
V^{\otimes \sigma} \otimes \wedge^{l} W & \rightarrow V^{\otimes \sigma-\{i\}} \otimes H^{1,1}\left(X_{b}\right) \otimes W \otimes \wedge^{l} W \\
& \rightarrow V^{\otimes \sigma-\{i\}} \otimes H^{1,1}\left(X_{b}\right) \otimes \wedge^{l+1} W
\end{aligned}
$$

where the first map is induced by the adjunction $V \rightarrow H^{1,1}\left(X_{b}\right) \otimes W$ of the differential of the period map for the i th factor X_{b}, and the second map is induced by the wedge product $W \otimes \wedge^{l} W \rightarrow \wedge^{l+1} W$. By linear algebra, this composition can also be decomposed as

$$
\begin{align*}
V^{\otimes \sigma} \otimes \wedge^{l} W & \rightarrow V^{\otimes \sigma-\{i\}} \otimes V \otimes W^{\vee} \otimes \wedge^{l+1} W \tag{2.9}\\
& \rightarrow V^{\otimes \sigma-\{i\}} \otimes H^{1,1}\left(X_{b}\right) \otimes \wedge^{l+1} W
\end{align*}
$$

where the first map is induced by the adjunction $\wedge^{l} W \rightarrow W^{\vee} \otimes \wedge^{l+1} W$ of the wedge product, and the second map is induced by the adjunction $V \otimes W^{\vee} \rightarrow H^{1,1}\left(X_{b}\right)$ of the differential of the period map. By our initial Condition 2•1, the second map of (2.9) is injective. Moreover, since $l+1 \leq \operatorname{dim} W$ by our assumption, the wedge product $\wedge^{l} W \times W \rightarrow \wedge^{l+1} W$ is nondegenerate, so its adjunction $\wedge^{l} W \rightarrow W^{\vee} \otimes \wedge^{l+1} W$ is injective. Thus the first map of (2.9) is also injective. It follows that (2.8) is injective. Since the map (2.7) is the direct sum of its (σ, i)-components, it is injective. This finishes the proof of Lemma 2•3.

We can now complete the proof of Proposition 2.2.
Proof of Proposition 2.2. By Lemma $2 \cdot 3$ (2), we have $E_{\infty}^{l,-l}=0$ when $l<l_{0}=$ $\min (\operatorname{dim} B, k)$. Together with Lemma $2 \cdot 3$ (3), we obtain

$$
\left(\pi_{n}\right)_{*} \Omega_{X_{n}}^{k}=E_{\infty}^{0}=E_{\infty}^{l_{0},-l_{0}}=E_{1}^{l_{0},-l_{0}} .
$$

When $k \leq \operatorname{dim} B$, we have $l_{0}=k$, and $E_{1}^{l_{0},-l_{0}}=\Omega_{B}^{k}$ by (2•1). When $k>\operatorname{dim} B$, we have $l_{0}=$ $\operatorname{dim} B$, and $E_{1}^{l_{0},-l_{0}}=\mathcal{H}^{k-\operatorname{dim} B, 0} \otimes K_{B}$ by (2•1). When $k-\operatorname{dim} B$ is odd, this vanishes by Lemma $2 \cdot 3$ (1).

In the case $k=\operatorname{dim} B+2 m$, the vector bundle $\mathcal{H}^{2 m, 0} \otimes K_{B}=\left(\pi_{n}\right)_{*} \Omega_{\pi_{n}}^{2 m} \otimes K_{B}$ can be written more specifically as follows. For a subset σ of $\{1, \cdots, n\}$ with cardinality $|\sigma|=m$, we
denote by $X_{\sigma} \simeq X_{m}$ the fiber product of the i th factors $X \rightarrow B$ of $X_{n} \rightarrow B$ over all $i \in \sigma$. We denote by

$$
X_{n} \xrightarrow{\pi_{\sigma}} X_{\sigma} \xrightarrow{\pi^{\sigma}} B
$$

the natural projections. The Künneth formula (2.5) says that

$$
\left(\pi_{n}\right)_{*} \Omega_{\pi_{n}}^{2 m} \simeq \bigoplus_{|\sigma|=m} \pi_{*}^{\sigma} K_{\pi^{\sigma}}
$$

Combining this with the isomorphism

$$
\pi_{*}^{\sigma} K_{X_{\sigma}} \simeq K_{B} \otimes \pi_{*}^{\sigma} K_{\pi}^{\sigma}
$$

for each X_{σ}, we can rewrite the isomorphism in the last case of Proposition 2.2 as

$$
\left(\pi_{n}\right)_{*} \Omega_{X_{n}}^{\operatorname{dim} B+2 m} \simeq \bigoplus_{|\sigma|=m} \pi_{*}^{\sigma} K_{X_{\sigma}}
$$

2.2. Extension over compactification

Let $\pi: X \rightarrow B$ be a $K 3$ fibration as in Section $2 \cdot 1$. We now assume that X, B are quasi-projective and π is a morphism of algebraic varieties. We take smooth projective compactifications of X_{n}, X_{σ}, B and denote them by $\bar{X}_{n}, \bar{X}_{\sigma}, \bar{B}$ respectively.

Proposition 2.4. We have

$$
H^{0}\left(\bar{X}_{n}, \Omega^{k}\right) \simeq \begin{cases}H^{0}\left(\bar{B}, \Omega^{k}\right) & k \leq \operatorname{dim} B \\ 0 & k>\operatorname{dim} B, k \not \equiv \operatorname{dim} B \bmod 2 \\ \oplus_{\sigma} H^{0}\left(\bar{X}_{\sigma}, K_{\bar{X}_{\sigma}}\right) & k=\operatorname{dim} B+2 m, 0 \leq m \leq n\end{cases}
$$

In the last case, σ ranges over all subsets of $\{1, \cdots, n\}$ with $|\sigma|=m$. The isomorphism in the first case is given by the pullback by $\pi_{n}: X_{n} \rightarrow B$, and the isomorphism in the last case is given by the direct sum of the pullbacks by $\pi_{\sigma}: X_{n} \rightarrow X_{\sigma}$ for all σ.

Proof. The assertion in the case $k>\operatorname{dim} B$ with $k \not \equiv \operatorname{dim} B \bmod 2$ follows directly from the second case of Proposition $2 \cdot 2$. Next we consider the case $k \leq \operatorname{dim} B$. We may assume that $\pi_{n}: X_{n} \rightarrow B$ extends to a surjective morphism $\bar{X}_{n} \rightarrow \bar{B}$. Let ω be a holomorphic k form on \bar{X}_{n}. By the first case of Proposition 2.2, we have $\left.\omega\right|_{X_{n}}=\pi_{n}^{*} \omega_{B}$ for a holomorphic k-form ω_{B} on B. Since ω is holomorphic over \bar{X}_{n}, ω_{B} is holomorphic over \bar{B} as well by a standard property of holomorphic differential forms. (Otherwise ω must have pole at the divisors of \bar{X}_{n} dominating the divisors of \bar{B} where ω_{B} has pole.) Therefore the pullback $H^{0}\left(\bar{B}, \Omega^{k}\right) \rightarrow H^{0}\left(\bar{X}_{n}, \Omega^{k}\right)$ is surjective.

Finally, we consider the case $k=\operatorname{dim} B+2 m, 0 \leq m \leq n$. Let ω be a holomorphic k-form on \bar{X}_{n}. By (2•11), we can uniquely write $\left.\omega\right|_{X_{n}}=\sum_{\sigma} \pi_{\sigma}^{*} \omega_{\sigma}$ for some canonical forms ω_{σ} on X_{σ}.

Claim 2.5. For each σ, ω_{σ} is holomorphic over \bar{X}_{σ}.
Proof. We identify X_{n} with the fiber product $X_{\sigma} \times_{B} X_{\tau}$ where $\tau=\{1, \cdots, n\}-\sigma$ is the complement of σ. We may assume that this fiber product diagram extends to a commutative diagram of surjective morphisms

between smooth projective models. We take an irreducible subvariety $\tilde{B} \subset \bar{X}_{\tau}$ such that $\tilde{B} \rightarrow$ \bar{B} is surjective and generically finite. Then $\pi_{\tau}^{-1}(\tilde{B}) \subset \bar{X}_{n}$ has a unique irreducible component dominating \tilde{B}. We take its desingularisation and denote it by Y. By construction $\left.\pi_{\sigma}\right|_{Y}: Y \rightarrow$ \bar{X}_{σ} is dominant (and so surjective) and generically finite. On the other hand, for any $\sigma^{\prime} \neq \sigma$ with $\left|\sigma^{\prime}\right|=m$, the projection $\pi_{\sigma^{\prime}} \mid Y: Y \longrightarrow X_{\sigma^{\prime}}$ is not dominant. Indeed, such σ^{\prime} contains at least one component $i \in \tau$, so if $Y \longrightarrow X_{\sigma^{\prime}}$ was dominant, then the i th projection $Y \rightarrow X$ would be also dominant, which is absurd because it factorises as $Y \rightarrow \tilde{B} \subset \bar{X}_{\tau} \rightarrow X$.

We pullback the differential form $\omega=\pi_{\sigma}^{*} \omega_{\sigma}+\sum_{\sigma^{\prime} \neq \sigma} \pi_{\sigma^{\prime}}^{*} \omega_{\sigma^{\prime}}$ to Y and denote it by $\left.\omega\right|_{Y}$. Since ω is holomorphic over $\bar{X}_{n},\left.\omega\right|_{Y}$ is holomorphic over Y. Since $\left.\pi_{\sigma^{\prime}}^{*} \omega_{\sigma^{\prime}}\right|_{Y}$ is the pullback of the canonical form $\omega_{\sigma^{\prime}}$ on $X_{\sigma^{\prime}}$ by the non-dominant map $Y \longrightarrow X_{\sigma^{\prime}}$, it vanishes identically. Hence $\left.\pi_{\sigma}^{*} \omega_{\sigma}\right|_{Y}=\left.\omega\right|_{Y}$ is holomorphic over Y. Since $\left.\pi_{\sigma}\right|_{Y}: Y \rightarrow \bar{X}_{\sigma}$ is surjective, this implies that ω_{σ} is holomorphic over \bar{X}_{σ} as before.

The above argument will be clear if we consider over the generic point η of B : we restrict ω to the fiber of $\left(X_{\eta}\right)^{n} \rightarrow\left(X_{\eta}\right)^{\tau}$ over the geometric point \tilde{B} of $\left(X_{\eta}\right)^{\tau}$ over η.

By Claim 2.5, the pullback

$$
\left(\pi_{\sigma}^{*}\right)_{\sigma}: \bigoplus_{|\sigma|=m} H^{0}\left(\bar{X}_{\sigma}, K_{\bar{X}_{\sigma}}\right) \rightarrow H^{0}\left(\bar{X}_{n}, \Omega^{\operatorname{dim} B+2 m}\right)
$$

is surjective. It is also injective as implied by (2•11). This proves Proposition 2•4.

2.3. Universal K3 surface.

Now we prove Theorem $1 \cdot 1$, in the generality of lattice-polarisation. Let L be an even lattice of signature $(2, d)$ which can be embedded as a primitive sublattice of the $K 3$ lattice $3 U \oplus 2 E_{8}$. We denote by

$$
\mathcal{D}=\left\{\mathbb{C} \omega \in \mathbb{P} L_{\mathbb{C}} \mid(\omega, \omega)=0,(\omega, \bar{\omega})>0\right\}^{+}
$$

the Hermitian symmetric domain associated to L, where + means a connected component.
Let $\pi: X \rightarrow B$ be a smooth projective family of $K 3$ surfaces over a smooth quasiprojective connected base B. We say ([3]) that the family $\pi: X \rightarrow B$ is lattice-polarised with period lattice L if there exists a sub local system Λ of $R^{2} \pi_{*} \mathbb{Z}$ such that each fiber Λ_{b} is a hyperbolic sublattice of the Néron-Severi lattice $N S\left(X_{b}\right)$ and the fibers of the orthogonal complement Λ^{\perp} are isometric to L. Then we have a period map

$$
\mathcal{P}: B \rightarrow \Gamma \backslash \mathcal{D}
$$

for some finite-index subgroup Γ of $\mathrm{O}^{+}(L)$. By Borel's extension theorem, \mathcal{P} is a morphism of algebraic varieties.

Let us put the assumption

$$
\begin{equation*}
\mathcal{P} \text { is birational and }-\mathrm{id} \notin \Gamma . \tag{2•12}
\end{equation*}
$$

For such a family $\pi: X \rightarrow B$, if we shrink B as necessary, then \mathcal{P} is an open immersion and Condition $2 \cdot 1$ is satisfied. For example, the universal $K 3$ surface $\mathcal{F}_{g, 1} \rightarrow \mathcal{F}_{g}$ for $g>2$ restricted over a Zariski open set of \mathcal{F}_{g} satisfies this assumption with $L=L_{g}$ and $\Gamma=\Gamma_{g}$ (see Section 1 for these notations).

As in Section 1, we denote by $M_{\wedge^{k}, k}(\Gamma)$ the space of vector-valued modular forms of weight $\left(\wedge^{k}, k\right)$ for $\Gamma, S_{l}(\Gamma$, det) the space of scalar-valued cusp forms of weight l and character det for Γ, and $\mathcal{S}_{n, m}=\mathfrak{S}_{n} /\left(\mathfrak{S}_{m} \times \mathfrak{S}_{n-m}\right)$.

Theorem 2.6. Let $\pi: X \rightarrow B$ be a lattice-polarised K3 family with period lattice L of signature ($2, d$) with $d \geq 3$ and monodromy group Γ satisfying (2•12). Then we have an \mathfrak{S}_{n}-equivariant isomorphism

$$
H^{0}\left(\bar{X}_{n}, \Omega^{k}\right) \simeq\left\{\begin{array}{ll}
0 & 0<k<d / 2 \\
M_{\wedge^{k}, k}(\Gamma) & d / 2 \leq k<d \\
0 & k>d, k-d \notin 2 \mathbb{Z} \\
S_{d+m}(\Gamma, \operatorname{det}) \otimes \mathbb{C} \mathcal{S}_{n, m} & k=d+2 m, 0 \leq m \leq n
\end{array} .\right.
$$

Proof. When $k \leq d$, we have $H^{0}\left(\bar{X}_{n}, \Omega^{k}\right) \simeq H^{0}\left(\bar{B}, \Omega^{k}\right)$ by Proposition 2.4. Then \bar{B} is a smooth projective model of the modular variety $\Gamma \backslash \mathcal{D}$. By a theorem of Pommerening [5], the space $H^{0}\left(\bar{B}, \Omega^{k}\right)$ for $k<d$ is isomorphic to the space of Γ-invariant holomorphic k-forms on \mathcal{D}, which in turn is identified with the space $M_{\wedge^{k}, k}(\Gamma)$ of vector-valued modular forms of weight $\left(\wedge^{k}, k\right)$ for Γ (see [4]). The vanishing of this space in $0<k<d / 2$ is proved in [4, theorem 1.2] in the case when L has Witt index 2, and in [4, theorem 1.5 (1)] in the case when L has Witt index ≤ 1.

The vanishing in the case $k>d$ with $k \not \equiv d \bmod 2$ follows from Proposition 2.4. Finally, we consider the case $k=d+2 m, 0 \leq m \leq n$. By Proposition $2 \cdot 4$, we have a natural $\mathfrak{S}_{n^{-}}$ equivariant isomorphism

$$
H^{0}\left(\bar{X}_{n}, \Omega^{d+2 m}\right) \simeq \bigoplus_{|\sigma|=m} H^{0}\left(\bar{X}_{\sigma}, K_{\bar{X}_{\sigma}}\right)
$$

where \mathfrak{S}_{n} permutes the subsets σ of $\{1, \cdots, n\}$. Here note that the stabiliser of each σ acts on $H^{0}\left(\bar{X}_{\sigma}, K_{\bar{X}_{\sigma}}\right)$ trivially by $(2 \cdot 10)$. Therefore, as an \mathfrak{S}_{n}-representation, the right-hand side can be written as

$$
H^{0}\left(\bar{X}_{m}, K_{\bar{X}_{m}}\right) \otimes\left(\bigoplus_{|\sigma|=m} \mathbb{C} \sigma\right) \simeq H^{0}\left(\bar{X}_{m}, K_{\bar{X}_{m}}\right) \otimes \mathbb{C} \mathcal{S}_{n, m}
$$

Finally, we have $H^{0}\left(\bar{X}_{m}, K_{\bar{X}_{m}}\right) \simeq S_{d+m}(\Gamma$, det $)$ by [3, theorem 3.1].

Remark 2.7. The case $k \geq d$ of Theorem 2.6 holds also when $d=1,2$. We put the assumption $d \geq 3$ for the requirement of the Koecher principle from [5]. Therefore, in fact, only the case $(d, k)=(2,1)$ with Witt index 2 is not covered.

REFERENCES

[1] B. B. Gordon. Algebraic cycles and the Hodge structure of a Kuga fiber variety. Trans. Amer. Math. Soc. 336(2) (1993), 933-947.
[2] S. MA. Mukai models and Borcherds products. To appear in Amer. J. Math. ArXiv:1909.03946.
[3] S. MA. Kodaira dimension of universal holomorphic symplectic varieties. J. Inst. Math. Jussieu 21(6) (2022), 1849-1866.
[4] S. MA. Vector-valued orthogonal modular forms. To appear in Mem. Eur. Math. Soc. ArXiv:2209.10135.
[5] K. Pommerening. Die Fortsetzbarkeit von Differentialformen auf arithmetischen Quotienten von hermiteschen symmetrischen Räumen. J. Reine Angew. Math. 356 (1985), 194-220.
[6] T. Shioda. On elliptic modular surfaces. J. Math. Soc. Japan 24 (1972), 20-59.
[7] V. V. Shokurov. Holomorphic differential forms of higher degree on Kuga's modular varieties. Math. USSR-Sb. 30(1) (1976), 119-142.
[8] C. Voisin. Hodge Theory and Complex Algebraic Geometry II. (Cambridge University Press, 2003).

