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Algebraic cycles on Jacobian varieties

Arnaud Beauville

Abstract

Let J be the Jacobian of a smooth curve C of genus g, and let A(J) be the ring of algebraic
cycles modulo algebraic equivalence on J , tensored with Q. We study in this paper the
smallest Q-vector subspace R of A(J) which contains C and is stable under the natural
operations of A(J): intersection and Pontryagin products, pull back and push down under
multiplication by integers. We prove that this ‘tautological subring’ is generated (over Q)
by the classes of the subvarieties W1 = C, W2 = C + C, . . . ,Wg−1. If C admits a morphism
of degree d onto P1, we prove that the last d − 1 classes suffice.

1. Introduction

Let C be a compact Riemann surface of genus g. Its Jacobian variety J carries a number of natural
subvarieties, defined up to translation: first of all the curve C embeds into J , then we can use the
group law of J to form W2 = C +C, W3 = C +C +C, . . . until Wg−1 which is a theta divisor on J .
Then we can intersect these subvarieties, add again, pull back or push down under multiplication by
integers, and so on. Thus we get a rather large number of algebraic subvarieties which live naturally
in J .

If we look at the classes obtained in this way in rational cohomology, the result is disappointing.
We just find the subalgebra of H∗(J, Q) generated by the class θ of the theta divisor. In fact, the
polynomials in θ are the only algebraic cohomology classes which live on a generic Jacobian. The
situation becomes more interesting if we look at the Q-algebra A(J) of algebraic cycles modulo
algebraic equivalence on J ; here a result of Ceresa [Cer83] implies that, for a generic curve C, the
class of Wg−p in Ap(J) is not proportional to θp for 2 � p � g−1. This leads naturally to investigate
the ‘tautological subring’ of A(J), that is, the smallest Q-vector subspace R of A(J) which contains
C and is stable under the natural operations of A(J): intersection and Pontryagin products (see
start of § 2), pull back and push down under multiplication by integers. Our main result states that
this space is not too complicated. Let wp ∈ Ap(J) be the class of Wg−p. Then we can state the
following theorem.

Theorem.

a) R is the sub-Q-algebra of A(J) generated by w1, . . . , wg−1.

b) If C admits a morphism of degree d onto P1, R is generated by w1, . . . , wd−1.

In particular we see that R is finite-dimensional, a fact which does not seem to be a priori
obvious (the space A(J) is known to be infinite-dimensional for C generic of genus 3, see [Nor89]).

The proof rests in an essential way on the properties of the Fourier transform, a Q-linear auto-
morphism of A(J) with remarkable properties. We recall these properties in § 1; in § 2 we look
at the case of Jacobian varieties, computing in particular the Fourier transform of the class of C
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in A(J). This is the main ingredient in the proof of part a of the Theorem, which we give in § 3.
Part b turns out to be an easy consequence of a result of Colombo and van Geemen [CG93]; this is
explained in § 4, together with a few examples.

2. Algebraic cycles on abelian varieties

2.1 Let X be an abelian variety over C. We will denote by p and q the two projections of X ×X
onto X, and by m : X × X → X the addition map.

Let A(X) be the group of algebraic cycles on X modulo algebraic equivalence, tensored with Q.
It is a Q-vector space, graded by the codimension of the cycle classes. It carries two natural
multiplication laws A(J)⊗QA(J) → A(J), which are associative and commutative: the intersection
product, which is homogeneous with respect to the graduation, and the Pontryagin product, defined
by

x ∗ y := m∗(p∗x · q∗y),

which is homogeneous of degree −g. If Y and Z are subvarieties of X, the cycle class [Y ] ∗ [Z] is
equal to (deg µ)[Y + Z] if the addition map µ : Y × Z → Y + Z is generically finite, and is zero
otherwise.

2.2 For k ∈ Z, we will still denote by k the endomorphism x �→ kx of X. According to [Bea86],
there is a second graduation on A(X), leading to a bigraduation

A(X) =
⊕
s,p

Ap(X)(s)

such that

k∗x = k2p−sx, k∗x = k2g−2p+sx for x ∈ Ap(X)(s).

Both products are homogeneous with respect to the second graduation. We have Ap(X)(s) = 0 for
s < p − g or s � p (use [Bea86, Proposition 4]). It is conjectured that negative degrees actually do
not occur; this will not concern us here, as we will only consider cycles in A(X)(s) for s � 0.

2.3 A crucial tool in what follows will be the Fourier transform for algebraic cycles, defined
in [Bea83]. Let us recall briefly the results we will need, the proofs can be found in [Bea83] and
[Bea86]. We will concentrate on the case of a principally polarized abelian variety (X, θ), and use
the polarization to identify X with its dual abelian variety.

Let � := p∗θ + q∗θ−m∗θ ∈ A1(X ×X); this is the class of the Poincaré line bundle L on X ×X.
The Fourier transform F : A(X) → A(X) is defined by Fx = q∗(p∗x · e�). It satisfies the following
properties:

i) F ◦ F = (−1)g(−1)∗;
ii) F(x ∗ y) = Fx · Fy and F(x · y) = (−1)gFx ∗ Fy;

iii) FAp(X)(s) = Ag−p+s(X)(s);

iv) let x ∈ A(X); put x̄ = (−1)∗x. Then Fx = eθ((x̄eθ) ∗ e−θ).

Let us prove property iv, which is not explicitly stated in [Bea83] or [Bea86]. Replacing � by
its definition, we get Fx = eθq∗(p∗(xeθ) · e−m∗θ). Let ω be the automorphism of A × A defined
by ω(a, b) = (−a, a + b). We have p ◦ ω = −p, q ◦ ω = m, and m ◦ ω = q. Hence

Fx = eθq∗ω∗ω∗(p∗(xeθ) · e−m∗θ) = eθm∗(p∗(x̄eθ) · q∗e−θ) = eθ((x̄eθ) ∗ e−θ),

and thus property iv is proved.
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3. The Fourier transform on a Jacobian

3.1 From now on we take for our abelian variety the Jacobian (J, θ) of a smooth projective curve
C of genus g. We choose a base point o ∈ C, which allows us to define an embedding ϕ : C ↪−→ J
by ϕ(p) = OC(p− o). Since we are working modulo algebraic equivalence, all our constructions will
be independent of the choice of the base point.

We will denote simply by C the class of ϕ(C) in Ag−1(J). For 0 � d � g, we put wg−d :=
(1/d!)C∗d ∈ Ag−d(J); it is the class of the subvariety Wd of J parameterizing line bundles of the
form OC(Ed − do), where Ed is an effective divisor of degree d. We have w1 = θ by the Riemann
theorem, wg−1 = C, and wg is the class of a point. We define the Newton polynomials in the classes
wi by

Nk(w) =
1
k!

g∑
i=1

λk
i

in the ring obtained by adjoining to A(J) the roots λ1, . . . , λg of the equation λg − λg−1w1 + · · · +
(−1)gwg = 0. We have Nk(w) ∈ Ak(J); for instance

N1(w) = θ, N2(w) = 1
2θ2 − w2, N3(w) = 1

6θ3 − 1
2θ · w2 − 1

2w3, . . . .

3.2 The class Nk(w) is a polynomial in w1, . . . , wk; conversely, wk is a polynomial in N1(w), . . . ,
Nk(w).

Proposition 3.3. We have −FC = N1(w) + N2(w) + · · · + Ng−1(w).

Proof. We use the notation of § 2, and denote moreover by p̄, q̄ the projections of C × J onto C
and J . Consider the cartesian diagram

C × J

p̄

��

Φ �� J × J

p

��
C ϕ

�� J

with Φ = (ϕ, 1J ). Put �̄ := Φ∗�. We have p∗C · e� = Φ∗1 · e� = Φ∗e�̄, and therefore

FC = q̄∗e�̄.

The line bundle L̄ := Φ∗L is the Poincaré line bundle on C × J : that is, we have L̄C×{α} = α
for all α ∈ J , and L̄{o}×J = OJ . We will now work exclusively on C × J , and suppress the bar
above the letters p, q, L and �. We apply the Grothendieck–Riemann–Roch theorem to q and L.
Since we are working modulo algebraic equivalence, the Todd class of C is simply 1 + (1 − g)o.
Let io : J ↪−→ C × J be the map α �→ (o, α); we have

q∗(p∗o · e�) = q∗io∗i∗oe
� = i∗oe

� = 1,

since i∗oL is trivial. Thus

ch q!L = q∗(p∗ Todd(C) · chL) = q∗e� − (g − 1).

The Chern classes of q!L are computed in [Mat61]: we have

c(−q!L) = 1 + w1 + · · · + wg.

Putting things together we obtain

FC = q∗e� = g − 1 − ch(−q!L) = −(N1(w) + N2(w) + · · · + Ng(w)).
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Let C =
∑g−1

s=0 C(s) be the decomposition of C in
⊕

s Ag−1(J)(s). From Proposition 3.3, and
properties iii and i in § 2, we obtain a corollary.

Corollary 3.4. We have Nk(w) = −FC(k−1) ∈ Ak(J)(k−1) and F(Nk(w)) = (−1)g+kC(k−1).

Corollary 3.5. The Q-subalgebra R of A(J) generated by w1, . . . , wg−1 is bigraded. In particular,
it is stable under the operations k∗ and k∗ for each k ∈ Z.

Indeed R is also generated by the elements N1(w), . . . , Ng−1(w) given above, which are homo-
geneous for both graduations.

4. Proof of the main result

In order to prove part a of the Theorem, it remains to prove that the Q-subalgebra R of A(J)
generated by w1, . . . , wg−1 is stable under the Pontryagin product. In view of property ii in § 2, it
suffices to prove the following.

Proposition 4.1. R is stable under F .

Proof. Let FR denote the image of R under the Fourier transform; it is a vector space over Q,
stable under the Pontryagin product (property ii). We will prove that FR is stable under F , that
is, FFR ⊂ FR; since FFR = R (property i), this implies R ⊂ FR, then FR ⊂ R by applying F
again.

We observe that it is enough to prove that FR is stable under multiplication by θ. Indeed,
it is then stable under multiplication by eθ, and finally under F in view of property iv, Fx =
eθ((x̄eθ) ∗ e−θ).

Since the Q-algebra R is generated by the classes Np(w), FR is spanned as a Q-vector space by
the elements

F(Np1(w) · · ·Npr(w)) = ±C(p1−1) ∗ · · · ∗ C(pr−1)

(we are using property ii and Corollary 3.4).

Lemma 4.2. FR is spanned by the classes (k1∗C) ∗ · · · ∗ (kr∗C), for all sequences (k1, . . . , kr) of
positive integers.

Proof. For k ∈ Z we have from § 2 that

k∗C =
g−1∑
s=0

k2+sC(s).

Therefore

(k1∗C) ∗ · · · ∗ (kr∗C) = (k1 · · · kr)2
∑

s1,...,sr

ks1
1 · · · ksr

r C(s1) ∗ · · · ∗ C(sr),

where s = (s1, . . . , sr) runs in [0, g−1]r ; this shows in particular that (k1∗C)∗· · · ∗(kr∗C) belongs to
FR. We claim that we can choose gr r-tuples k = (k1, . . . , kr) so that the matrix (ak,s) with entries
ak,s = (ks1

1 · · · ksr
r ) is invertible: if we take for instance the sequence of r-tuples k� = (�, �g, . . . , �gr−1

),
for 1 � � � gr, we get for det(ak,s) a non-zero Vandermonde determinant. Thus each element
C(s1) ∗ · · · ∗C(sr) is a Q-linear combination of classes of the form (k1∗C) ∗ · · · ∗ (kr∗C), which proves
Lemma 4.2.

We now return to the proof of Proposition 4.1.
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Thus it suffices to prove that each product θ · ((k1∗C) ∗ · · · ∗ (kr∗C)) belongs to FR. We observe
that (k1∗C) ∗ · · · ∗ (kr∗C) is a multiple of the image of the composite map

u : Cr ϕ−→ Jr k−→ Jr m−→ J,

where k = (k1, . . . , kr), ϕ = (ϕ, . . . , ϕ) and m is the addition morphism. Thus the class θ · ((k1∗C)∗
· · · ∗ (kr∗C)) is proportional to u∗u∗θ.

Let pi : Jr → J (respectively pij : Jr → J2) denote the projection onto the ith factor (respec-
tively the ith and jth factors). In A1(Jr), we have

m∗θ =
∑

i

p∗i θ −
∑
i<j

p∗ij�;

indeed for r = 2 this is the definition of �, and the general case follows from the theorem of the
cube. We have also k∗

i θ = k2
i θ and (ki, kj)∗� = kikj�. Thus

k∗m∗θ =
∑

i

k2
i p

∗
i θ −

∑
i<j

kikjp
∗
ij�;

denoting by qi, qij the projections of Cr onto C and C2, we find

u∗θ =
∑

i

k2
i q

∗
i ϕ

∗θ −
∑
i<j

kikjq
∗
ij(ϕ,ϕ)∗�.

Let ∆ be the diagonal in C2. The theorem of the square gives

(ϕ,ϕ)∗L = OC2(∆ − C × o − o × C).

Therefore u∗θ is algebraically equivalent to a linear combination of divisors of the form q∗i o and q∗ij∆.
Under u∗ each of these divisors is mapped to a multiple of the cycle (l1∗C) ∗ · · · ∗ (lr−1∗C), where
the sequence (l1 · · · lr−1) is (k1, . . . , k̂i, . . . , kr) in the first case and (k1, . . . , k̂i, . . . , k̂j , . . . , kr, ki +kj)
in the second one (as usual the symbol k̂i means that ki is omitted). This proves our claim, and
therefore Proposition 4.1.

5. d-gonal curves

Proposition 5.1. Assume that the curve C is d-gonal, that is, admits a degree d morphism onto P1.
We have Nk(w) = 0 for k � d, and the Q-algebra R is generated by w1, . . . , wd−1.

Proof. By now this is an immediate consequence of a result of Colombo and van Geemen, which
says that for a d-gonal curve C(s) = 0 for s � d − 1 [CG93, Proposition 3.6]. (Our class C(s) is
denoted π2g−2−sC in [CG93].) This implies Nk(w) = 0 for k � d [CG93, Proposition 3.2], so that
R is a polynomial ring in N1(w), . . . , Nd−1(w), hence in w1, . . . , wd−1 (from § 3).

The case d = 2 of Proposition 5.1 had already been observed by Collino [Col75].

Corollary 5.2. If C is hyperelliptic, R = Q[θ]/(θg+1).

Corollary 5.3. If C is trigonal, R is generated by θ and the class η = N2(w) in A2(J). There
exists an integer k � g/3 such that

R = Q[θ, η]/(θg+1, θg−2η, . . . , θg+1−3kηk, ηk+1).

Proof. By Proposition 5.1 R is generated by θ and η. For p, s ∈ N, the class θp−2sηs is the only
monomial in θ, η which belongs to Ap(J)(s); therefore it spans the Q-vector space Rp

(s) (in particular,
this space is zero for p < 2s). This implies that the relations between θ and η are monomial, that
is, of the form θrηs = 0 for some pairs (r, s) ∈ N2.
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Similarly, as a Q-algebra for the Pontryagin product, R is generated by C(0) and C(1). The

Q-vector space Rp
(s) is spanned by C

∗(g−p−s)
(0) ∗ C∗s

(1), hence is zero for p + s > g. In particular we
see that θrηs = 0 as soon as r + 3s > g.

Let k be the smallest integer such that ηk �= 0, ηk+1 = 0. By what we have just seen the first
relation implies 3k � g. Suppose we have θrηs = 0 for some integers r, s with r + 3s � g and
s � k. Then we have Rr+2s

(s) = 0 and C
∗(g−r−3s)
(0) ∗ C∗s

(1) = 0. Taking ∗-product with C∗r
(0) we arrive at

C
∗(g−3s)
(0) ∗ C∗s

(1) = 0, which implies ηs = 0, contradicting the definition of k.

In the general case, since any curve of genus g has a g1
d with d � (g + 3)/2 [ACGH85, ch. V,

Theorem 1.1] we get a corollary.

Corollary 5.4. Put d := [(g + 1)/2]. The Q-algebra R is generated by w1, . . . , wd.

5.5 We may now ask how many of the classes wi are really needed to generate R. Since Nk(w)
belongs to Ak(J)k−1, it is readily seen that it cannot be a polynomial in N1(w), . . . , Nk−1(w) unless
it is zero. Thus the question is to determine when these classes vanish. I know only two results in that
direction: Ceresa’s result [Cer83] implies that N2(w) is non-zero for a generic curve of genus �3, and
Fakhruddin proved that N3(w) is non-zero for a generic curve of genus �11 [Fak96, Corollary 4.6].
It would be interesting to extend this to higher-codimensional classes.
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