
COMPLEMENTED BANACH ALGEBRAS 

A. OLUBUMMO 

1. I n t r o d u c t i o n . Let A be a complex Banach algebra and Lr (Lt) be the 
lattice of all closed right (left) ideals in A. Following Tomiuk (5), we say 
t h a t A is a right complemented algebra if there exists a mapping I —» P of Lr 

into Lr such t ha t if J £ Lr, then I C\ F = (0), ( P ) * = J, 7 0 P = A and 
if Ji , I2 e Lr with A Ç J2j then hv Q If. 

If in a Banach algebra A every proper closed right ideal has a non-zero 
left annihilator, then A is called a left annihilator algebra. If, in addition, the 
corresponding s ta tement holds for every proper closed left ideal and 
r(A) = (0) — 1(A), A is called an annihilator algebra (1). 

A Banach algebra A is called a £#-algebra if, for each a £ A, there exists 
a# 7* 0 such tha t 

| |a# | | | |a | | = l im | | (a#a) n | | 1 / w ; 
n-ïœ 

and finally, the norm || -|| in A is said to be minimal if, given any other norm 
| - | in A satisfying \a\ < | |a | | for every a £ A, we have | - | = | | - | | (2). 

T h e following structure theorem has been proved by Tomiuk (5, Theorem 
10). 

T H E O R E M . If a simple annihilator right complemented algebra A has the 
minimal norm property or is a B$-algebra, then A is bicontinuously isomorphic 
to the algebra of all completely continuous operators on a Hilbert space. 

T h e purpose of the present note is to prove Tomiuk 's result wi thout assuming 
t h a t A is an annihilator algebra. Our proof depends essentially on the fact 
t h a t if e is a primitive idempotent in A, then the minimal norm proper ty 
already guarantees tha t the set $ of all continuous linear functionals in (Ae)* 
corresponding to the elements of eA (as described in 5, p . 656) is in fact the 
whole of (Ae)*. 

2. T H E O R E M . If a simple right complemented algebra A has the minimal norm 
property, then A is bicontinuously isomorphic to the algebra of all completely 
continuous operators on a Hilbert space. 

Proof. A semi-simple, right complemented algebra contains minimal ideals 
(5, Theorem 1). Let I = Ae be a minimal left ideal of A, e a primitive idem-
potent . We represent A as an algebra 31 of operators on Ae, defining, for each 
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a G A, an operator a Ç 21 by a : x —> ax, x 6 /le. The correspondence a —> â 
is obviously an isomorphism and if we take 

|lâ|| = sup | |a#||, x € Ae, 
\\x\Kl 

as a new norm in yl, the correspondence is, by the minimal norm property, 
an isometry. 

Let <$> denote the subspace of (Ae)* corresponding to the elements of eA 
(5, p. 656). Then $ is a closed subspace of (Ae)*, In fact, for a £ eA, 
ax = <pa(x)e, x f Ae. Then using the isometry established above, we have 

I Ml ~ I Ml = S U P lkxll» a £ ^ 4 , 
\\x\\<l 

= s u p | | ( /> a(x)^| | 
i ki !<i 

= sup |0o(x)| I \e\ | 
| | x | | < i 

from which it follows that <£ is homeomorphic with eA and, therefore, closed. 
By (5, Lemma 8), $ is dense in (Ae)*, and so $ = (Ae)*. 

From this it follows that 21 contains all the operators of finite rank in Ae 
and the proof is completed as in (5, Theorems 7 and 10). 

COROLLARY 1. A simple, right complemented algebra with the minimal norm 
property is a dual algebra. 

This follows from a result due to Kaplansky (3, Cor. to Theorem 8.4). 

COROLLARY 2. A simple, right complemented, B$-algebra is bicontinuously 
isomorphic to the algebra of all completely continuous operators on a Ililbert 
space. 

Proof. Any semi-simple, right complemented algebra has a dense socle (5, 
Lemma 5), and a 5—algebra with a dense socle has the minimal norm property 
(4, Lemma 3.2). The result now follows from the theorem. 
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