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Learning from Data, and Tools for the Task

Chapter Summary
We begin by illustrating the interplay between questions driven by scientific curios-
ity and the use of data in seeking the answers to such questions. Graphs provide a
useful window through which meaning can be extracted from data. Numeric sum-
mary statistics and probability distributions provide a form of quantitative scaf-
folding for models of random as well as nonrandom variation. Simple regression
models foreshadow the issues that arise in the more complex models considered
later in the book. Frequentist and Bayesian approaches to statistical inference are
touched upon, the latter primarily using the Bayes Factor as a summary statistic
which moves beyond the limited perspective that p-values offer. Resampling meth-
ods, where the one available dataset is used to provide an empirical substitute for
a theoretical distribution, are also introduced. Remaining topics are of a more gen-
eral nature. Section 1.9 will discuss the use of RStudio and other such tools for
organizing and managing work. Section 1.10 will include a discussion on the impor-
tant perspective that replication studies provide, for experimental studies, on the
interplay between statistical analysis and scientific practice. The checks provided
by independent replication at another time and place are an indispensable comple-
ment to statistical analysis. Chapter 2 will extend the discussion of this chapter to
consider a wider class of models, methods, and model diagnostics.

A Note on Terminology – Variables, Factors and More!
Much of data analysis is concerned with the statistical modeling of relationships or
associations that can be gleaned from data, with a mathematical formula used to
specify the model. There is an example at the beginning of Section 1.1.6.

The word variable will be used when data values are numeric. These include
counts, as for example in count from the DAAG::ACF1 data frame which has num-
bers of aberrant lesions in the lining of a rat’s colon. The term factor will be used
when values are on a categorical scale. Thus, in the data frame DAAG::kiwishade,
yield is a variable with values such as 101.11, and block is a factor with levels
east, north, and west. A factor may also represent values on an ordinal scale.
Thus the factor tint in the data frame DAAG::tinting has ordered levels no, lo,
and hi.
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2 Learning from Data, and Tools for the Task

Continuous measurements can be further classified as having either an interval
scale or a ratio scale. Variables defined on an interval scale can take positive or
negative values, and differences in the data values are meaningful. Variables defined
on a ratio scale are usually positive only, so quotients are more meaningful.

1.1 Questions, and Data That May Point to Answers

Accounts of observed phenomena become part of established science once we know
the circumstances under which they will recur. This process is relatively straight-
forward when applied to the study of regular events, such as a solar eclipse or the
ocean tide levels in the Bay of Fundy in eastern Canada. Mathematical models
that are based on sound physical principles can provide very accurate predictions
for such events. Not everything is so readily predictable. How effective is a partic-
ular vaccine in preventing COVID-19-associated hospitalizations? How fast will a
wildfire spread through a region with known topography and vegetation under given
wind, temperature, and moisture conditions? Data from a suitable experiment or
series of experiments may be able to go at least part of the way towards providing
an answer. Thus, results from prescribed burns in designated forest stands where
all relevant variables have been measured can provide a starting point for assessing
the rate of spread of surface fires.

Or it may be necessary to rely on whatever data are already available. How
effective are airbags in reducing the risk of death in car accidents? Data on car
accidents in the United States over the period 1997–2002 are available. While careful
and critical analyses of these data can help answer the question, caveats apply
when the interest is in effectiveness at a later time and in another country. There
have been important advances in the subsequent two decades in airbag design,
manufacture, and systems that control deployment.

In Canada, there is a tendency for car passengers to use seatbelts at a higher
rate than in the United States, so that efficacy assessments based on the American
data have to be tempered when applied to the Canadian experience. The decision
on which of the available datasets is best designed to provide an answer, and the
choice of model, have called for careful and critical assessment. The help pages
?DAAG::nassCDS and ?gamclass::FARS provide further commentary. There is a
strong interplay between the questions that can reasonably be asked, and the data
that are available or can be collected. Keep in mind, also, that different questions,
asked of the same data, may demand different analyses.

1.1.1 A Sample Is a Window into the Wider Population

The population comprises all the data that might have been. The sample is the data
that we have. Subjects for a sample to be surveyed should be selected randomly. In
a clinical trial, it is important to allocate subjects randomly to different treatment
groups.
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1.1 Questions, and Data That May Point to Answers 3

Suppose, for example, that names on an electoral roll are numbered from 1 to
9384. The following uses the function sample() to obtain a random sample of 12
individuals:

## For the sequence below, precede with set.seed(3676)
sample(1:9384, 12, replace=FALSE) # NB: `replace=FALSE` is the default

[1] 2263 9264 4490 8441 1868 3073 5430 19 1305 2908 5947 915

The numbers are the numerical labels for the 12 individuals who are included in the
sample. The task is then to find them! The option replace=FALSE gives a without
replacement sample, that is, it ensures that no one is included more than once.

A more realistic example might be the selection of 1200 individuals, perhaps for
purposes of conducting an opinion poll, from names numbered 1 to 19,384, on an
electoral roll. Suitable code is:

chosen1200 <- sample(1:19384, 1200, replace=FALSE)

The following randomly assigns 10 plants (labeled from 1 to 10, inclusive) to one
of two equal-sized groups, control and treatment:

## For the sequence below, precede with set.seed(366)
split(sample(seq(1:10)), rep(c("Control","Treatment"), 5))

$Control
[1] 5 7 1 10 4

$Treatment
[1] 8 6 3 2 9

# sample(1:10) gives a random re-arrangement (permutation) of 1, 2, ..., 10

This assigns plants 3, 5, 10, 2, and 7 to the control group. This mechanism avoids
any unwitting preference for placing healthier-looking plants in the treatment group.

The simple independent random sampling scheme can be modified or extended in
ways that take account of structure in the data, with random sampling remaining
a part of the data-selection process.

Cluster Sampling
Cluster sampling is one of many probability-based variants on simple random sam-
pling. See Barnett (2002). The function sample() can be used as before, but now
the numbers from which a selection is made correspond to clusters. For example,
households or localities may be selected, with multiple individuals from each. Stan-
dard inferential methods then require adaptation to account for the fact that it is
the clusters that are independent, not the individuals within the clusters. Donner
and Klar (2000) describe methods that are designed for use in health research.

∗A Note on With-Replacement Samples
For data that can be treated as a random sample from the population, one way to
get an idea of the extent to which it may be affected by random variation is to take
with-replacement random samples from the one available sample, and to do this
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Figure 1.1 Dotplot (Panel A) and boxplot (Panel B) displays of cuckoo egg
lengths. In Panel A, points that overlap have a more intense color. Means are
shown as +. The boxes in Panel B take in the central 50 percent of the data, from
25 percent of the way through the data to 75 percent of the way through. The
dot marks the median. Data are from Latter (1902).

repeatedly. The distribution that results can be an empirical substitute for the use
of a theoretical distribution as a basis for inference.

We can randomly sample from the set {1, 2, . . . , 10}, allowing repeats, thus:
sample(1:10, replace=TRUE)

[1] 1 3 7 5 5 10 3 3 2 9

## sample(1:10, replace=FALSE) returns a random permutation of 1,2,...10

With-replacement sampling is the basis of bootstrap sampling. The effect is that
of repeating each value an infinite number of times, and then taking a without-
replacement sample. Subsections 1.8.3 and 1.8.4 will demonstrate the methodology.

1.1.2 Formulating the Scientific Question

Questions should be structured with a view both to the intended use of results, and
to the limits of what the available data allow. Predictions of numbers in hospital
from COVID-19 two weeks into the future do not demand the same level of scientific
understanding or detailed data as needed to judge who among those infected are
most likely to require hospitalization.

Example: A Question About Cuckoo Eggs
Cuculus canorus is one of several species of cuckoos that lay eggs in the nests
of other birds. The eggs are then unwittingly adopted and hatched by the hosts.
Latter (1902) collected the data in DAAG::cuckoos as shown in Figure 1.1 in order
to investigate claims in Newton and Gadow (1896, p. 123) that the cuckoo eggs tend
to match the eggs of the host bird in size, shape, and color. Panel A is a dotplot
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1.1 Questions, and Data That May Point to Answers 5

Table 1.1 Mean lengths of cuckoo eggs, compared with mean lengths of eggs laid by
the host bird species. The table combines information from the two DAAG data
frames cuckoos and cuckoohosts.

Meadow Hedge Tree Yellow
Host species pipit sparrow Robin Wagtails pipit Wren hammer
Length (cuckoo) 22.3 (45) 23.1 (14) 22.5 (16) 22.6 (26) 23.1 (15) 21.1 (15) 22.6 (9)
Length (host) 19.7 (74) 20.0 (26) 20.2 (57) 19.9 (16) 20 (27) 17.7 (-) 21.6 (32)
(Numbers in parentheses are numbers of eggs)

display of the raw data. Panel B is the more summary boxplot form of display (to
be discussed further in Section 1.1.5) that is designed to give a rough indication of
how variation between groups compares with variation within groups.1

Table 1.1 adds information that suggests a relationship between the size of the
host bird’s eggs and the size of the cuckoo eggs that were laid in that nest. Observe
that apart from several outlying egg lengths in the meadow pipit nests, the length
variability within each host species’ nest is fairly uniform.

In the paper (Latter, 1902) that supplied the cuckoo egg data of Figure 1.1 and
Table 1.1, the interest was in whether cuckoos do in fact match the eggs that they
lay to the host eggs, and if so, in assessing which features match and to what extent.

Uniquely among the birds listed, the architecture of wren nests makes it impossi-
ble for the host birds to see the cuckoo’s eggs, and the cuckoo’s eggs do not match
the wren’s eggs in color. For the other species the color does mostly match. Latter
concluded that the claim in Newton and Gadow (1896) is correct, that the eggs
that cuckoos lay tend to match the eggs of the host bird in ways that will make it
difficult for hosts to distinguish their own eggs from the cuckoo eggs.

Issues with the data in Table 1.1 and Figure 1.1 are as follows.

• The cuckoo eggs and the host eggs are from different nests, collected over the
course of several investigations. Data on the host eggs are from various sources.

• The host egg lengths for the wren are indicative lengths, from Gordon (1894).

There is thus a risk of biases, different for the different sources of data, that limit
the inferences that can be drawn. How large, then, relative to statistical variation,
is the difference between wrens and other species? Would it require an implausibly
large bias to explain the difference? A more formal comparison between lengths for
the different species based on an appropriate statistical model will be a useful aid
to informed judgment.

Stripped down code for Figure 1.1 is:
library(latticeExtra) # Lattice package will be loaded and attached also
cuckoos <- DAAG::cuckoos
## Panel A: Dotplot without species means added
dotplot(species ∼ length, data=cuckoos) ## `species ∼ length` is a 'formula'
## Panel B: Box and whisker plot
bwplot(species ∼ length, data=cuckoos)
## The following shows Panel A, including species means & other tweaks
av <- with(cuckoos, aggregate(length, list(species=species), FUN=mean))

1 Subsection A.5.1 has the code that combines the two panels, for display as one graph.
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dotplot(species ∼ length, data=cuckoos, alpha=0.4, xlab="Length of egg (mm)") +
as.layer(dotplot(species ∼ x, pch=3, cex=1.4, col="black", data=av))
# Use `+` to indicate that more (another 'layer') is to be added.
# With `alpha=0.4`, 40% is the point color with 60% background color
# `pch=3`: Plot character 3 is '+'; `cex=1.4`: Default char size X 1.4

1.1.3 Planning for a Statistical Analysis

First steps in any coordinated scientific endeavor must include clear identification
of the question of interest, followed by careful planning. Consultation with subject-
matter specialists, as well as with specialists in statistical aspects of study design,
will help avoid obvious mistakes in any of the steps: designing the study, collecting
and/or collating data, carrying out analyses, and interpreting results.

If new data are to be acquired, one must decide if a designed experiment is
feasible. In human or animal experimentation, such as in clinical trials to test a
new drug therapy, ethics are an immediate concern. Data from experiments appear
throughout this text – examples are the data on the tinting of car windows that is
used for Figure 7.8 in Section 7.5, and the kiwifruit shading data that is discussed
in Subsection 1.3.2. Such data can, if the experiment has been well designed with
a view to answering the questions of interest, give reliable results. Always, the
question must be asked: “How widely do the results generalize?”. For example, we
might be interested in knowing to what extent the results for the kiwifruit shading
conditions can be generalized to other locations with different soil types and weather
conditions.

Understand the Data
Most standard elementary statistical methods assume that sample values were all
chosen independently and with equal probability from the relevant population. If
the data were from an observational study, such as in the cuckoo eggs example of
Subsection 1.1.2, special care is required to consider what biases may have been
induced by the method of data collection, and to ensure that they do not not lead
to incorrect conclusions.

Temporal and spatial dependence are common forms of departure from indepen-
dence, often leading to more complicated analyses. Data points originating from
points that are close together in time and/or space are often more similar. Tests
and graphical checks for dependence are necessarily designed to detect specific forms
of dependence. Their effectiveness relies on recognizing forms of dependence that
can be expected in the specific context.

If the data were acquired earlier and for a different purpose, details of the cir-
cumstances that surrounded the data collection are especially important. Were they
from a designed experiment? If so, how was the randomization carried out? What
factors were controlled? Was there a hierarchical structure to the data, such as
would occur in a survey of students, randomly selected from classes, which are
themselves randomly selected from schools, and so on? If the data were collected
as part of an observational study, such as in the cuckoos example of Subsection
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1.1 Questions, and Data That May Point to Answers 7

1.1.2, special care is required to ensure that hidden biases induced by the method
of data collection do not lead to incorrect conclusions. Biases are likely when data
are obtained from “convenience” samples that have the appearance of surveys but
which are really poorly designed observational studies. Online voluntary surveys
are of this type. Similar biases can arise in experimental studies if care is not taken.
For example, an agricultural experimenter may pick one plant from each of several
parts of a plot. If the choice is not made according to an appropriate randomization
mechanism, a preference bias can easily be introduced.

Nonresponse, so that responses are missing for some respondents, is endemic in
most types of sample survey data. Or responses may be incomplete, with answers
not provided to some questions. Dietary studies based on the self-reports of partic-
ipants are prone to measurement error biases. With experimental data on crop or
fruit yields, results may be missing for some plots because of natural disturbances
caused by animals or harsh weather. One ignores the issue at a certain risk, but
treating the problem is nontrivial, and the analyst is advised to determine as well
as possible the nature of the missingness. It can be tempting simply to replace
a missing height value for a male adult in a dataset by the average of the other
male heights. Such a single imputation strategy will readily create unwanted bi-
ases. Males that are of smaller than average weight and chest measurement are
likely to be of smaller than average height. Multiple imputation is a generic name
for methodologies that, by matching incomplete observations as closely as possible
to other observations on the variables for which values are available, aim to fill in
the gaps.

Causal Inference
With data from carefully designed experiments, it is often possible to infer causal
relationships. Perhaps the most serious danger is that the results will be generalized
beyond the limits imposed by the experimental conditions.

Observational data, or data from experiments where there have been failures
in design or execution, is another matter. Correlations do not directly indicate
causation. A and B may be correlated because A drives B, or because B drives A,
or because A and B change together, in concert with a third variable. For inferring
causation, other sources of evidence and understanding must come into play.

What Was Measured? Is It the Relevant Measure?
The DAAG::science and DAAG::socsupport data frames are both from surveys.
The former concerns student attitudes towards science in Australian private and
public school systems. The latter concerns social and emotional support resources
as they might relate to psychological depression in a sample of individuals.

In either case it is necessary to ask: “What was measured?” This question is
itself amenable to experimental investigation. For the dataset science, what did
students understand by “science”? Was science, for them, a way to gain and test
knowledge of the world? Or was it a body of knowledge? Or, more likely, was it
a label for their experience of science laboratory classes (interesting sights, smells
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and sounds perhaps) and field trips? Answers to other questions included in the
survey shed some limited light.

In the socsupport dataset, an important variable is the Beck Depression Inven-
tory or BDI, which is based on a 21-question multiple-choice self-report. It is the
outcome of a rigorous process of development and testing. Since its first publication
in 1961, it has been extensively used, critiqued, and modified. Its results have been
well validated, at least for populations on which it has been tested. It has become
a standard psychological measure of depression (see, e.g., Streiner et al., 2014).

For therapies that are designed to prolong life, what is the relevant measure? Is
it survival time from diagnosis? Or is a measure that takes account of quality of
life over that time more appropriate? Two such measures are “Disability Adjusted
Life Years” (DALYs) and “Quality Adjusted Life Years” (QALYs). Quality of life
may differ greatly between the therapies that are compared.

Use Relevant Prior Information in the Planning Stages
Information from the analysis of earlier data may be invaluable both for the design
of data collection for the new study and for planning data analysis. When prior data
are not available, a pilot study involving several experimental runs can sometimes
provide such information.

Graphical and other checks are needed to identify obvious mistakes and/or quirks
in the data. Graphs that draw attention to inadequacies may be suggestive of
remedies. For example, they may indicate a need to numerically transform the
data, such as by taking a logarithm or square root, in order to more accurately
meet the assumptions underlying a more formal analysis. At the same time, one
should keep in mind the risk that use of the data to influence the analysis may bias
results.

Subject Area Knowledge and Judgments
Data analysis results must be interpreted against a background of subject area
knowledge and judgment. Some use of qualitative judgment is inevitable, relating
to such matters as the weight that can be placed on claimed subject area knowledge,
the measurements that are taken, the details of study design, the analysis choices,
and the interpretation of analysis results. These, while they should be as informed as
possible, involve elements of qualitative judgment. A well-designed study will often
lead to results that challenge the insights and understandings that underpinned the
planning.

The Importance of Clear Communication
When there are effective lines of communication, the complementary skills of a data
analyst and a subject matter expert can result in effective and insightful analyses.
When unclear about the question of interest, or about some feature of the data,
analysts should be careful not to appear to know more than is really the case. The
subject-matter specialist may be so immersed in the details of their problem that,
without clear signals to the contrary, they may assume similar knowledge on the
part of the analyst.
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Data-Based Selection of Comparisons
In carefully designed studies where subjects have been assigned to different groups,
with each group receiving a different treatment, comparisons of outcomes between
the various groups, and of subgroups within those groups (e.g., female/male, old/
young) will be of interest. Among what may be many possible comparisons, the
comparisons that will be considered should be specified in advance. Prior data, if
available, can provide guidance. Any investigation of other comparisons may be
undertaken as an exploratory investigation, a preliminary to the next study.

Data-based selection of one or two comparisons from a much larger number is
not appropriate, since large biases may be introduced. Alternatively, there must be
allowance for such selection in the assessment of model accuracy. The issues here
are nontrivial, and we defer further discussion until later.

Models Must Be Fit for Their Intended Use
Statistical models must, along with the data upon which they rely, be applied ac-
cording to their intended use. Architects and engineers have in the past relied heav-
ily on scale models for giving a sense of important features of a planned building.
For checking routes through the building, for the plumbing as well as for humans,
such models can be very useful. They will not give much insight on how buildings
in earthquake-prone regions are likely to respond to a major earthquake – a lively
concern in Wellington, New Zealand, where the first author now lives. For that
purpose, engineers use mathematical equations that are designed to reflect the rel-
evant physical processes. The credibility of predictions will strongly depend on the
accuracy with which the models can be shown to represent those processes.

1.1.4 Results That Withstand Thorough and Informed Challenge

Statistical models aim to give real-world descriptions that are adequate for the
purposes for which the model will be used. What checks will give confidence that
a model will do the task asked of it? As argued in Tukey (1997), there must be
exposure to diverse challenges that can build (or destroy!) confidence in model-
based inferences. We should trust those results that have withstood thorough and
informed challenge.

A large part of our task in this text is to suggest effective forms of challenge.
Specific types of challenge may include the following.

• For experiments, carefully check and critique the design.
• Look into what is known of the processes that generated the data, and consider

critically how this may affect its use and the reliance placed on it. Are there
possible or likely biases?

• Look for inadequacies in laboratory procedure.
• Use all relevant graphical or other summary checks to critique the model that

underpins the analysis.
• Where possible, check the performance of the model on test data that reflects
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10 Learning from Data, and Tools for the Task

the manner of use of results. (If, for example, predictions are made that will be
applied a year into the future, check how predictions made a year ahead panned
out for historical data.)

• For experimental data, have the work replicated independently by another re-
search group, from generation of data through to analysis.

In areas where the nature of the work requires cooperation between scientists
with a wide range of skills, and where data are shared, researchers provide checks
on each other. For important aspects of the work, the most effective critiques are
likely to come from fellow researchers rather than from referees who are inevitably
more remote from the details of what has been done. Failures of scientific processes
are a greater risk where scientists work as individuals or in small groups with limited
outside checks.

There are commonalities with the issues of legal and medical decision making that
receive extensive attention in Kahneman et al. (2021, p. 372), on the benefits of
“averaging,” that is, using the perspectives of multiple judges as a basis for decision
making when sentencing; the authors comment:

The advantage of averaging is further enhanced when judges have diverse skills and com-
plementary judgment patterns.

Also needed is a high level of shared understanding.
For observational data, the challenges that are appropriate will depend strongly

on the nature of the claims made as a result of any analysis. Dangers of over-
interpretation and/or misinterpretation of results gleaned from observational data
will be exemplified later in the text.

1.1.5 Using Graphs to Make Sense of Data

Ideas of Exploratory Data Analysis (EDA), as formalized by John W. Tukey, have
been a strong influence in the development of many of the forms of graphical display
that are now in wide use. See Hoaglin (2003). A key concern is that the data should
as far as possible speak for itself, prior to or as part of a formal analysis.

A use of graphics that is broadly in an EDA tradition continues to develop and
evolve. The best modern statistical software makes a strong connection between
data analysis and graphics, combining the computer’s ability to crunch numbers
and present graphs with that of a trained human eye to detect pattern. Statistical
theory has an important role in suggesting forms of display that may be helpful
and interpretable.

Graphical Comparisons
Figure 1.1 was a graphical comparison between the lengths of cuckoo eggs that had
been laid in the nests of different host species. The boxes that give boxplots their
name focus attention on quartiles of the data, that is, the three points on the axis
that split the data into four equal parts. The lower end of the box marks the first
quartile, the dot marks the median, and the upper end of the box marks the third
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quartile. Points that lie out beyond the “whiskers” are plotted individually, and are
candidates to be considered outliers. The widths of the boxes will of course vary
randomly, leading in some cases to the flagging of points that should not be treated
as extreme. The narrow box may largely account for the five values that are flagged
for meadow pipit.

Figure 1.1 strongly suggested that eggs planted in wrens’ nests were substantially
smaller than eggs planted in other birds’ nests. The upper quartile (75 percent
point) for eggs in wrens’ nests lies below all the lower quartiles for other eggs.

1.1.6 Formal Model-Based Comparison

For comparing lengths between species in the cuckoo eggs data, we use the model:

Egg length = Mean for species + Random variation.

The means in the dataset cuckoos are:
av <- with(cuckoos, aggregate(length, list(species=species), FUN=mean))
setNames(round(av[["x"]],2), abbreviate(av[["species"]],10))

hedgsparrw meadowpipt piedwagtal robin tree pipit wren
23.11 22.29 22.89 22.56 23.08 21.12

The model postulates that the length of a cuckoo egg found in a given nest de-
pends in some way on the host species. There are likely to be additional factors
that have not been observed but which also influence the egg length. The variation
due to these unobserved factors is aggregated into one term which is referred to
as statistical error or random variation. Where none of these observed factors pre-
dominates and their effects add, a normal distribution will often be effective as a
model for the random variation.

The species means are estimated from the data and are called fitted values. The
differences between the data values and those means are called residuals. For ex-
ample, suppose ℓi is the length of the ith egg in the nest of a wren, and ℓ̄ is the
average of all eggs in the wrens’ nests. Then the ith residual for this group is

ei = ℓi − ℓ̄.

The scale() function provides a convenient way to calculate such residuals; its
usage below centers the data by subtracting the average from each data point.
Thus, the residuals for the wren length model are:

with(cuckoos, scale(length[species=="wren"], scale=FALSE))[,1]

[1] -1.32 0.98 0.38 -0.22 0.88 -0.12 1.18 -0.12 -0.82 -0.22 0.88
[12] -1.12 -0.32 0.08 -0.12

Is the variability different for different species? The boxes in Figure 1.1, with
endpoints set for each species to contain the central 50 percent of the data, hint
that variation may be greater for the pied wagtail than for other species. (The box
widths equal the inter-quartile range, or IQR. See further, Subsection 1.3.4.)
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A: Boxplot, with annotation added

Figure 1.2 Panel A shows a boxplot, with annotation that explains boxplot fea-
tures. Panel B shows a density plot, with a histogram overlaid. Histogram fre-
quencies are shown on the right axis of Panel B. In both panels, the individual
data points appear as a “rug” along the lower side of the bounding box. Where
necessary, they have been moved slightly apart to avoid overlap.

1.2 Graphical Tools for Data Exploration

In this section, we illustrate basic approaches to the graphical exploration of data.
Three R static graphics systems enjoy wide use. These are: base (or “traditional”)
graphics using plot() and associated commands, lattice which offers more stylized
types of graphs, and ggplot2 whose rich array of features comes at the cost of extra
graphics language complexity.

Later chapters will make extensive use both of base graphics and of lattice graph-
ics, resorting to ggplot2 on those occasions when features are needed that are not
readily available in the other packages. Some lattice graphs will be printed in a style
(use a theme) akin to the default ggplot2 style. Section A.5 has further details.

1.2.1 Displays of a Single Variable

A basic form of display for a single numeric variable is the dotplot, which plots the
individual data points along a number line or single axis. The boxplot provides a
coarser summary of univariate data. The histogram and density curve offer more
fine-grained alternatives.

Figure 1.2A shows a boxplot of total lengths of females in the possum dataset,
with annotation added that explains the interpretation of boxplot features. Fig-
ure 1.2B shows a density curve, with a histogram overlaid, for the same data. Both
panels contain rug plots which are essentially dotplots consisting of vertical bars
added along the lower edge.
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1.2 Graphical Tools for Data Exploration 13

One data point lies outside the boxplot “whiskers” to the left, and is flagged
as a possible outlier. An outlier is a point that is determined to be far from the
main body of the data. Under the default criterion, about 1 percent of normally
distributed data would be judged as outlying.

A histogram is a crude form of density estimate. A smooth density estimate is,
often, a better alternative. The height of the density curve at any point is an esti-
mate of the proportion of sample values per unit interval, locally at that point. Both
histograms and density curves involve an element of subjective choice. Histograms
require the choice of breakpoints, while density estimates require the choice of a
bandwidth parameter that controls the amount of smoothing. In both cases, the
software has default choices that should be used with care.

Code for a slightly simplified version of Figure 1.2B is:

fossum <- subset(DAAG::possum, sex=="f")
densityplot(∼totlngth, plot.points=TRUE, pch="|", data=fossum) +

layer_(panel.histogram(x, type="density", breaks=c(75,80,85,90,95,100)))

Comparing Univariate Displays Across Factor Levels

Total length (cm)

Vic

other

75 80 85 90 95

f

75 80 85 90 95

m

Figure 1.3 Total lengths of possums, by sex and (within panels) by geographical
location (Victorian or other).

Univariate summaries can be broken down by one or more factors between and/or
within panels. Figure 1.3 overlays dotplots on boxplots of the distributions of Aus-
tralian possum lengths, broken down by sex and (within panels) by geographical
region (Victoria or other).

## Create boxplot graph object --- Simplified code
gph <- bwplot(Pop∼totlngth | sex, data=possum)
## plot graph, with dotplot distribution of points below boxplots
gph + latticeExtra::layer(panel.dotplot(x, unclass(y)−0.4))

The normal distribution is not necessarily the appropriate reference. Points may
be identified as outliers because the distribution is skew (usually, with a tail to the
right). Any needed action will depend on the context, requiring the user to exercise
good judgement. Subsection 1.2.8 will comment in more detail.
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14 Learning from Data, and Tools for the Task

1.2.2 Patterns in Univariate Time Series

Figure 1.4 shows time plots of historical deaths from measles in London. (Here,
“measles” includes both what is nowadays called measles and the closely related
rubella or German measles.)
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Figure 1.4 The two panels provide different insights into data on mortality from
measles, in London over 1629–1939. Panel A uses a logarithmic scale to show
the numbers of deaths from measles in London for the period from 1629 through
1939 (black curve). The black dots show, for the period 1800 to 1939 the London
population in thousands. Panel B shows, on the linear scale (black curve), the
subset of the measles data for the period 1840 through 1882 together with the
London population (in thousands, black dots).

Panel A uses a logarithmic vertical scale while Panel B uses a linear scale and takes
advantage of the fact that annual deaths from measles were of the order of one in
500 of the population. Thus, deaths in thousands and population in half millions
can be shown on the same scale.

Panel A shows broad trends over time, but is of no use for identifying changes
on the time-scale of a year or two. In Panel B, the lines that show such changes
are, mostly, at an angle that is in the approximate range of 20◦ to 70◦ from the
horizontal. A sawtooth pattern is evident, indicating that years in which there were
many deaths were often followed by years in which there were fewer deaths. To
obtain this level of detail for the whole period from 1629 until 1939, multiple panels
would be necessary.
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B: Logarithmic scales

Figure 1.5 Brain weight versus body weight, for 28 animals that vary greatly in
size. Panel A has untransformed scales, while Panel B has logarithmic scales, on
both axes.

Simplified code is:
measles <- DAAG::measles
## Panel A
plot(log10(measles), xlab="", ylim=log10 (c(1,5000∗540)),

ylab=" Deaths; Population", yaxt="n")
ytiks1 <- c(1, 10, 100, 1000); ytiks2 <- c(1000000, 5000000)
## London population in thousands
londonpop <-ts(c(1088,1258,1504,1778,2073,2491,2921,3336,3881,

4266,4563,4541,4498,4408), start=1801, end=1931, deltat=10)
points(log10(londonpop∗600), pch=16, cex=.5)
abline(h=log10(ytiks1), lty = 2, col = "gray", lwd = 2)
abline(h=log10(ytiks2∗0.5), lty = 2, col = "gray", lwd = 2)
axis(2, at=log10(ytiks1), labels=paste(ytiks1), lwd=0, lwd.ticks=1)
axis(2, at=log10(ytiks2∗0.5), labels=paste(ytiks2), tcl=0.3,

hadj=0, lwd=0, lwd.ticks=1)
## Panel B
plot(window(measles, start=1840, end=1882), ylim=c (0, 4600), yaxt="n")
points(londonpop, pch=16, cex=0.5)
axis(2, at=(0:4)∗ 1000, labels=paste(0:4), las=2)

For details of the data, and commentary, see Guy (1882), Stocks (1942), and
Senn (2003) where interest was in the comparison with smallpox mortality. The
population estimates (londonpop) are from Mitchell (1988).

1.2.3 Visualizing Relationships Between Pairs of Variables

Patterns and relationships linking multiple variables are a primary focus of data
analysis. The following example is concerned with the relationship between two
variables and illustrates an important question that often arises: What is the ap-
propriate scale?

Figures 1.5A and B plot brain weight (g) against body weight (kg), for 28 animals.
Panel A indicates that the distributions of data values are highly positively skew,
on both axes, but is otherwise unhelpful. Panel B’s logarithmic scales spread points
out more evenly, and the graph tells a clearer story. Note that, on both axes, tick
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Figure 1.6 Distance traveled (distance.traveled) by model car, as a function
of starting point (starting.point), up a 20◦ ramp.

marks are separated by an amount that, when translated back from log(weight)
to weight, differ by a factor of 100. The argument aspect="iso" has ensured that
these correspond to the same physical distance on both axes of the graph. Code is:

## Untransformed vs log transformed scales
Animals <- MASS::Animals
asp <- with(Animals, sapply(list(log(brain/100), log(body/100)),

function(x)diff(range(x)))) |> (\(d)d[1]/d[2])()
xlab <- "Body weight (unit=100kg)"; ylab <- "Brain (unit=100g)"
gphA <- xyplot(I(brain/100) ∼ I(body/100), data=Animals, aspect=asp,

xlab=xlab, ylab=ylab)
gphB <- xyplot(log(brain/100) ∼ log(body/100), data=MASS::Animals, # Panel B

aspect='iso', xlab=xlab, ylab=ylab)
labx <- 10∧c((−3):3); laby <- 10∧c((−2):2)
gphB <- update(gphB, scales=list(x=list(at=log(labx), labels=labx, rot=20),

y=list(at=log(laby), labels=laby)))

A logarithmic scale is appropriate for quantities that change multiplicatively.
Thus, if cells in a growing organism divide and produce new cells at a constant
rate, then the total number of cells changes multiplicatively, resulting in what is
termed exponential growth. Large organisms may similarly increase in a given time
interval by the same approximate fraction as smaller organisms. Growth rate on a
natural logarithmic scale (loge) equals the relative growth rate.

Anyone who works with real data – biologists, economists, physical scientists –
will do well to make themselves comfortable with the use and interpretation of
logarithmic scales. See Subsection 2.5.6 for a brief discussion of other commonly
used transformations.

1.2.4 Response Lines (and/or Curves)

The data shown on the right-hand side of Figure 1.6, and plotted in the figure, were
generated by releasing a model car three times at each of four different distances
(starting.point) up a 20◦ ramp. The experimenter recorded distances traveled
from the bottom of the ramp across a concrete floor. Response curve analysis, using
regression, is appropriate. It would be a mistake to treat the four starting points
as factor levels in a one-way analysis. Data are available in DAAG::modelcars.
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For these data, the physics suggests the likely form of response. Where no such
help is available, careful examination of the graph, followed by systematic examina-
tion of plausible forms of response, may suggest a suitable form of response curve.

1.2.5 ∗ Multiple Variables and Times

Overlaying plots of several time series (sequences of measurements taken at regular
intervals) might seem appropriate for making direct comparisons. However, this
approach will only work if the scales are comparable for the different series.

Figures 1.7A and B show alternative views of labor force numbers (thousands),
for various regions of Canada, at quarterly intervals over the 24-month period from
January 1995 to December 1996. Over this time, Canada was emerging from a deep
economic recession. The ranges of values, for each of the six regions, are:

## Apply function range to columns of data frame jobs (DAAG)
sapply(DAAG::jobs, range) ## NB: `BC` = British Columbia

BC Alberta Prairies Ontario Quebec Atlantic Date
[1 ,] 1737 1366 973 5212 3167 941 95.00
[2 ,] 1840 1436 999 5360 3257 968 96.92

With a logarithmic scale, as in Figure 1.7A, similar changes on the scale corre-
spond to similar proportional changes. The regions have been taken in order of the
number of workers in December 1996 (or, in fact, at any other time). This ensures
that the order of the labels in the key matches the positioning of the points for the
different regions. Code that has been used to create and update the graphics object
basicGphA, then updating it to obtain the labeling on the x- and y-axes is:

## Panel A: Basic plot; all series in a single panel; use log y-scale
formRegions <- Ontario+Quebec+BC+Alberta+Prairies+Atlantic ∼ Date
basicGphA <-

xyplot(formRegions, outer=FALSE, data=DAAG::jobs, type="l", xlab="",
ylab="Number of workers", scales=list(y=list(log="e")),
auto.key=list(space="right", lines=TRUE, points=FALSE))

## `outer=FALSE`: plot all columns in one panel
## Create improved x- and y-axis tick labels; will update to use
datelabpos <- seq(from=95, by=0.5, length=5)
datelabs <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length=5), "%b%y")
## Now create $y$-labels that have numbers, with log values underneath
ylabposA <- exp(pretty(log(unlist(DAAG::jobs[,−7])), 5))
gphA <- update(basicGphA, scales=list(x=list(at=datelabpos, labels=datelabs),

y=list(at=ylabposA, labels=ylabelsA)))

Because the labor forces in the various regions do not have similar sizes, it is
impossible to discern any differences among the regions from this plot. Plotting
on the logarithmic scale was not enough on its own. Figure 1.7B, where the six
different panels use different slices of the same logarithmic scale, is an informative
alternative. Simplified code is:

## Panel B: Separate panels (`outer=TRUE`); sliced log scale
basicGphB <-
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Figure 1.7 Data are labor force numbers (thousands) for various regions of
Canada, at quarterly intervals over 1995–1996. Panel A uses the same logarith-
mic y-scale for all regions. Panel B shows the same data, but now with separate
(“sliced”) logarithmic y-scales on which the same percentage increase, for exam-
ple, by 1 percent, corresponds to the same distance on the scale, for all plots.
Distances between ticks are 0.02 on the loge scale, that is, a change of close to 2
percent.

xyplot(formRegions, data=DAAG::jobs, outer=TRUE, type="l", layout=c(3,2),
xlab="", ylab="Number of workers",
scales=list(y=list(relation="sliced", log=TRUE)))

Use of outer=TRUE, causes separate columns (regions) to be plotted on separate
panels. As before, equal distances on the scale correspond to equal relative changes.
It is now clear that Alberta and BC experienced the fastest job growth and that
there was little or no job growth in Quebec and the Atlantic region.

The following are the changes in numbers employed, in each of Alberta and BC,
from January 1995 to December 1996. The changes are shown in actual numbers,
and on scales of log2, loge and log10. Figure 1.8 shows this graphically.

Increase
Rel. change log2 loge log10

Alberta (1366 to 1466; increase=70) 1.051 0.072 0.050 0.022
BC (1752 to 1840; increase=88) 1.050 0.070 0.049 0.021

From the beginning of 1995 and the end of 1996, the increase of 70 in Alberta
from 1366 to 1436 is by a factor of 1436/1366 ≃ 1.051). For BC, an increase by 88
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Figure 1.8 Labeling of the values for Alberta (1366, 1436) and BC (1752, 1840),
with alternative logarithmic scale choices.

from 1752 to 1840 is by a factor of 1.050. The proper comparison is not between
the absolute increases, but between very nearly identical multipliers of 1.051 and
1.050.

Even better than using a logarithmic y-scale, particularly if ready comprehen-
sion is important, would be to standardize the labor force numbers by dividing,
for example, by the respective number of persons aged 15 years and over at that
time. Scales would then be directly comparable. (The plot method for time se-
ries could then suitably be used to plot the data as a multivariate time series. See
?plot.ts.)

1.2.6 ∗ Labeling Technicalities

For lattice functions, the arguments log=2 or log="e" or log=10 are available.
The latter two scales are referred to as natural and common log scales, respectively.
These use the relevant logarithmic axis labeling, as in Figure 1.8, for axis labels.
In base graphics, with one of the arguments log="x" or log="y" or log="xy", the
default is to label the specified axis or axes in the original units.

An alternative, both for traditional and lattice graphics, is to enter the log-
transformed values, using whatever base is preferred (2 or "e" or 10), into the
graphics formula. Unless other tick labels are manually entered, ticks will be auto-
matically transformed to the correct scale.

Note again the reason for placing y-axis tick marks a distance 0.02 apart on the
loge linear scale used in Figure 1.7. On the loge scale a change of 0.02 is very nearly
a 2 percent change.

1.2.7 Graphical Displays for Categorical Data

Figure 1.9 illustrates the possible hazards of adding values in a multiway table over
one of its margins. Data are from a study (Charig, 1986) that compared the use of
open surgery for kidney stones with a method that made a small incision and used
ultrasound to destroy the stone. Stones were classified by diameter: either at least
2 cm or less than 2 cm. For each subject, the outcome was assessed as successful
(“yes”) or unsuccessful (“no”).
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Figure 1.9 Outcomes are for two different types of surgery for kidney stones.
The overall (apparent) success rates (78 percent for open surgery as against 83
percent for ultrasound) favor ultrasound. The success rate for each size of stone
separately favors, in each case, open surgery.

If we consider small stones and large stones separately, it appears that surgery
is more successful than ultrasound. The blue vertical bar Figure 1.9 is in each case
to the right of the corresponding red vertical bar. The overall counts, which favor
ultrasound, are thus misleading. For open surgery, the larger number of operations
for large stones (263 large, 87 small) weights the overall success rate towards the low
overall success rate for large stones. For ultrasound surgery (red bars), the weighting
(80 large, 280 small) is towards the high success rate for small stones. This is an
example of the phenomenon called the Simpson or Yule–Simpson paradox. (See also
Subsection 2.1.2.)

Note that without additional information, the results are not interpretable from
a medical standpoint. Different surgeons will have preferred different surgery types,
and the prior condition of patients will have affected the choice of surgery type.
The consequences of unsuccessful surgery may have been less serious for ultrasound
than for open surgery.

The table stones, shown to the right of Figure 1.9, has three margins – Success,
Method, and Size. The table margin12 that results from adding over Size retains
the first two of these. Code used is:

stones <- array(c(81,6,234,36,192,71,55,25), dim=c(2,2,2),
dimnames=list(Success=c("yes","no"),
Method=c("open","ultrasound"), Size=c("<2cm", "≥2cm")))

margin12 <- margin.table(stones, margin=1:2)

Mosaic plots are an alternative type of display that can be obtained using either
mosaicplot() from base graphics or vcd::mosaic(). Figure 1.9 makes the point
of interest for the kidney stone surgery data more simply and directly.

1.2.8 What to Look for in Plots

We now note points to keep in mind when examining data.
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Outliers
Outliers are points that appear, or are judged, isolated from the main body of the
data. Such points, whether errors or genuine values, can indicate departure from
model assumptions, and may distort any model that is fitted.

Boxplots, and the normal quantile–quantile plot that will be discussed in Sub-
section 1.4.3, are useful for highlighting outliers in one dimension. Scatterplots may
highlight outliers in two dimensions. Some outliers will, however, be apparent only
in three or more dimensions.

Asymmetry of the Distribution
Positive skewness (a tail to the right) is a common form of departure from nor-
mality. The largest values are widely dispersed, and values near the minimum are
likely to be bunched up together. Provided that all values are greater than zero,
a logarithmic transformation typically makes such a distribution more symmetric.
Negative skewness (a tail to the left) is less common. Severe skewness is typically
a more serious problem for the validity of analysis results than other types of
nonnormality.

If values of a variable that takes positive values range by a factor of more than
10:1 then, depending on the application area context, positive skewness is to be
expected. A logarithmic transformation should be considered.

Changes in Variability
Boxplots and histograms readily convey an impression of the extent of variability or
scatter in the data. Side-by-side boxplots, such as in Figure 1.1B, or dotplots such as
in Figure 1.1A, allow rough comparisons of the variability across different samples
or treatment groups. They provide a visual check on the assumption, common in
many statistical models, that variability is constant across treatment groups.

It is easy to over-interpret such plots. Statistical theory offers useful and necessary
warnings about the potential for such over-interpretation. (The variability in a
sample, typically measured by the variance, is itself highly variable under repeated
sampling. Measures of variability will be discussed in Subsection 1.3.3.)

When variability increases as data values increase, the logarithmic transformation
will often help. Constant relative variability on the original scale becomes constant
absolute variability on a logarithmic scale.

Clustering
Clusters in scatterplots may suggest features of the data that may or may not
have been expected. Upon proceeding to a formal analysis, any clustering must be
taken into account. Do the clusters correspond to different values of some relevant
variable? Outliers are a special form of clustering.

Nonlinearity
Where it seems clear that one or more relationships are nonlinear, a transformation
may make it possible to model the relevant effects as linear. Where none of the
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common standard transformations meets requirements, methodology is available
that will fit quite general nonlinear curves. See Subsection 4.4.2.

If there is a theory that suggests the form of model, then this is a good starting
point. Available theory may, however, incorporate various approximations, and the
data may tell a story that does not altogether match the available theory. The data,
unless they are flawed, have the final say!

Time Trends in the Data
It is common to find time trends that are associated with order of data collection.
It can be enlightening to plot residuals, or other quantities, against time. Patterns
of increase or decrease are common and are readily recognized, but one should also
be alert to the possibility of seasonality or periodic behavior.

1.3 Data Summary

Data summaries may: (1) be of interest in themselves; (2) give insight into aspects
of data structure that may affect further analysis; (3) be used as data for further
analysis. In case (3), it is necessary to ensure that important information, relevant
to the analysis, is not lost. Before adding counts across the margins of multiway
tables, or otherwise pooling data across different groups, it is important to check
the potential for distortions that are artifacts of the way that the data have been
summarized. Examples will be given.

If there is no loss of information, use of summary data can allow a helpful sim-
plicity of analysis and interpretation, Do not, however, proceed without careful
consideration!

1.3.1 Counts

The data frame DAAG::nswpsid1 is from a study (Lalonde, 1986) that compared two
groups of individuals with a history of unemployment problems – one an “untreated”
control group and the other a “treatment” group whose members were exposed to a
labor training program. The data include measures that can be used for checks on
whether the two groups were, aside from exposure (or not) to the training program,
otherwise plausibly similar. The following compares the relative numbers between
who had completed high school (nodeg = 0) and those who had not (nodeg = 1).

## Table of counts example: data frame nswpsid1 (DAAG)
## Specify `useNA="ifany"` to ensure that any NAs are tabulated
tab <- with(DAAG::nswpsid1, table(trt, nodeg, useNA="ifany"))
dimnames(tab) <- list(trt=c("none", "training"), educ = c("completed", "dropout"))
tab

educ
trt completed dropout

none 1730 760
training 80 217
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Figure 1.10 Boxplot showing weights (inverse sampling fractions), in the dataset
DAAG::nassCDS. A log(weight+1) scale): has been used.

The training group has a much higher proportion of dropouts. Similar compar-
isons are required for other factors, variables, and combinations of two factors or
variables. The data will be investigated further in Section 9.7.1.

Tabulation That Accounts for Frequencies or Weights – the xtabs() Function
Each year the National Highway Traffic Safety Administration in the United States
uses a stratified random sampling method to collect data from all police-reported
collisions in which there is an injury to people or property and where at least one
vehicle is towed. Sampling fractions differ according to class of accident. The subset
in DAAG::nassCDS is restricted to front-seat occupants.2

Factors whose effect warrant investigation include: airbag (was an airbag fit-
ted?), seatbelt (was a seatbelt used?), and dvcat (a force of impact measure).
The column weight (national inflation factor) holds the inverses of the sampling
fraction estimates. The less accurate estimates that come where the sampling frac-
tion is small have to be given an accordingly greater weight in the calculation of
overall estimates, in order to fairly represent the population. Very large weights,
for some classes of accident, will exaggerate the effect, both of any mistakes in data
collection, and of deviations from the prescribed (and relatively complex) sampling
scheme. The following contrasts numbers in the sample with estimated total num-
bers of collisions, obtained by applying the sampling weights:

sampNum <- table(nassCDS$dead)
popNum <- as.vector(xtabs(weight ∼ dead, data=nassCDS))
rbind(Sample=sampNum, "Total number"=round(popNum,1))

alive dead
Sample 25037 1180
Total number 12067937 65595

Use of xtabs() to classify the estimated population numbers (in thousands) by
airbag use, and adding the marginal death rates per 1000 to the table, gives:

nassCDS <- DAAG::nassCDS

2 It holds a subset of the columns from a corrected version of the data analyzed in Meyer and
Finney (2005). See also Farmer (2005) and Meyer (2006). More complete data are available
from one of the web pages noted on the help page for nassCDS.
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Atab <- xtabs(weight ∼ airbag + dead, data=nassCDS)/1000
## Define a function that calculates Deaths per 1000
DeadPer1000 <- function(x)1000∗x[2]/sum(x)
Atabm <- ftable(addmargins(Atab, margin=2, FUN=DeadPer1000))
print(Atabm, digits=2, method="compact", big.mark=",")

airbag | dead alive dead DeadPer1000
none 5 ,445.2 39.7 7.2
airbag 6 ,622.7 25.9 3.9

This might suggest that the fitting of an airbag substantially reduces the risk of
mortality. Consider, however:

SAtab <- xtabs(weight ∼ seatbelt + airbag + dead, data=nassCDS)
## SAtab <- addmargins(SAtab, margin=3, FUN=list(Total=sum)) ## Gdet Totals
SAtabf <- ftable(addmargins(SAtab, margin=3, FUN=DeadPer1000), col.vars=3)
print(SAtabf, digits=2, method="compact", big.mark=",")

seatbelt airbag | dead alive dead DeadPer1000
none none 1 ,342 ,021.9 24 ,066.7 17.6

airbag 871 ,875.4 13 ,759.9 15.5
belted none 4 ,103 ,224.0 15 ,609.4 3.8

airbag 5 ,750 ,815.6 12 ,159.2 2.1

The Total column gives the weights that are, effectively, applied to the values in the
DeadPer1000 column when the raw numbers are added over the seatbelt margin. In
the earlier table (Atab), the results for airbag=none were mildly skewed (4119:1366)
to those for belted. Results with airbags were strongly skewed (5763:886) to those
for seatbelt=none. Hence, adding over the seatbelt margin gave a spuriously large
advantage to the presence of an airbag.

The reader may wish to try an analysis that accounts, additionally, for estimated
force of impact (dvcat):

FSAtab <- xtabs(weight ∼ dvcat + seatbelt + airbag + dead, data=nassCDS)
FSAtabf <- ftable(addmargins(FSAtab, margin=4, FUN=DeadPer1000), col.vars=3:4)
print(FSAtabf, digits=1)

There is no consistent pattern in the difference between "none" and "airbag".
Further terms, including the age of vehicle and the age of driver, demand consid-

eration. The estimated effect of airbag, or of any factor other than seatbelt, varies
depending on what further terms are included in the model. Seatbelts have such
a large effect that their contribution stands out irrespective of what other terms
appear in the model. These data, tabulated as above, have too many uncertainties
and potential sources of bias to give reliable answers.

A better starting point for investigation are the data from the Fatality Analysis
Recording System (FARS). The gamclass::FARS dataset has data for the years
1998 to 2010. This has, in principle at least, a complete set of records for the more
limited class of accidents where there was at least one fatality.

Farmer (2005) used the FARS data for an analysis, limited to cars without pas-
senger airbags, that used front-seat passenger mortality as a standard against which
to compare driver mortality. In the absence of any effect from airbags, the ratio of
driver mortality to passenger mortality should be the same, irrespective of whether
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Figure 1.11 Individual yields and plot-level mean yields of kiwifruit (in kg) for
each of four treatments (season) and blocks (exposure).

there was a driver airbag. Farmer found a ratio of driver fatalities to passenger
fatalities that was 11 percent lower in the cars with driver airbags. Factors that
have a large effect on the absolute risk can be expected to have a much smaller
effect on the relative risk.

In addition to the functions discussed, note the function gmodels::CrossTable(),
which offers a choice of SPSS-like and SAS-like output formats.

1.3.2 Summaries of Information from Data Frames

The data frame DAAG::kiwishade has yield measurements from 48 kiwifruit vines.
Plots, made up of four vines each, were the experimental units. Figure 1.11 plots
both the aggregated means and the individual vine results.

The 12 plots were divided into three blocks of four plots each. One block of four
was north-facing, a second block west-facing, and a third block east-facing. (Because
the trial was conducted in the Southern hemisphere, there is no south-facing block.)
Shading treatments were applied to whole plots, that is, to groups of four vines,
with each treatment occurring once per block. The shading treatments were applied
either from August to December, December to February, February to May, or not
at all. For more details of the experiment, look ahead to Figure 7.5.

As treatments were applied to whole plots, a focus on the individual vines ex-
aggerates the extent of information that is available, in each block, for comparing
treatments. To gain an accurate impression of the strength of the evidence, focus on
the means, represented by +. The code is given as a footnote.3 The code includes
3 ## Individual vine yields, with means by block and treatment overlaid

kiwishade <- DAAG::kiwishade
kiwishade$block <- factor(kiwishade$block, levels=c("west","north","east"))
keyset <- list(space="top", columns=2,
text=list(c("Individual vine yields", "Plot means (4 vines)")),
points=list(pch=c(1,3), cex=c(1,1.35), col=c("gray40","black")))
panelfun <- function(x,y,...){panel.dotplot(x,y, pch=1, ...)
av <- sapply(split(x,y),mean); ypos <- unique(y)
lpoints(ypos~av, pch=3, col="black")}
dotplot(shade~yield | block, data=kiwishade, col="gray40", aspect=0.65,

panel=panelfun, key=keyset, layout=c(3,1))
## Note that parameter settings were given both in the calls
## to the panel functions and in the list supplied to key.
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a user-defined panel function to take means, for each combination of block and
shading treatment, “on the fly.” Code that creates the means separately from the
graph, with the first line of output following, is:

## mean yield by block by shade: data frame kiwishade (DAAG)
kiwimeans <- with(DAAG::kiwishade,

aggregate(yield, by=list(block, shade), mean))
names(kiwimeans) <- c("block","shade","meanyield")
head(kiwimeans, 4) # First 4 rows

block shade meanyield
1 east none 99.03
2 north none 104.03
3 west none 97.56
4 east Aug2Dec 105.56

The aggregate() function splits the data frame according to the specified combi-
nations of factor levels, and then applies a specified function to each of the resulting
subgroups.

Should the analysis then use the aggregated data? The form of analysis of vari-
ance that will be applied to these data in Subsection 7.4.1 will give, for treatment
comparison purposes, the same results as an analysis based directly on the plot
means, tacitly assuming that the mean is the appropriate form of summary. If
there were occasional highly aberrant values, use of medians might be preferable.
Use of aggregated data gives the analyst more control over which summary statistic
to use.

The Benefits of Data Summary – Dengue Status Example
Hales et al. (2002) examined the implications of climate change projections for
the worldwide distribution of dengue, a mosquito-borne disease that is a risk in
hot and humid regions. Dengue status, that is, information on whether dengue
had been reported during 1965–1973, was available for 2000 administrative regions.
Climate information was available on a much finer grid of about 80,000 pixels at
0.5◦ latitude and longitude resolution. Should the analysis work with summary data
for 2000 administrative regions, or with the much larger dataset that has one row
for each of the 80,000 pixels?4 The following are reasons that might suggest working
with the summary data.

• Use of the values at the pixel level to calculate summary climate statistics prior
to the analysis, by administrative region, gives the user control over the choice of
statistical summary statistic. If, for example, values for some pixels are extreme
relative to other pixels in the administrative region, medians may be more ap-
propriate than means. The mean will give the same weight to sparsely populated
cold mountainous locations as to highly populated hot and humid locations on
nearby plains.

4 Working with spatio-temporal data aggregated over different subregions can require highly
complex analysis procedures. Lee et al. (2017) describes a Canadian bladder cancer study
where data from postal code regions was merged in a nontrivial manner with data from census
regions.
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• Correlation between nearby observations, though still substantial, will be less of
an issue for the dataset in which each row is an administrative region. Points
that repeat essentially identical information are a problem for the interpretation
of plots and can be a problem for the analysis. Regions that are close together
tend to have similar climates and the same dengue status.

• Analysis and data screening are simpler with the reduced dataset. Scatterplots
are less likely to degenerate into a dense mass of black ink.

The mean and the median are the most commonly used measures of central value,
among several alternatives. (In fact, the paper used the disaggregated data.)

1.3.3 Measures of Variation

The standard deviation (often represented by the symbol σ) is a standard form of
summary of variability (or spread) of sample or population values. Given a random
sample x1, x2, . . . , xn, σ can be estimated by the sample standard deviation:

s =

√
∑n

i=1(xi − x̄)2

n − 1
.

For s to be an accurate estimator for σ, the sample must be large. In R, sd() can
be used to calculate s.

The square of the standard deviation, termed the variance, is widely used in
formal inference. The standard deviation lends itself to easier interpretation because
it is in the same units as the original measurements.

Cuckoo Eggs Example
Consider the cuckoo eggs data from Subsection 1.1.2. The standard deviations for
each group, with numbers of eggs shown in parentheses, are as follows.

hedgsparrow meadowpipit piedwagtail robin tree pipit wren
1.05 (14) 0.92 (45) 1.07 (15) 0.68 (16) 0.88 (15) 0.75 (15)

The variability in egg length is smallest when the robin is the host. Note, however,
that the numbers are all, except for meadow pipit, 14 or 15 or 16. The standard
deviations are subject to large statistical uncertainty.

The footnote has code for the calculations used to create the table.5

Degrees of Freedom
The denominator n − 1 in the formula used to calculate s is the number of degrees
of freedom remaining after estimating the mean. With one data point, the sum of
squares about the mean is zero, the degrees of freedom are zero, and no estimate
of variability is possible.

In later chapters, standard deviation calculations will be based on the variation
that remains after fitting a model (most simply, a line), to the data. Degrees of
freedom are reduced by 1 for each model parameter that is estimated.
5 ## SD of length, by species: data frame cuckoos (DAAG)

z <- with(cuckoos, sapply(split(length,species), function(x)c(sd(x),length(x))))
print(setNames(paste0(round(z[1,],2)," (",z[2,],")"),
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1.3.4 Inter-quartile Range and Median Absolute Deviation

In a boxplot, as in Figure 1.2 in Section 1.1.5, the box spans the range between
the lower and upper quartiles. The inter-quartile range is the width of the box. For
data that are close to normally distributed s ≈ 0.75H.

The median absolute deviation (MAD) is the median of the absolute deviations
from the median. When multiplied by the value 1.4286, this statistic provides an ap-
proximately unbiased estimator for the standard deviation of a normally distributed
population. The calculation is carried out by the function mad(). The value of the
multiplier is set by the parameter constant. The MAD is a more robust estimate
of the standard deviation than that based on the inter-quartile range, meaning
that if a normally distributed sample were to be contaminated by a few outlying
erroneous observations, the MAD is least affected. See the Exercises for a simple
demonstration of this.

1.3.5 A Pooled Standard Deviation Estimate

Suppose independent random samples have been taken from each of two populations
that have the same standard deviation σ. If the respective sample sizes are n1 and
n2, then the number of degrees of freedom for estimating the (common) variance is
n1 + n2 − 2, after estimation of the possibly different population means. The pooled
standard deviation estimator for σ is:

sp =

√
∑(x − x̄)2 + ∑(y − ȳ)2

n1 + n2 − 2
.

Diagnostic checks that the common variance assumption is plausible, and/or
transformations that will assist in making variances more homogeneous, can be
crucial. A logarithmic transformation will often be effective in making variances
more homogeneous.

Elastic Bands Example
A set of 21 elastic bands was randomly divided into two groups of 10 and 11.
The amount of stretch under a weight of 1.35 kg was immediately measured for
bands in the first group. The other bands were immersed in hot water at 65 ◦C for
four minutes, then left at air temperature for 10 minutes, with their stretch then
measured under a weight of 1.35 kg. The means and standard deviations for the
two groups were:

sapply(DAAG::two65, function(x) c(Mean=mean(x), sd=sd(x))) |> round(2)

heated ambient
Mean 253.50 244.09
sd 9.92 11.73

The pooled standard deviation estimate is s = 10.91, with 19 (= 10 + 11 − 2)
degrees of freedom. Since the separate standard deviations (s1 = 9.92; s2 = 11.73)
are similar, the pooled standard deviation estimate is an acceptable summary of
the variation in the data.
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r = 0.97 rs = 0.98 r = 0.84 rs = 0.91 r = 0.35 rs = 0.2 r = 0.02 rs = 0.02

Figure 1.12 Different relationships between y and x. The Pearson (linear) corre-
lation is r, while the Spearman rank correlation is rh.

1.3.6 Effect Size

Effect sizes and effect size estimates offer a standardized measure of a difference
that is of interest, relative to variation in the population or in the data. The effect
size that will be discussed here is that known as Cohen’s d, obtained by dividing
the effect of interest by its standard deviation. For the elastic bands data listed
above, the estimated effect size is:

setNames(diff(c(ambient=244.1, heated=253.5))/c(sd=10.91), "Effect size")

Effect size
0.8616

If a drug (e.g., one designed to reduce blood pressure) makes on average a very
small difference relative to variation in a relevant defined population, its effect will
be hard to demonstrate in clinical trials. Its usefulness for individual patients will
be too much a matter of chance to justify its use in medical practice.

For more on effect measures that may be defined for use in a range of contexts,
including with correlations, see the vignette in the effectsize package that can be
displayed by typing:

vignette('effectsize', package='effectsize')

1.3.7 Correlation

The Pearson or product–moment correlation is a summary measure of linear re-
lationship. Calculation of a correlation should always be accompanied by a check
that the relevant scatterplot shows a linear relationship. It can be helpful to add
a smooth trend line. Separate distributions of the two variables should be roughly
normal, or at least not highly skew. If the relationship between the variables ap-
pears to be nonlinear or the separate distributions are asymmetric, a Spearman
rank correlation may be more appropriate.

The four panels in Figure 1.12 show four different types of relationship. In the
first panel, the Pearson correlation is close is to 1.0, and the evident nonlinearity
is not of much consequence. The magnitude of the correlation r, or of the squared
correlation r2, does not of itself indicate whether the underlying fit is adequate.
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For the second panel, the Pearson correlation is r = 0.84, while the Spearman
correlation is rh = 0.91 and better captures the strength of the relationship. A
linear fit is clearly inadequate.

The cor() function provides both measures. In addition, or as an alternative to
the function cor(), note cor.test(). This returns a confidence interval and a test
for no association. Subsection 2.2.4 describes the underlying assumptions.

A further possibility is to specify method="kendall" when cor.test() is called,
giving the Kendall correlation. This is applicable, for example, where the same
individuals are assessed by two different judges, and is related to the probability
that the two judges will assign the same ranking to an individual.

The following are ways in which correlations may mislead.
• There may be a subgroup structure in the data. If, for example, random samples

are taken from each of a number of villages and the data are pooled, then any
overall correlation at the level of individuals may reflect a correlation between
village averages or a correlation between individuals within villages, or some of
each. The two correlations may not be the same, or may even go in different
directions. See Cox and Wermuth (1996).

• Any correlation between a constituent and a total amount is likely to be, in part
at least, a mathematical artifact. In a study of an anti-hypertensive drug that
hopes to determine whether the change y− x is larger for those with higher initial
blood pressure x. If x and y have similar variances then y− x will have a negative
correlation with x, whatever the influence of x.
While a correlation coefficient provides a single number summary of the rela-

tionship between x and y, regression methods offer a richer framework for the
examination of such relationships.

1.4 Distributions: Quantifying Uncertainty

The models that will be used in later chapters will typically have both deterministic
(or signal) and random (or noise) components. The simplest type of model takes
the form

y = µ + ε,

where µ is a constant, and ε is the random component. In the models that will be
discussed in this section, µ will be the population mean, alternatively termed the
expected value. More generally, and this will be a major focus in later chapters, µ

can be replaced by a function of one or more variables and/or factors.
The random component is sometimes referred to as error. Both noise and error

are technical terms. Use of the word error does not imply that there have been
mistakes in the collection of the data, though mistakes can of course contribute to
the variability.

The R stats package has many functions that return theoretical values of statis-
tics for specific distributions. See ?Distributions for details. The CRAN Distri-
butions task view gives details of contributed R packages that extend the range of
possibilities.
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For each distribution, there are four functions, with names whose first letter is,
respectively, d (density), p (cumulative probability), q (quantile), and r (generate
a random sample).

1.4.1 Discrete Distributions

The usual starting points for discussing discrete distributions are the binomial and
the Poisson. Examples for both now follow.

Binomial Functions are dbinom(), pbinom(), and qbinom(), rbinom()
Values are 0, 1, 2, . . . , n, where the argument size specifies n, and the argument
prob specifies the probability π. The name Bernoulli is used for the special case
when size n = 1. A Bernoulli random variable takes the value 1, with probability
π and 0, with probability 1 − π. For example, if a fair six-sided die is tossed once,
the number of times a “2” appears is Bernoulli with π = 1/6.

A binomial random variable with size n > 1 is the sum of n independent
Bernoulli variables. For an example, suppose a sample of 10 items is taken from an
assembly line that produces 15 percent defective items, on average. The probabili-
ties of 0, 1, 2, . . . , 10 defectives are (rounded to three decimal places):

## dbinom(0:10, size=10, prob=0.15)

0 1 2 3 4 5 6 7 8 9 10
0.197 0.347 0.276 0.130 0.040 0.008 0.001 0.000 0.000 0.000 0.000

The probability of observing four or fewer defectives in a sample of size 10 is:
pbinom(q=4, size=10, prob=0.15)

[1] 0.9901

The function qbinom() goes in the other direction, from cumulative probabilities
to numbers of events. It generates quantiles, a generalization of the more famil-
iar term percentiles. To calculate a seventieth percentile of the distribution of the
number of defectives in a sample of 10, with Pr[defective=0.15], type:

qbinom(p = 0.70, size = 10, prob = 0.15)

[1] 2

## Check that this lies between the two cumulative probabilities:
## pbinom(q = 1:2, size=10, prob=0.15)

The following generates a random sample of 15 values from a binomial distribu-
tion with p=0.5 and size=4.

rbinom(15, size=4, p=0.5)

[1] 0 2 3 3 3 2 2 3 1 2 2 1 3 1 2
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The Poisson distribution dpois(), ppois(), qpois(), rpois()
Values are 0, 1, 2, . . . , where the argument lambda specifies the theoretical mean.

The Poisson distribution is often used to model the number of events that occur
in a certain time interval, or the numbers of defects observed in, for example,
manufactured products. The distribution has a single parameter λ (the Greek letter
“lambda”) which coincides with the mean or expected value.

As an example, consider a population of raisin buns for which there are an average
of three raisins per bun, that is, λ = 3. The possible numbers of raisins are 0, 1, 2,
. . .. Under the Poisson model, which assumes that raisins appear independently in
different buns, probabilities for numbers of raisins in a bun are:

## dpois(x = 0:8, lambda = 3)

0 1 2 3 4 5 6 7 8
0.0498 0.1494 0.2240 0.2240 0.1680 0.1008 0.0504 0.0216 0.0081

The functions ppois(), qpois(), and rpois() can be used in exactly the same
way as binomial family functions. Thus, in the raisin buns example, the probability
of more than eight raisins (equals 0.0038) can be calculated in any of the following
ways:

1 − ppois(q = 8, lambda = 3)
ppois(q=8, lambda=3, lower.tail=FALSE) ## Alternative
1−sum(dpois(x = 0:8, lambda = 3)) ## Another alternative

The following simulates numbers of raisins in 20 raisin buns, where the expected
number of raisins per bun is three:

raisins <- rpois(20, 3)
raisins

[1] 4 2 3 3 1 4 3 0 6 3 3 2 4 2 5 4 3 1 2 2

Note that the average of these values is 57/20 which is, not accidentally, near the
expected value 3.

In the practical situation, raisins may tend to stick together, or the mixing may
not be even through the baking mixture. Something more sophisticated than a
simple Poisson model may be required.

Initializing the Random Number Generator
In a number of our earlier examples, we have seen calls to the function set.seed().
The seed for the random number generator is stored in the workspace, in a hidden
variable (.Random.seed) that changes whenever there has been a call to the random
number generator. Where it is required to repeat the same sequence on successive
occasions, the function set.seed() can be used to set an initial seed and thus ensure
the same sequence. The following uses set.seed() to make the call to rbinom(10,
size=1, p=0.5) thus reproducible:

set.seed(23286) # Use to reproduce the sample below
rbinom(15, size=1, p=0.5)

[1] 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0
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When the workspace is saved, .Random.seed is stored in the workspace. When the
workspace is loaded again, the value stored in the workspace will be restored. Any
new simulations will then be independent of those prior to saving the workspace.

Means and Variances
Binomial In a sample of 10 manufactured items from a population where 15 percent
are defective, we expect to see 1.5 defectives on average. More generally, the expected
value or mean of a binomial random variable with size = n and probability prob
= π is nπ. The variance of a binomial random variable is nπ(1 − π).

For the number of defectives in our sample of 10 items with π = 0.15, the variance
is 10×0.15×0.85 ≃ 1.275.

In practice, the probability of a defective may change from one sample item to the
next, perhaps because of unevenness in the quality of the raw material. Thus, there
may be a tendency for defects to cluster together. This can lead to a distribution
that has a larger variance relative to the mean than predicted by the binomial
distribution.

Poisson The variance of a Poisson random variable is equal to its mean, often
denoted λ. Thus if the number of raisins in a bun is Poisson with mean λ = 3, the
variance is also 3.

1.4.2 Continuous Distributions

Models for measurement data usually take the form of a continuous distribution.
The probability that a measurement takes a particular value is then 0. Instead, the
distribution of a continuous random variable is modeled by its density function.
The area under the density curve between x = a and x = b gives the probability
that the random variable lies between those limits. The total area under the density
curve is 1.

The normal distribution The normal, or Gaussian, distribution, which has the bell-
shaped density curve pictured in Figure 1.13, is widely used to model continuous
measurement data. A transformation may be required, as in Figure 1.5 in Subsection
1.2.3, for the normal model to be useful. The density (height) of the curve is given
as a function of the distance from the mean.

The density curve shown in Figure 1.13 is for a standard normal distribution that
has mean 0 and standard deviation 1. Replacing each value z in a population of
standard normal variates by µ + σz changes the mean to µ and the variance to σ.

Code to plot the normal density function is:

## Plot the normal density, in the range -3 to 3
z <- pretty(c(−3,3), 30) # Find ∼30 equally spaced points
ht <- dnorm(z) # Equivalent to dnorm(z, mean=0, sd=1)
plot(z, ht, type="l", xlab="Normal variate", ylab="Density", yaxs="i")
# yaxs="i" locates the axes at the limits of the data
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Figure 1.13 A plot of the normal density. The horizontal axis is labeled in stan-
dard deviations (SDs) distance from the mean. The area of the shaded region is
the probability that a normal random variable has a value less than one standard
deviation above the mean.

Functions for calculations relating to the normal distributions are dnorm() (used
for plotting the density curve in Figure 1.13), pnorm(), qnorm(), and rnorm(). The
function pnorm() calculates the cumulative probability, that is, the area under the
curve up to the specified ordinate or x-value. Thus, the probability that a normal
variate with mean 0 and standard deviation 1 is less than 1.0 is pnorm(1) = 0.841.
This corresponds to the area of the shaded region in Figure 1.13. To obtain the
probability in the upper tail, supply the argument lower.tail=FALSE.

The function qnorm() computes normal quantiles. Thus, the 90th percentile is:
qnorm(.9) # 90th percentile; mean=0 and SD=1

[1] 1.282

The footnote has additional examples.6

Other continuous distributions A simple model is the uniform distribution, for
which an observation is equally likely to take any value in a given interval. The
probability density is constant over that interval.

The exponential distribution gives high probability density to positive values lying
near 0, with the density decaying exponentially as the values increase. It is the
simplest of a class of distributions that have been used to model times between
arrivals of customers to a queue. The exponential is a special case of the chi-squared
distribution which arises, for example, when checking for dependence between row
and column numbers in contingency tables.

Different Ways to Represent Distributions
As noted in Section 1.1.5, the boxplot defaults are set so that 1 percent of values
that are drawn at random from a normal distribution will on average be flagged
as possible outliers. If the distribution is not symmetric, more than 1 percent of
6 ## Additional examples:

setNames(qnorm(c(.5,.841,.975)), nm=c(.5,.841,.975))
qnorm(c(.1,.2,.3)) # -1.282 -0.842 -0.524 (10th, 20th and 30th percentiles)
qnorm(.1, mean=100, sd=10) # 87.2 (10th percentile, mean=100, SD=10)
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Figure 1.14 Each panel shows a simulated distribution of 50 values from a normal
distribution with mean = 10 and sd = 1. The underlying theoretical normal
curve is overlaid on the far left panel.

points are likely to lie outside the whiskers, at the lower end if the distribution is
left-skewed or at the upper end if the distribution is right-skewed. If the distribution
is symmetric, but “heavy-tailed,” then we would expect more than 1 percent of the
values to plot beyond the boxplot whiskers with no preference for either end.

Generating Simulated Samples from the Normal and Other Distributions
The function rnorm() generates random samples of values from the normal dis-
tribution. To generate 10 random values from a standard normal distribution, we
type:

options(digits=2) # Suggest number of digits to display
rnorm(10) # 10 random values from the normal distribution

[1] 0.42 1.15 -1.40 0.18 0.21 -1.13 -0.69 0.29 0.23 -0.21

Figure 1.14 demonstrates the use of simulation to indicate the extent of sample-
to-sample variation in histogram summaries of the data, when five independent
random samples of 50 values are taken from a normal distribution.7

Calculations for other distributions, for example runif() to generate uniform
random numbers, or rexp() to generate exponential random numbers, follow the
same pattern.

runif(n = 20, min=0, max=1) # 20 numbers, uniform distn on (0, 1)
rexp(n=10, rate=3) # 10 numbers, exponential, mean 1/3.

Exercises at the end of this chapter explore further possibilities.
Histograms are not a good basis for deciding whether sample values are consistent

with a normal distribution. A more effective tool is the normal quantile–quantile
plot.

1.4.3 Graphical Checks for Normality

In a normal quantile–quantile plot the sorted data values are plotted against the
expected ordered values for a normal distribution. Thus for data from a normal
distribution, the points should scatter about a straight line.

The DAAG::pair65 dataset has data from an experiment that tested the ef-
fect of heat on the stretchiness of elastic bands. Following an initial check for
7 ## The following gives conventional histogram representations:

set.seed (21) # Use to reproduce the data in the figure
df <- data.frame(x=rnorm(250), gp=rep(1:5, rep(50,5)))
lattice::histogram(~x|gp, data=df, layout=c(5,1))
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Figure 1.15 The lower left panel is the normal quantile–quantile plot for heated–
ambient differences. Remaining panels show normal quantile–quantile plots for
samples of nine numbers from a normal distribution.

“stretchiness,” the bands were arranged into nine pairs, such that the two members
of a pair appeared similarly “stretchy.” One member of each pair, chosen at random,
was placed in hot water (60–65 ◦C) for four minutes, while the other was left at
ambient temperature. After a wait of about 10 minutes, the amounts of stretch,
under a 1.35 kg weight, were recorded. The following were the amounts of stretch,
and the differences, for each pair:

1 2 3 4 5 6 7 8 9
heated 244 255 253 254 251 269 248 252 292
ambient 225 247 249 253 245 259 242 255 286
heated - ambient 19 8 4 1 6 10 6 -3 6

The normal quantile–quantile plot for these differences is in the lower left panel
of Figure 1.15. The other seven plots are for samples (all of size nine) of simulated
random normal values. As judged against these plots, the distribution of the sample
differences appears consistent with normality. The code is:

## Normal quantile-quantile plot for heated-ambient differences,
## compared with plots for random normal samples of the same size
plt <- with(DAAG::pair65, DAAG::qreference(heated−ambient, nrep=10, nrows=2))
update(plt, scales=list(tck=0.4), xlab="")

Displays in the style of Figure 1.15 help to calibrate the eye, giving a sense of
the nature and extent of departures from linearity that can be expected in random
normal samples of the specified size, here nine. The process should be repeated
several times. With a sample size of just nine, large departures from a linear pattern
will be needed to provide convincing evidence of nonnormality.

The base graphics function qqnorm() may be used to obtain such plots one at a
time. Specify, for example, qqnorm(rnorm(9)).

The methodology extends to allow a comparison of ordered sample values with
expected ordered values for any distribution that is of interest. See ?qqplot.
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In practice exact normality is unlikely, and is for most inferential purpose not
required. Concern arises when there are gross departures from normality, such as
skewed or heavy-tailed data. In small samples (e.g., of the order of 10 or less),
large departures from normality, of an extent that affect the validity of results, will
frequently go undetected. It is typically necessary to rely on sources of evidence
that are external to the data, including where possible previous experience with
similar data.

1.4.4 Population Parameters and Sample Statistics

Parameters, such as the mean (µ) or standard deviation (σ), numerically summa-
rize various aspects of a population. Such parameters are usually unknown and
are estimated using statistics that are calculated for a sample (which should be a
random sample) from the population. Thus the sample mean is used to estimate
the population mean, and the sample standard deviation estimates the population
standard deviation.

Other commonly used statistics are the proportion, variance, median, the quar-
tiles, the extremes, the slope of a regression line, and the correlation coefficient.
Each may be used as an estimate of the corresponding population parameter.

To what extent is it possible to use the one sample that we have as the basis
for some wider generalization? If another sample were taken, would it very likely
give a similar result? The sampling distribution plays a central role in assessing the
extent to which results can be generalized beyond the one available sample.

The sampling distribution of the mean, and extensions to the sampling distribu-
tions of regression coefficients, underpin a large part of the methodology described
in this text. They allow the extension of results that apply to random samples from
normal populations, for use with populations that show various types of deviations
from normality. Is it then important to assess, in any particular case, the extent to
which the normal distribution result can be trusted? Recourse to simulation allows
a value of the statistic of interest to be calculated from each of a multiple repeated
random samples from the relevant distribution. The collection of simulated sample
statistics can be summarized by a distribution called the sampling distribution of
the statistic.

The information on the sampling distributions of the statistics of interest offers
an empirical, that is, sampling-based, alternative to the direct use of statistical
theory. It can be used when theoretical results are not available or are of uncertain
relevance. Here, it will be used to investigate what the relevant theoretical result –
the Central Limit Theorem – may mean in practice.

In practice, even if the main part of the population distribution appears symmet-
ric, there will often be occasional aberrant values. Such aberrant values do, perhaps
fortunately, work in a conservative direction – they reduce the chances that genuine
differences will be detected. A take-home message is that, especially in small sam-
ples, the probabilities and quantiles can be quite imprecise. They are rough guides,
intended to assist in making a judgment.
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Figure 1.16 Data values are from simulations of the sampling distribution of the
mean, for a mildly skew distribution. Panel A shows density curves, while Panel
B shows normal quantile–quantile plots. The plot for the population, repeated in
each panel, is shown as a dashed curve. Simulated sampling distributions, each
from 1000 simulations, are shown as solid curves. The three panels show the plots
for samples of respective sizes 3, 9, and 30.

The Sampling Distribution of the Mean
The standard deviation of the sampling distribution of the mean is termed the
standard error of the mean (SEM). If the population mean is µ and the standard
deviation is σ, then given independent random samples

SEM =
σ√
n

.

A consequence of the Central Limit Theorem is that for a statistic such as a
mean or a regression slope, an averaged value may have a sampling distribution
that is close to normal, even if the underlying population distribution is clearly not
normal.8

In practice, if the sampled population has a distribution that is approximately
normal, the average of samples of size n = 3 or n = 4 can usually, for most practical
purposes, be treated as coming from a normal distribution. Skewed or heavy-tailed
distributions will require larger (perhaps much larger) samples than distributions
that have lighter tails than the normal.
8 More precisely, the distribution of the sample mean approximates the normal distribution with

increasing accuracy, as the sample size increases, assuming values are independent, and the
population standard deviation is finite. There are similar results for many other sample
statistics.
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Figure 1.16 shows density curves and normal quantile–quantile plots for simulated
sampling distributions of the mean (sample sizes 3, 9, and 30), for sample values
from a mildly skewed distribution. As the sample size increases from n = 3 to n = 9
to n = 30, the density curves become more nearly symmetric with a decreasing
standard deviation, while the normal quantile–quantile plots become more nearly
linear, with a reduced slope. The reductions in slope in Panel B reflect the reduced
SEMs, from σ√

3
to σ√

9
to σ√

30
. Even for a sample size of 3, much of the skewness

has gone.
Code for the plots in Figure 1.16A is:

library(lattice)
## Generate n sample values; skew population
sampfun = function(n) exp(rnorm(n, mean = 0.5, sd = 0.3))
gph <- DAAG::sampdist(sampsize = c(3, 9, 30), seed = 23, nsamp = 1000,

FUN = mean, sampvals=sampfun, plot.type = "density")

For Figure 1.16B, replace plot.type="density" in the call to DAAG::sampdist()
with plot.type="qq". The skewness of the population can be increased by increas-
ing sd in the call to sampfun(). For example, try sd = 0.8.

∗The Sampling Distribution of s

It is usually simplest to work with the sampling distribution of

(n − 1)s2

σ2 .

Under the independently and identically distributed (iid) normal assumption, this
quantity has a chi-squared distribution with n− 1 degrees of freedom, independently
of x̄. Its distribution is close to normal for very large n. Exercise 2.20 in Subsection
2.12 investigates transformations that improve the approximation to normality.

For nonnormal data, the distribution of (n−1)s2

σ2 will differ from the chi-squared.
Simulation can be a useful mechanism for investigating the extent of the difference
that can be expected for specific patterns of departure from normality.

∗The Standard Error of the Median
For data from a normal distribution, the standard error of the median can be
calculated using

SEmedian =

√
π

2
s√
n
≈ 1.25

s√
n

.

This quantity is about 25 percent greater than the standard error of the mean.
For the cuckoos data, median length of eggs in nests of wrens is 21.0 mm, with
standard error of the median equal to 0.244.

The median is often employed when the distribution is positively skewed. The
median is then less than the mean, and the standard error formula given above is
not applicable.
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Figure 1.17 Panels A and B overlay the density for a normal distribution with
the density for a t-distribution, in Panel A t with eight degrees of freedom, and in
Panel B t with three degrees of freedom. Panels C and D show the endpoints of
symmetrically placed regions that enclose 95 percent of the probability, in Panel
C for a normal distribution, and in Panel D for t with eight degrees of freedom.
In each panel, the upper 2.5 percent of the area under the curve is shaded in
gray.

Simulation in Learning and Research
In statistical theory and in practice, simulation is widely used, when analytical
results are not available. It can be a useful tool in teaching and learning. The R
package animation (Xie and Cheng, 2008) has a variety of simulations that are
intended for use in teaching or self-instruction.

1.4.5 The t-Distribution

We have previously noted that, under Central Limit Theorem conditions, the sam-
pling distribution of the mean could be approximated by normal distributions with
standard deviations given thus.

One-sample case: The standard deviation of x̄ is termed standard error of the
mean (SEM), and equals σ√

n .
Two-sample case: The standard deviation of x̄1 − x̄2 is termed the standard error
of difference (SED). Assuming a common variance, it equals σ

(
1

n1
+ 1

n2

)
.
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Table 1.2 Comparison of normal distribution endpoints (multipliers for the SEM)
with the corresponding t-distribution endpoints on eight degrees of freedom.

Number of SEMsProbability enclosed Cumulative
between limits probability Normal distribution t-Distribution (8 df)
68.3% 84.1% 1.0 1.07
95% 97.5% 1.96 2.31
99% 99.5% 2.58 3.36
99.9% 99.95% 3.29 5.04

In the usual case where σ has to be replaced by an estimate s, the relevant stan-
dardized differences are as follows.

One-sample: t =
(x̄ − µ)

SEM
, where SEM =

s√
n

. (1.1)

Two-sample: t =
x̄1 − x̄2 − µ

SED
, where SED = s

√
1
n1

+
1
n2

. (1.2)

The statistic t expresses the difference of interest in standard error units. In the
one-sample case the sampling distribution is t with n − 1 degrees of freedom. In the
two-sample case, assuming a common variance, degrees of freedom are n1 + n2 − 2.
Figures 1.17 A and B show the density curve for a normal distribution overlaid
with those for t-distributions with eight and three degrees of freedom respectively.
Replacing σ by s introduces a source of uncertainty additional to that in x̄, an
uncertainty that is larger as the degrees of freedom for s are smaller.

Figures 1.17 C and D compare area under the curve calculations for a
t-distribution with those for a normal distribution. The difference is most obvious
in the tails. In the terminology of Subsection 1.4.2, the t-distribution is heavy-tailed
– heavier for smaller than for larger degrees of freedom. The “limiting” distribution
as degrees of freedom increase is the standard normal.

Changing from a normal distribution to a t-distribution with eight degrees of
freedom leads to a small change, from 1.0 to 1.07, in the t-distribution quantile for
enclosing the central 68.3 percent of the area. There is a substantial difference, an
increase from 1.96 to 2.31, for enclosing 95 percent of the area. The t-distribution
underpins a wide range of statistical analysis approaches, both in frequentist and
in Bayesian methodology. It will feature extensively in Chapter 2.

Table 1.2 compares the multipliers for a normal distribution with those for an
eight degrees of freedom t-distribution, for several different choices of area under
the curve. Examples of the calculations required are:

qnorm(c(0.975,0.995), mean=0) # normal distribution

[1] 2.0 2.6

qt(c(0.975, 0.995), df=8) # t-distribution with 8 d.f.

[1] 2.3 3.4

The sampling distribution of the t statistic will be the starting point for the
confidence interval and hypothesis testing approaches of Section 1.6.
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1.4.6 The Likelihood, and Maximum Likelihood Estimation

Consider the model

yi = µ + ϵi, i = 1, 2, . . . , n,

where µ is an unknown constant, and where the errors ϵ are assumed to be inde-
pendent and normally distributed with mean 0 and variance σ2. More generally,
and this will be the main focus of interest in the later text, the elements µi of µ

may themselves be functions of explanatory variables and/or factors.
The probability density for the ith y-value is normal with mean µ and variance

σ2. Because of the independence assumption, the probability density of the entire
sample of ys is simply the product of these normal densities. This product, when
viewed as a function of µ and σ, has the name likelihood. The maximum likelihood
estimates are the values of µ and σ which maximize this function. A calculus ar-
gument can be used to show that the estimates are ȳ and s

√
(n − 1)/n. Thus, the

usual estimator of the standard deviation differs slightly from the maximum likeli-
hood estimator. The denominator in the usual variance estimate is the number of
degrees of freedom (n − 1 in this case), while it is n for the maximum likelihood
estimate. This difference is negligible in large samples.

In practice, it is usually most convenient to work with the log-likelihood, rather
than with the likelihood. Instead of multiplying densities to obtain the likelihood,
the logarithms of the densities are added to obtain the log-likelihood. Maximizing
on the log scale leads to exactly the same estimates as on the original scale.

Where a model m1 with maximum likelihood L1 is obtained from a model m0 with
maximum likelihood L0 by fitting an additional term or terms, the log-likelihood
ratio log(λlr) = log

(
L1
L0

)
may be used to compare them. As L1 has more parameters

to estimate, L1 ≥ L0.
Exact expressions for the distribution of the log-likelihood ratio λlr are not in

general available. Where the sample size n is large enough, use can be made of the
result that in the large sample limit, 2 log(λlr) = 2(log(L1)− log(L0)) is distributed
as chi-squared with degrees of freedom equal to the number of additional parameters
estimated in the more complex model.

1.5 Simple Forms of Regression Model

In this introductory account, the primary focus of attention will be models for data
that can be displayed as a scatterplot. By convention, the x-variable, plotted on the
horizontal axis, has the role of explanatory or predictor variable. The y-variable, by
convention plotted on the vertical axis, has the role of response or outcome variable.
Many of the issues that arise for these simple regression models are fundamental to
all regression methods. Size and shape data, discussed in Section 2.5.8, are one of
a number of applications that raise their own specific issues.

Scrutiny of the scatterplot should precede regression calculations. It can be useful
to compare the fitted line with a fitted smooth curve such as will be a major focus
in Chapter 4, as a help in judging whether a straight line is appropriate.
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1.5.1 Line or Curve?

The data shown in Figure 1.18 is from an experiment where different weights of
roller were rolled over different parts of a lawn and the depression noted (data are
from Stewart et al., 1988). The data are:

roller <- DAAG::roller
t(cbind(roller, "depression/weight ratio"=round(roller[,2]/roller[,1],2)))

1 2 3 4 5 6 7 8 9 10
weight 1.9 3.10 3.3 4.8 5.3 6.1 6.4 7.6 9.8 12
depression 2.0 1.00 5.0 5.0 20.0 20.0 23.0 10.0 30.0 25
depression / weight ratio 1.1 0.32 1.5 1.0 3.8 3.3 3.6 1.3 3.1 2

Write (xi, yi) (i = 1, 2, . . . 10) for the 10 (weight, depression) pairs. Three
possible models, all modeling the dependent value as the sum of a deterministic or
signal component and a noise component εi for each (xi, yi) pair, are:

1. yi
xi

= µ + εi (the signal is a ratio that is constant across observations);

2. yi = βxi + εi (the “line through the origin” model);
3. yi = α + βxi + εi (allows an arbitrary line).

Model 3, which fitted a line using the linear modeling function lm(), gave the
fitted line in Figure 1.18A. This used a least squares approach to calculate the
intercept and slope, that is, minimize

10

∑
i=1

ε2
i .

The strict requirement for calculation of standard error and p-value information is
the iid normal assumption that the εi are independently and identically distributed
as normal variables with mean 0 and variance σ2. Equivalently, it is assumed that,
given xi, the responses yi are sampled independently from a normal distribution
with mean α + βxi. The output from lm() includes an estimate of the variance σ2.

Independence implies that the size and sign (negative or positive) of one element
give no information on the likely size and sign of any other element. It implies that
elements are uncorrelated. With different assumptions (e.g., a sequential correlation
between successive data points), the standard errors will be different.

Using Models to Predict
Interest may be in the rate of increase of depression with increasing roller weight.
For models 2 and 3 above, the slope of the line (β) is then the focus of interest.
Alternatively, or additionally, the aim may be the prediction of values for new data.
Different models may serve different purposes.

A data-based assessment of how results may generalize to other lawns would
require data from multiple lawns, then using a modeling approach that (such as
will be discussed in Chapter 7) that accounts for between-lawn variation as well as
for the within-lawn variation on which the present data gives limited information.
The mechanical properties of the soil would usefully feature in such a model.
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Figure 1.18 In Panel A, a line has been fitted, while Panel B has used the function
lowess() to fit a smooth curve. Residuals (the “rough”) appear as vertical lines.
Positive residuals are solid lines, while negative residuals are dashed. For code
used to create the figures, see the web page for the book.

Which Model is Best – Line or Curve?
The fitting of a curve, as in Figure 1.18B, can help in judging whether a line, as
in Figure 1.18A, really is appropriate. Here there is just one point that seems to
be causing the line, and the fitted curve, to bend down. As might be expected, a
formal statistical analysis suggests that the curve in Figure 1.18B is an “over-fit.”
See further Exercise 4.2 in Chapter 4.

1.5.2 Fitting Models – the Model Formula

The same model formula depression ∼ weight can be used both with the func-
tion lm() to specify the fitting of a line to the data of Figure 1.18, and with the
function plot() to specify the y- and x-variables for a plot:

## Fit line - by default, this fits intercept & slope.
roller.lm <- lm(depression ∼ weight, data=DAAG::roller)
## Compare with the code used to plot the data
plot(depression ∼ weight, data=DAAG::roller)
## Add the fitted line to the plot
abline(roller.lm)

In the formula, weight is the predictor or explanatory variable, while depression
is the response.9

Model Objects
The model object, saved above as roller.lm, is a list. The element names give
clues on what the elements contain:

roller.lm <- lm(depression ∼ weight, data=DAAG::roller)
names(roller.lm) # Get names of list elements

9 ## For a model that omits the intercept term, specify
lm(depression ~ 0 + weight, data=roller) # Or, if preferred, replace `0` by `-1`
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[1] " coefficients " " residuals " " effects " "rank"
[5] " fitted . values " " assign " "qr" "df. residual "
[9] " xlevels " "call" " terms " " model "

Most information that is commonly required from model objects can be obtained
by the use of an extractor function. Note in particular:

coef(roller.lm) # Extract coefficients
summary(roller.lm) # Extract model summary information
coef(summary(roller.lm)) # Extract coefficients and SEs
fitted(roller.lm) # Extract fitted values
predict(roller.lm) # Predictions for existing or new data, with SE

# or confidence interval information if required.
resid(roller.lm) # Extract residuals

Information in the list object roller.lm can be accessed directly, thus:
roller.lm$coef # An alternative is roller.lm[["coef"]]

Use of an extractor function, when available, is preferable.
The default summary information for the roller.lm model object is:

print(summary(roller.lm), digits=3)

Call:
lm( formula = depression ∼ weight , data = DAAG :: roller )

Residuals :
Min 1Q Median 3Q Max

-8.18 -5.58 -1.35 5.92 8.02

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -2.09 4.75 -0.44 0.6723
weight 2.67 0.70 3.81 0.0052

Residual standard error : 6.7 on 8 degrees of freedom
Multiple R2 : 0.644 , Adjusted R2 : 0.6
F- statistic : 14.5 on 1 and 8 DF , p- value : 0.00518

The intercept of the fitted line is a = −2.09 (SE = 4.75), while the estimated
slope is b = 2.67 (SE = 0.70). The p-value for the slope (testing the null hypothesis
that β = true slope = 0) is small, consistent with the evident linear trend. The
p-value for the intercept (testing α = 0) is 0.67, that is, the difference from zero
may well be random sampling error. Thus, consistently with the intuition that
depression should be proportional to weight, the intercept term should be dropped.
We leave this as an exercise.

The standard deviation of the noise term, here identified as the residual standard
error, is 6.735. We defer comment on R2 and the F-statistic until Subsection 2.5.2.

Residual Plots
The residuals allow limited checks on model assumptions. (Here, the dataset is not
large enough to allow detection of any except extreme departures.) The function
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Figure 1.19 The normal quantile–quantile plot for the regression of Figure 1.18A
is shown in the lower left panel. Other panels show normal quantile–quantile plots
for computer-generated normal data.

plot(), used with an lm object as argument, has as its default the display of four
standard diagnostic plots. Its use will be demonstrated in Subsection 2.5.3. See also
Exercise 1.11b.

The third of the default plots is the normal quantile–quantile plot. As an aid to
judging whether this differs from a straight line by more than can be expected as
a result of random generation, this is suitably compared with plots for computer-
generated random normal data. Figure 1.19 uses the function DAAG::qreference()
to display 7 such plots alongside the normal quantile–quantile plot for the residuals
from the model. Such plots provide the eye with a reference standard.

## Normal quantile-quantile plot, plus 7 reference plots
DAAG::qreference(residuals(roller.lm), nrep=8, nrows=2, xlab="")

Simulation of Regression Data
It is often useful to repeatedly simulate data from a fitted model, then refit to each
new set of simulated data. This provides a check on variation under such repeated
simulation. The function simulate() can be used for this purpose.

Thus, to obtain 10 sets of simulated outcome values for the model that was fitted
to the roller data, do:

roller.lm <- lm(depression ∼ weight, data=DAAG::roller)
roller.sim <- simulate(roller.lm, nsim=20) # 20 simulations

The object roller.sim is a data frame with one column for each of the 20 sets of
simulated values of depression. These are obtained from the column of fitted values
by adding normal random deviates with mean 0 and residual standard deviation as
given by sigma(roller.lm). To visualize this output, try:

with(DAAG::roller, matplot(weight, roller.sim, pch=1, ylim=range(depression)))
points(DAAG::roller, pch=16)
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Table 1.3 Details are for the first three rows of the model matrix, for calculations
of fitted values and residuals, in the straight line fit to the lawn roller data.

Model matrix
Multiply Multiply Add multiplied values Observed Residual =
by −2.09 by 2.67 to give fitted value ŷ y y − ŷ
1 1.9 −2.09 + 2.67 × 1.9 = 2.98 2 2 − 2.98
1 3.1 −2.09 + 2.67 × 3.1 = 6.18 1 1 − 6.18
1 3.3 −2.09 + 2.67 × 3.3 = 6.71 5 5 − 6.71
. . . . . . . . . . . . . . .

1.5.3 The Model Matrix in Regression

For the use of lm() and related functions, the model matrix has a crucial role.
In straight line regression, the model or X matrix has two columns – a column of

1s and a column that holds values of the explanatory variable x. The fitted straight
line model is

ŷ = a + bx

= 1 × a + x × b.

The first two columns of Table 1.3 show (first three rows only) the model matrix
used in fitting a straight line model to the lawn roller data. To extract the model
matrix from the model object, use the extractor function model.matrix(), thus:

model.matrix(roller.lm)
## Specify coef(roller.lm) to obtain the column multipliers.

For each row, fitted values are multiple of the value 1 in the first column (here, to
two decimal places, −2.09), another multiple (here 2.67) of the value in the second
column, and adding them.

For the simpler (no intercept) model ŷ = bx. The model matrix then has only a
single column, holding the values of x.

From Straight Line Regression to Multiple Regression
Above, we considered a model that had a weight2 explanatory term as well as a
weight term. In principle, there is no limit to the terms that can be added. Much of
the content of following chapters will be an exploration of the possibilities afforded
by adding explanatory terms that add further columns to the model matrix.

The DAAG::litters data frame has observations on brain weight, body weight,
and litter size of 20 mice. A model that will be considered in Subsection 3.2.5 is:

mouse.lm <- lm(brainwt ∼ lsize+bodywt, data=DAAG::litters)
coef(summary(mouse.lm))

Are both the explanatory variables lsize and bodywt contributing to the predictive
power of the equation?
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1.6 Data-Based Judgments – Frequentist, in a Bayesian World

Here, the attention will be on approaches that depend on distributional assump-
tions. Section 1.8 will be concerned with approaches that are more empirically
based.

1.6.1 Inference with Known Prior Probabilities

In daily life we continually update the information on which we rely as better or
more complete information has become available. It may be that the old completely
supplants the new. Or it may be that the old provides a wider context in which to
understand the new information. Bayesian approaches use what is already known
or surmised as a context for the analysis and interpretation of new data.

In a medical context, consider a rare disease that occurs in 2 in 1000 in a target
population. Suppose that in a person with the disease (a true positive) the disease
will be detected with a probability of 0.8 (this is termed the sensitivity), while a
person who does not have the disease (a true negative) will be detected as negative
with a probability of 0.95 (this is termed the specificity). Then, in a population
of 10,000 where 20 have the disease and 9800 do not (a prevalence of 0.002), the
results will on average divide up thus:

Test +ve Test −ve TOTAL
True +ve 16 4 20 Sensitivity = 16/20 = 80%
True −ve 499 9481 9980 Specificity = 9481/9900 = 95%

Thus, among those who test positive, a fraction of only 16/(16+499) ≃ 0.03 will
be true positives.

Prior knowledge of the prevalence of the disease in the target population is crucial
for judging the risk indicated by the test result. Additionally, accurate estimation of
sensitivity and specificity requires large trials, with results that apply to individuals
who would meet the entry criteria for the study.

Bayes’ theorem gives this result in a manner that does not depend on a specific
numerical example, and makes it easy to change the assumptions:

Pr[D |test +ve] = Pr[test +ve | D] × Pr[D]
Pr[test + ve]

=
Pr[test + ve | D] × Pr[D]

Pr[test + ve | D] × Pr[D] + Pr[test + ve | ¬D] × Pr[¬D]
.

The following function can be used to calculate the probability that a patient
who tests positive has the disease:

## `before` is the `prevalence` or `prior`.
after <- function(prevalence, sens, spec){

prPos <- sens∗prevalence + (1−spec)∗(1−prevalence)
sens∗prevalence/prPos}

## Compare posterior for a prior of 0.002 with those for 0.02 and 0.2
setNames(round(after(prevalence=c(0.002, 0.02, 0.2), sens=.8, spec=.95), 3),

c("Prevalence=0.002", "Prevalence=0.02", "Prevalence=0.2"))
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Prevalence =0.002 Prevalence =0.02 Prevalence =0.2
0.031 0.246 0.800

With a prevalence of 0.002 in a population of 10,000, 99.98 percent of those tested
will not have the disease, but will contribute 499 out of the 515 of those who test
positive. With a prevalence that equals 0.02, the probability of a positive is much
less strongly weighted toward the figure for those who do not have the disease. The
finding of a positive has then to be placed in the context of an assessment of the
prevalence in the relevant wider population, if necessary using a ballpark estimate.
This is especially necessary if the prevalence is very small.

One can think of the probability Pr[test+ ve | ¬D], here equal to 0.05 as a p-value
for testing the null hypothesis that a patient who does not have a disease will test
positive. In this context it is very clear that in order to get a reasonable sense of
what p = 0.05 might mean, there has to be attention to the best available estimate
of, or guess at, the prior probability.

Relating “Incriminating” Evidence to the Probability of Guilt
Consider the case where there is a police search of a DNA database of 5000 individ-
uals, with the incriminating DNA type found in 1 individual in 1000. The following
summarizes the expected result of the police search for a DNA match, optimisti-
cally assuming that the person whose DNA was found at the crime scene will be
among those netted.

Not from crime scene From crime scene
4 (false) positives 1 true positive

Odds are then 1:4 or worse that the DNA belongs to the defendant. The DNA
match falls well short, on its own, of identifying the defendant as the person whose
DNA was found at the crime scene. Writing Pr[I] for Pr[innocence] and Pr[E] for
the Pr[evidence], Pr[I | E] is very different from Pr[E | I]. In order to establish a
link there has to be other evidence that explains why this particular individual was
identified as the suspect, rather than others with the same DNA match. Quoting
the 0.001 figure as the probability that the DNA is not from the defendant is a
version of what is termed the prosecutor’s fallacy.

1.6.2 Treatment Differences That Are on a Continuous Scale

We will start by demonstrating, and critiquing, a frequentist hypothesis testing
approach. Consider now sleep data from a 1905 study that has change in hours of
sleep for 10 individuals, for each of two soporific drugs.

## Use pipe syntax, introduced in R 4.1.0
pairedDiffs <- with(datasets::sleep, extra[group==2] − extra[group==1])
pairedDiffs |> (function(x)c(mean = mean(x), SD = sd(x), n=length(x)))() |>

(function(x)c(x, SEM=x['SD']/sqrt(x['n'])))() |>
setNames(c("mean","SD","n","SEM")) −> stats
print(stats, digits=3)
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mean SD n SEM
1.580 1.230 10.000 0.389

For assessing the difference between the drugs, a relevant statistic is then

t =
d̄

s/
√

n
=

6.33
2.03

= 3.11.

The mean is t = 3.11 times the SEM. The symbol t is used because the relevant
reference for a formal statistical hypothesis test is, under normal distribution as-
sumptions, a t-distribution, here with eight degrees of freedom. We may report:
“The mean difference is 1.58 [SEM = 0.389], based on n = 10 differences.”

Formal hypothesis testing requires the setting out of null and alternative hy-
potheses. Taking the population mean to be µ, a common choice of (point) null
hypothesis is

H0 : µ = 0 with alternative hypothesis µ ̸= 0.

The (two-sided) p-value is twice the probability that the t-statistic is greater than

mean/SEM = 1.580/0.389 = 4.062.

## Sum of tail probabilities
2∗pt(1.580/0.389, 9, lower.tail=FALSE)

[1] 0.0028

A standard form of summary statement is: “Based on the sample mean of 1.58, the
population mean is greater than zero (p = 0.0028).”

A confidence interval offers a different perspective on the result, one that focuses
on the estimate and on its accuracy. Assuming that data are from a normal dis-
tribution with mean µ, values of t9 will with probability 0.95 lie between −2.262
and 2.262, that is, in 95 percent of such samples d̄ will lie within a distance 2.262
SEMs of µ. These are the endpoints of what is known as the 95 percent “confidence”
interval for µ:

(1.58 − 2.262 × 0.389, 1.58 + 2.262 × 0.389) = (0.7, 2.46).

For a 99 percent confidence interval, replace the multiplier 2.26 by 3.25. This leads
to the wider interval (0.316, 2.84).

Code that short-circuits the above calculations, for a 95 percent confidence in-
terval, is:

## 95% CI for mean of heated-ambient: data frame DAAG::pair65
t.test(sleep, conf.level=0.95)

An Hypothesis Test
If the 95 percent confidence interval for the population mean does not contain
zero then, using the language of hypothesis testing, the null hypothesis that the
population mean is zero will be rejected at a “significance level” of α = 1 − 0.95 =
0.05. The value of p that is on the borderline between rejection and nonrejection is
termed the critical value, commonly denoted α.
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Note that p = 0.00283 is at the upper end of a range of values, extending from
0 to 0.00283, that under the distributional assumptions made, would all be equally
likely if the true mean is zero. With t = 4.06, the p-value is a |t| ≥ 4.06 (“as
large or larger”) probability, not a |t| = 4.06 probability, and has to be understood
accordingly.

If the only interest was in whether the first drug gave a greater increase than the
second drug, the relevant probability is that in the upper tail:

pt(4.06, 9, lower.tail=F)

[1] 0.0014

The p-Value Probability Relates to a Decision Process
The direct interpretation of a p-value as a probability is to a decision process
that lumps together all p-values that are smaller than a set threshold α. Common
practice has been to set α = 0.05, or to 0.01 or less if greater assurance is required.

When planning an experiment or sampling scheme, in a case where the interest is
in a possible difference between two groups, the p ≤ α perspective makes a certain
sense, with commonly used values are 0.05, or 0.01, or 0.005. Once the results are
available, it makes sense to look at the specific p-value, and ask what that means.
In this text, the Bayes Factors that will be treated in Subsection 1.7.2 will be used
as a source of insight.

1.6.3 Use of Simulation with p-Values

All a p-value offers is an assessment of implications that flow from accepting the
null hypothesis. It is important to ask: “How much more likely does the test statistic
become under the alternative?” In the extreme case where data are random noise,
no given p-value is any more likely under the alternative than under the null!

In order to assess the probability under the alternative, assumptions must be
made regarding a prior distribution. For any given prior, the probability under the
alternative depends, in the one- or two-sample case, on a standardized difference,
known as the effect size, as noted in Subsection 1.3.6.

Observe the following.

• The substantial reduction in variation in the p-values returned as effect sizes
increase is most noticeable at an effect size of 1.2 for n=10, and at 0.8 and 1.2 for
n=40.

• With an effect size of 0.2, the proportion of p-values that are greater than 0.05
changes from 172 percent at n=10 to 130 percent at n=40. It remains more likely
than not that the p-value will be greater than 0.05.

• Again with eff=0.2, the lower and upper quartiles shift down from 0.105 and
0.532 at n=10 to 0.024 and 0.283 at n=40. The difference, or inter-quartile range,
reduces from 0.43 to 0.26. The use of a p0.25 scale gives a misleading visual
impression of the relative widths of the two boxes.
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Figure 1.20 Boxplots are for 200 simulated p-values for a one-sided one-sample
t-test, for the specified effect sizes eff and sample sizes n. The p0.25 scale on the
x-axis is used to reduce the extreme asymmetry in the distributions of values
that are returned. See Exercise 1.24a for further comment.

The following function was used for the simulations:
eff2stat <- function(eff=c(.2,.4,.8,1.2), n=c(10,40), numreps=200,

FUN=function(x,N)pt(sqrt(N)∗mean(x)/sd(x), df=N−1,
lower.tail=FALSE)){

simStat <- function(eff=c(.2,.4,.8,1.2), N=10, nrep=200, FUN){
num <- N∗nrep∗length(eff)
array(rnorm(num, mean=eff), dim=c(length(eff),nrep,N)) |>

apply(2:1, FUN, N=N)
}
mat <- matrix(nrow=numreps∗length(eff),ncol=length(n))
for(j in 1:length(n)) mat[,j] <-

as.vector(simStat(eff, N=n[j], numreps, FUN=FUN)) ## length(eff)∗numep
data.frame(effsize=rep(rep(eff, each=numreps), length(n)),

N=rep(n, each=numreps∗length(eff)), stat=as.vector(mat))
}

Code for Figure 1.20 is then:
set.seed(31)
df200 <- eff2stat(eff=c(.2,.4,.8,1.2), n=c(10, 40), numreps=200)
labx <- c(0.001,0.01,0.05,0.2,0.4,0.8)
gph <- bwplot(factor(effsize) ∼ I(stat∧0.25) | factor(N), data=df200,

layout=c(2,1), xlab="P−value", ylab="Effect size",
scales=list(x=list(at=labx∧0.25, labels =labx)))

update(gph+latticeExtra::layer(panel.abline(v=labx[1:3]∧0.25, col='lightgray')),
strip=strip.custom(factor.levels=paste0("n=",c(10,40))),
par.settings=DAAG::DAAGtheme(color=F, col.points="gray50"))

The code can readily be adapted to show the equivalent plots for sample effect sizes,
for t-statistics, and in principle for the Bayes Factors that will be introduced in the
next section. See Exercise 1.24a at the end of the chapter.

1.6.4 Power – Minimizing the Chance of False Positives

The p-value focuses on what can be expected under the null. When designing a
new experiment or sampling scheme, it is important to assess the probability of
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detecting a “positive” (i.e., ultimately concluding that the null is false) when the
alternative is true. For this purpose it is necessary to specify the size of difference
that is of interest. In the one-sample and two-sample t-tests, this is the Cohen’s d
measure, defined as the mean difference (one-sample case) or difference in means
(two-sample case), divided by the standard deviation.10

Given that a decision has been made in advance to regard as significant any p-
value that is less than α, the power Pw is the probability of detecting an effect of
the specified size. (Note that β = 1 − Pw has the name “Type II error”.)

Suppose for example that the power is Pw = 0.8, relative to the α = 0.05 cutoff.
This is high relative to the standards of much published work. Consider three
scenarios, where 300 tests for a drug are divided between true positives and true
negatives in one of the ratios 0.2:1, 1:1, 5:1. Results will then, on average, divide
up as follows:

True positives False positives
R=0.2 0.05 x250 =12.5 0.8 x50 =40
R=1 0.05 x150 =7.5 0.8 x150 =120
R=5 0.05 x50 =2.5 0.8 x250 =160

As the prior odds increase from 0, the probability that p ≤ 0.05 will indicate a
real effect will, unless Pw = 0, increase from zero. In the extreme case where Pw =
0, the probability of a real effect will be be the same (equal to the prior probability)
irrespective of the p-value.

Power calculations, as implemented in the base R function power.t.test() and
in the pwr package, allow experimenters to determine the size of experiment that
can on average be expected to detect, at a specified significance level α, a specified
Cohen’s d effect size.

The effect size for which it is reasonable to plan depends on the context. In
medicine, the effect size should be large enough to be distinguishable from natural
variation in the population. It is useful to check previous trials in related areas of
research, being mindful that the refereeing processes involved in publication will in
many areas generate substantial positive biases.

Power Calculations – Examples
Examples of power calculations, for two-sided tests with effect size d=0.5, are:

power.t.test(d=0.5, sig.level=0.05, type="one.sample", power=0.8)

One - sample t test power calculation

n = 33
delta = 0.5

sd = 1
sig. level = 0.05

power = 0.8
alternative = two. sided

10 We are assuming a common standard deviation in the case of two samples.
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pwr1 <- power.t.test(d=0.5, sig.level=0.005, type="one.sample", power=0.8)
pwr2 <- power.t.test(d=0.5, sig.level=0.005, type="two.sample", power=0.8)
## d=0.5, sig.level=0.005, One- and two-sample numbers
c("One sample"=pwr1$n, "Two sample"=pwr2$n)

One sample Two sample
57 108

Figure 1.20 in Subsection 1.3.6 provided strong indications of the range of p-
values that could be expected, given a specified effect size and specified sample
size. Those who are planning an experiment would do well to plot the equivalent
graph that relates the effect size of interest and the planned sample size.

The simulations are, effectively, experiments. The following shows, based on the
simulation results for the combinations shown of effect size (ES) and sample sizes
(number of pairs or paired differences), the proportion of simulations where the
p-value for the null hypothesis of no effect fell under the specified significance level.

α=0.05
n=10 n=20 n=40

ES =0.05 0.035 0.04 0.049
ES =0.2 0.082 0.134 0.234
ES =0.4 0.204 0.397 0.694
ES =0.8 0.6162 0.9239 0.9985
ES =1.2 0.9203 0.9991 ∼1.0000

α=0.005
n=10 n=20 n=40

ES =0.05 0.004 0.005 0.006
ES =0.2 0.011 0.023 0.054
ES =0.4 0.037 0.116 0.343
ES =0.8 0.2119 0.655 0.9768
ES =1.2 0.5666 0.9762 ∼1.0000

Thus, for n = 10 and an effect size of 0.2, close to 8 percent of “positives” (where
p ≤ 0.05 is used as the criterion) will be detected as such, as against 5 percent under
the null. Subsection 1.10.2 will discuss estimated effect sizes from replications of
published social psychology studies, where a high proportion were in the vicinity of
0.05. For sample sizes of 40 or less, the power is under 0.05, so that more than 19
out of 20 true positives will be missed under an α = 0.05 cutoff. The experimental
results mainly add noise.

Code for the calculations, for the two different choices of significance level, is:
effsize <- c(.05,.2,.4,.8,1.2); npairs <- c(10,20,40)
pwr0.05 <- matrix(nrow=length(effsize), ncol=length(npairs),

dimnames=list(paste0('ES=',effsize), paste0('n=',npairs)))
pwr0.005 <- matrix(nrow=length(effsize), ncol=length(npairs),

dimnames=list(paste0(effsize), paste0('n=',npairs)))
for(i in 1:length(effsize)) for(j in 1:length(npairs)){

pwr0.05[i,j] <- power.t.test(n=npairs[j],d=effsize[i],sig.level=0.05,
type='one.sample')$power

pwr0.005[i,j] <- power.t.test(n=npairs[j],d=effsize[i],sig.level=0.005,
type='one.sample')$power}

tab <- cbind(round(pwr0.05,4), round(pwr0.005,4))

∗Positive Predictive Values
In the example at the start of this subsection, the prior odds R was an actual
but unknown ratio of number of drugs with a potentially detectable effect to the
number with no effect, giving a prior probability of R/(R+ 1). The reasoning carries
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Example: With R = 1:15 (e.g., 100 true
+ves to 1500 true -ves), α = 0.05, and
Pw = 0.3, the posterior odds are:

RPw

α
=

0.3
15 × 0.05

= 0.4,

PPV =
0.4

1 + 0.4
≃ 0.29.

Figure 1.21 Post-study probability (PPV)), as a function of the pre-study odds,
for different levels of statistical power.

through in the same way if R is a guess at a prior odds ratio, perhaps based on
earlier studies.

The effect size (ES) for identifying a detectable effect may be chosen as the
smallest change that is of interest. For instance, in an experiment to compare drugs
that induce sleep (as in the dataset datasets::sleep), a minimum effect size of
ES = 30 min might be reasonable.

The (posterior) probability of a genuine effect of the given size is known as the
positive predictive value or PPV. Examples that will be given shortly should make
the idea clear. The false discovery rate or FDR is related to the PPV thus:

FDR = 1 − PPV.

With α = 0.05, 5 percent of tests are expected, under the null hypothesis, to
show p ≤ α. Thus, given that the ratio of positives to negatives is R : 1, the odds
that an apparent positive will be a true positive is

RPw

α
= R

Pw

α
, (1.3)

that is, multiply the prior odds R by Pw
α to get an odds ratio that accounts for the

new evidence. Ioannidis (2005) has a modification of Equation (1.3) that allows for
bias.

The positive predictive value (PPV), or posterior probability, is then

PPV =
RPw

RPw + α
. (1.4)

Figure 1.21 illustrates what the formula means in practice.
Based on eight journal articles published between 2006 and 2009, Button et al.

(2013) reported an astonishing median power of 0.08 across 461 individual studies
of brain volume abnormalities. Results were better, but still not encouraging, in
neuroscience more generally. Based on meta-analysis reports published in 2011,
Button et al. (2013) found a median power of 0.21 for 730 individual primary
studies.
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Prinz et al. (2011) reported a success rate of around 30 percent in their efforts
to reproduce the main result in 67 published studies. Two scenarios that, in the
absence of other faults, would on average reproduce this approximate success rate
are:

• R = 1:15, α = 0.05, Pw = 0.3,
• R = 1:4, α = 0.05, Pw = 0.08.

Calculations for the first of these are shown to the right of Figure 1.21. These
scenarios ignore the likely contributions of design, data, execution, and presentation
faults. Such faults will increase the risk of finding a spurious effect, the risk of failing
to detect a genuine effect, and the risk of biases that distort the result.

Small studies with low power compromise the use of p-values for any purpose –
whether as a screening device, or to confirm an earlier result. Button et al. (2013)
note that the magnitude of a true effect, when found, is on average exaggerated.
Additionally, small studies may not be conducted with the same care as larger
studies that require more careful organization, and the smaller datasets that result
are more susceptible to minor changes in the analysis process.

The issues to which Equation (1.4) and Figure 1.21 relate are of central impor-
tance for large areas of laboratory science. See, in particular, Ioannidis (2005). In
practical use, for estimating the PPV, such formulae provide only broad guidelines.
The estimate of the power Pw, and an assessment of what is a reasonable effect
size, is often based on pilot-study information from a convenience sample and not
a random sample, and is susceptible to selection bias. Estimates that are accurate
enough to be a good basis for design may be available when a trial is the latest
in a series of comparable trials. Gelman and Carlin (2014) argue for the use of
information external to the specific study as a basis for choosing the effect size. A
literature review will often provide useful leads.

The results given in this subsection rely on setting a threshold α and not distin-
guishing between p-values that lie within a range from 0 to α. That makes sense
when designing an experiment, but preferably setting α somewhat less than 0.05.
Once results are in, it becomes important to take note of the specific p-value, and
ask what it means.

1.6.5 The Future for p-Values

The critical test for laboratory science is replicability – are other scientists able
to replicate the results? p-Values and other relevant statistics should be seen as a
complement to, and not as a substitute for, independent replication. Two quotes
from Ronald Fisher, who introduced the use of p-values, emphasize the importance
of replication:

Personally, the writer prefers to set a low standard of significance at the 5 per cent point,
and ignore entirely all results which fail to reach this level. A scientific fact should be
regarded as experimentally established only if a properly designed experiment rarely fails
to give this level of significance.
[Fisher (1926)]
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Fisher commented, also, that a level of 0.02 or 0.01 might be used if 0.05 did not
seem low enough:

. . . no isolated experiment, however significant in itself, can suffice for the experimental
demonstration of any natural phenomenon . . .

. . . we may say that a phenomenon is experimentally demonstrable when we know how
to conduct an experiment which will rarely fail to give us a statistically significant result.
[Fisher (1935, pp 13–14)]

Independent replication at another time and place is the crucial check, irrespec-
tive of the statistical summary measures used. It provides checks on the experimen-
tal processes, on mistakes in statistical analysis, and on factors that may be local to
the place and time of the original experiment. It checks that the published article
and supplementary materials are sufficiently accurate and detailed that others can
repeat the experiment. Where mistakes have been made, it is unlikely that another
research group will repeat the same mistakes.

If both the original study and the replication have been carried out with im-
peccable care and give clearly different results, identification of the different factor
that has been at play may yield new and important insight. The low power of much
of what is reported in the literature makes it difficult to be sure that results are
“clearly different.”

How Small a p-Value Is Needed?
p-Values are designed to decrease as the weight of evidence shifts to favor the
alternative. They are not absolute measures of the weight of evidence. In a context
where positive results are thought to be as likely as not, p ≤ 0.05 has to be regarded
as providing only weak evidence for an effect.

The Bayes Factors that will be discussed in Section 1.7 will be used alongside
p-values and can help in assessing what a given p-value may mean for the relative
probabilities of the null and the alternative.

1.6.6 Reporting Results

It is important to report effect sizes. As the sample size increases, the p-value for
a given estimated effect size will decrease. For large enough sample sizes, a small
p-value (using whatever value is taken as “small”) will correspond to an effect size
that is so small as to be of no consequence. Rather than testing for a point null,
it commonly makes much better sense to set a minimum difference µ0 that is of
interest, and test µ > µ0 against the null µ = µ0.

The quoting of multiple p-value or equivalent test results raises awkward ques-
tions about what to make of the combined results. In general, significance tests
should be closely tied to key points in the paper. Where possible, make a rough as-
sessment of the prior probabilities, at least to the extent of distinguishing between
studies with “low prior odds” and those with prior odds that may be of the order of
1:1 or higher. Once it seems clear that an effect is real, the focus of interest should
shift to its pattern and magnitude, and to its scientific significance.
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It is a poor use of the data to perform tests for each comparison between treat-
ments when the real interest is (or should be) in the overall pattern of response.
Where the response depends on a continuous variable, it may be pertinent to ask
whether, for example, the response keeps on rising (falling), or whether it rises
(falls) to a maximum (minimum) and then falls (rises).

Is There an Alternative That Is More Likely?
Finding p ≤ α (commonly with α = 0.05) is all very well. The important question
is whether there is an alternative that is substantially more likely. Comments in
Berkson (1942) highlight the point that p-values relate only to what can be expected
under the null.

If an event has occurred, the definitive question is not, “Is this an event which would be
rare if the null hypothesis is true?” but “Is there an alternative hypothesis under which
the event would be relatively frequent?”

The approaches to be described in the next section address this point very directly.

1.7 Information Statistics and Bayesian Methods with Bayes Factors

Information statistics and Bayes Factors both offer ways to establish a preference for
one model over another. Information statistics rely on large sample results, though
for the Akaike Information Criterion (AIC) that is in common use, a correction is
available that is designed to improve the small sample properties. Bayes Factors
rely on the choice of a specific prior. Although a large sample approximation is not
involved, the prior is both more important and harder to choose with confidence
when sample sizes are small. Unlike the AIC, Bayes Factors have not to date found
common use in the statistical mainstream.

1.7.1 Information Statistics – Using Likelihoods for Model Choice

For using likelihoods to express a preference for one model over another rather than
as a basis for a significance test, the likelihood must be adjusted for the number
of parameters estimated. Setting p equal to the number of parameters estimated
(here, this includes any scale parameters), the AIC is one of two widely used criteria
that take the form:

kp − 2 log(L̂), where, for AIC, k = 2.

For the Bayesian Information Criterion (BIC), k = log(n), where n is the number of
observations. In either case, the model that gives the smallest value is preferred. The
descriptor “Bayesian” appears in the name because the choice of k can be motivated
by arguments that have a Bayesian connection, albeit in a large sample limit.

The AIC penalty term is designed so that, in the large sample limit with n much
larger than p, the statistic will select the model with the lowest prediction error.
Where p is an overly large fraction of n the criterion is inclined to select overly
complex models. For models for which it is available, there is then a strong case
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for increasing the amount of the correction, as for the AICc statistic that will be
discussed below.

The BIC sets k = log(n), thus for n > 7 penalizing complex models (many
parameters) more strongly. It is designed, in the large sample limit, to select the
correct model. As for the AIC, it is important that the number of observations n
is much larger than the number p of parameters that are estimated.11

For normal theory models the AIC statistic is, in the usual case where the variance
has to be estimated:

AIC = n log
(

RSS
n

)
+ 2p + const, where const = n(1 + log(2π)). (1.5)

Note again the reason for placing y-axis tick marks a distance 0.02 apart on the
loge linear scale used in Figure 1.7. On the loge scale a change of 0.02 is very nearly
a 2 percent change. where RSS is the residual sum of squares and the constant term
arises from the assumption of an iid normal distribution for the errors.

Corrections are available, different for different error families that improve the
small sample properties of the AIC statistic. For normal theory models, the AICc
statistic replaces the AIC penalty term 2p by:

2
n

n − p − 1
p, that is, an increase of 2p

p + 1
n − p − 1

.

The penalty is then larger for smaller values of n, with the consequence that the
difference in AICc statistics for a d degree of freedom increase is smaller for smaller
values of n. For the comparison between a model with p parameters and one with
p+d parameters, the change in the AICc statistic is less than the change in the AICc
statistic by an amount:

2(p + d)
n

n − (p + d)− 1
− 2p

n
n − p − 1

− 2d.

The function AICcmodavg::AICc() implements this, as well as corrections for a
number of other error families. A vignette that gives an overview of the package
has extensive advice on model comparison.12

The following checks on the formula just given for the AICc statistic:
## Calculations using mouse brain weight data
mouse.lm <- lm(brainwt ∼ lsize+bodywt, data=DAAG::litters)
n <- nrow(DAAG::litters)
RSSlogLik <- with(mouse.lm, n∗(log(sum(residuals∧2)/n)+1+log(2∗pi)))
p <- length(coef(mouse.lm))+1 # NB: p=4 (3 coefficients + 1 scale parameter)
k <- 2∗n/(n−p−1)
c("AICc" = AICcmodavg::AICc(mouse.lm), fromlogL=k∗p−2∗logLik(mouse.lm)[1],

fromFit=k∗p + RSSlogLik) |> print(digits=4)

AICc fromlogL fromFit
-112.9 -112.9 -112.9

11 In more technical language the AIC statistic is designed to be asymptotically efficient, where
the BIC statistic is designed to be asymptotically consistent.

12 Type vignette("AICcmodavg", package="AICcmodavg") to see the vignette.
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Figure 1.22 Points are from simulations of the sampling properties of the differ-
ence in AIC statistics between a model that fits a zero mean and a model that
fits a nonzero mean.

Look ahead to Figure 3.17 in Subsection 3.5.1 for a graph that compares the change
in penalty terms between the three statistics, for 5 ≤ n ≤ 35 from a unit increase
in the number of parameters estimated. For the AICc statistic, the cases shown are
for an increase from p=1 to p=2, or from p=3 to p=4.

The Sampling Properties of the Difference in AIC Statistics
Figure 1.22 shows results from simulation of the sampling properties of the differ-
ence in AIC statistics between a model that fits a zero mean and one that fits a
nonzero mean. Panel A is for the case where 15 observations are from a normal
distribution with mean 0, while for Panel B the mean was set to 0.5σ. The red solid
line is for y = 0, while the dashed line is for y = −2. Notice that in Panel A, points
are relatively dense close to the line y = −2, with many more points shifted above
this limiting line in Panel B. If the graph is repeated for the AICc statistic, the
effect is to shift the solid red horizontal zero line upwards to the fainter dotted red
line. Code for Figure 1.22 is:

sim0vs1 <- function(mu=0, n=15, ntimes=200){
a0 <- a1 <- numeric(ntimes)
for(i in 1:ntimes){

y <- rnorm(n, mean=mu, sd=1)
m0 <- lm(y ∼ 0); m1 <- lm(y ∼ 1)
a0[i] <- AIC(m0); a1[i] <- AIC(m1)

}
data.frame(a0=a0, a1=a1, diff01=a0−a1, mu=rep(paste0("mu=",mu)))
}
sim0 <- sim0vs1(mu=0)
sim0.5 <- sim0vs1(mu=0.5)
simboth <- rbind(sim0, sim0.5)
cdiff <- with(list(n=15, p=2), 2∗(p+1)∗p/(n−(p+1)−1))
xyplot(diff01 ∼ a0 | mu, data=simboth, xlab="AIC(m0)", ylab="AIC(m0) − AIC(m1)") +

latticeExtra::layer({panel.abline(h=0, col='red');
panel.abline(h=cdiff, lwd=1.5, lty=3, col='red', alpha=0.5);
panel.abline(h=−2, lty=2, col='red')})
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The following are the proportions of samples for which the statistic for “m1” is
smaller than that for “m0,” so that “m1” is preferred:

True model is m0 True model is m1
AIC: Proportion choosing m1 0.18 0.66
AICc: Proportion choosing m1 0.32 0.80

Kass and Raftery (1993) give reasons why AIC is likely to choose overly complex
models in the large sample context. When samples are small, even AICc should be
used with caution. Checks on distributional assumptions become increasingly less
helpful as sample sizes decrease relative to the number of parameters estimated.

1.7.2 Bayesian Methods with Bayes Factors

In this text, Bayesian methods are primarily used to complement the use of p-values,
and to help clarify what they do and do not imply. p-Values, Bayes Factors, and
other forms of Bayesian summary, offer different and complementary perspectives
on inferences from data.

In a Bayesian approach, the density for the prior is used to weight the density that
is fitted to the data, yielding a posterior distribution. There is, in most contexts,
an inevitable arbitrariness in the choice of prior. A Bayes Factor is the ratio of
the (marginal) likelihood under the alternative to the likelihood under the null. To
obtain the odds for the alternative over against the null multiply the Bayes Factor
by the prior odds, which in many contexts has likewise to be guessed. Uncertainties
in what a p-value can be taken to imply are replaced by uncertainties associated
with the assumptions made in calculating the Bayes Factor.

Once decisions have been made on the choice of priors, Bayes Factors allow, as
p-values do not, a probability to be assigned to the null relative to the alternative.
The null can in principle be an interval rather than a point.

Here, use will be made of functions in the BayesFactor package. The class of
priors used places a Cauchy prior (i.e., a t-distribution with one degree of freedom)
on a difference that is of interest. The default scale parameter is 1/

√
2, where a

value of 1 corresponds to half the inter-quartile range. The difference made by a
different choice of scale parameter is relatively small:

pcauchy (1, scale =1) pcauchy (1, scale =1/ sqrt (2))
0.75 0.80

The family of priors used, commonly referred to as the JZS (Jeffreys–Zellner–
Siow) family, has been extensively researched. It has the benefit of allowing, for
a wide range of models, a numerical approximation to the required integral. See
Rouder et al. (2009). It may reasonably be the default in contexts where priors are
required that do not overly reflect the judgment of an individual experimenter. It
is not at all intuitively obvious how priors should be chosen.

Various upper limits are available in the literature that apply across a wide class
of priors that are centered at the null, for distributions that include the Cauchy and
the normal. See Subsection 2.9.2. Subsection 2.9.3 will demonstrate computations
that can be adapted for use with other families of priors.
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Figure 1.23 Panel A compares alternative Cauchy priors for the standardized
effect size δ (or µ) with a normal distribution. Panel B shows the posterior for
the sleep data, obtained using the default prior. A vertical line shows the mean
increase in hours of sleep in the sample.

Bayes Factors are compared with two other Bayesian approaches for comparing a
null with an alternative in Linde et al. (2021). The R package bayesplay has several
vignettes that provide a step-by-step introduction to Bayes Factors as implemented
in the BayesFactor package. Kass and Raftery (1993) give a useful overview that
discusses also the AIC and BIC statistics. See also the text “An introduction to
Bayesian thinking” (Clyde et al., 2022), which is available from https://statswithr.
github.io/book/.

The Cauchy Prior with Different Choices of Scale Parameter
Figure 1.23A compares alternative priors that might be used for the sleep data of
Subsection 1.6.2. Panel B shows a posterior density for δ was obtained assuming
the default rscale=

√
2/2 BayesFactor prior.

Note that the default is to use a scale parameter that is data dependent, where
ideally the user would supply a scale that was based on previous experience with
comparable data. The default use of a data-dependent scale introduces an uncer-
tainty that becomes an increasing issue for small samples.

## Calculate and plot density for default prior - Selected lines of code
x <- seq(from=−4.5, to=4.5, by=0.1)
densMed <- dcauchy(x, scale=sqrt(2)/2)
plot(x, densMed, type='l')
## Panel B
pairedDiffs <- with(datasets::sleep, extra[group==2] − extra[group==1])
ttBF0 <- BayesFactor::ttestBF(pairedDiffs)
## Sample from posterior, and show density plot for mu
simpost <- BayesFactor::posterior(ttBF0, iterations=10000)
plot(density(simpost[,'mu']))

A Thought Experiment
Consider as a thought experiment three alternatives, in a study that tests 300 drugs:

1. 50 have an effect that is in principle detectable, while 250 are inactive. The
(usually unknown) prior odds R : 1 are, in this thought experiment, 50:250 =
1:5 or 0.2:1, so that R=0.2, strongly favoring the null hypothesis of no effect.
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Table 1.4 Posterior odds, as returned by BayesFactor::ttest.tstat(), when
the Bayes factor is multiplied by the respective the prior odds R.

Bayes Posterior odds
p-value (t19) Factor R = 0.2 R = 1 R = 5

0.05 (2.1) 1.39 0.28 1.39 6.9
0.01 (2.9) 5.12 1.02 5.12 25.6
0.005 (3.2) 9.17 1.83 9.17 45.9

2. 150 have an effect, and 150 are inactive, so that R=1.
3. 250 have an effect, and 50 are inactive, so that R=5.

Now consider three sets of 20 paired differences, the first resulting in a two-sided
p-value equal to 0.05, the second 0.01, and the third 0.005. Code that calculates
the Bayes Factors that will be used here is:

tval <- setNames(qt(1−c(.05,.01,.005)/2, df=19), paste(c(.05,.01,.005)))
bf01 <- setNames(numeric(3), paste(c(.05,.01,.005)))
for(i in 1:3)bf01[i] <- BayesFactor::ttest.tstat(tval[i],n1=20, simple=T)

The final three columns of Table 1.4 show the posterior odds from multiplying
the relevant Bayes Factors by prior odds of 0.2, 1.0, and 5.0 respectively.

As with p-values, it may make more sense to specify the minimum effect size that
is of interest, rather than to work with a point null. This is, at the same time, a less
important issue for Bayes Factors than for p-values. Look ahead to Figure 1.24.

Now compare calculations for the sleep data that use the BayesFactor package
for the three suggested choices of scale factor:

pairedDiffs <- with(datasets::sleep, extra[group==2] − extra[group==1])
ttBF0 <- BayesFactor::ttestBF(pairedDiffs)
ttBFwide <- BayesFactor::ttestBF(pairedDiffs, rscale=1)
ttBFultra <- BayesFactor::ttestBF(pairedDiffs, rscale=sqrt(2))
rscales <- c("medium"=sqrt(2)/2, "wide"=1, ultrawide=sqrt(2))
BF3 <- c(as.data.frame(ttBF0)[['bf']], as.data.frame(ttBFwide)[['bf']],

as.data.frame(ttBFultra)[['bf']])
setNames(round(BF3,2), c("medium", "wide", "ultrawide"))

medium wide ultrawide
17 18 18

Note for comparison the Sellke et al. (2001) upper limit, which applies for a wide
range of priors, centered at the null, with densities that tail off in much the same
manner as for the normal. With the p-value equal to 0, this is:

pval <- t.test(pairedDiffs)[['p.value']]
1/(−exp(1)∗pval∗log(pval))

[1] 22

For degrees of freedom around 10, the value returned by ttestBF is not greatly
below this lower bound. See Subsection 2.9.2 for further comment.
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Figure 1.24 Bayes factors are shown that correspond to a given two-
sided p-value, for a range of sample sizes, calculated using the function
BayesFactor::ttest.tstat(). Note that calculations for the null (−0.1,0.1) in-
terval case require BayesFactor version 0.9.12-4.5 or later. Earlier versions used,
for t>5, an approximation that failed and gave, for p = 0.01 with n ≤ 4 and for
p = 0.001 with n ≤ 9, grossly inflated values.

A Null Interval May Make Better Sense
A simple change in the code for the one-sample case gives, instead of a comparison
with a point null, a comparison between a null interval and its complement. Thus,
for the sleep data, consider a null interval that extends 45 minutes (0.75 hr) either
side of 0. The SD is s = 1.23, so that 0.75 hr gives a standardized difference of d =
0.75/1.23 = 0.61.

The first line of the following output compares the interval −0.61 < d < 0.61
with 0, while the second line compares the region outside that interval with 0.

min45 <- round(0.75/sd(pairedDiffs),2) ## Use standardized units
ttBFint <- BayesFactor::ttestBF(pairedDiffs, nullInterval=c(−min45,min45))
round(as.data.frame(ttBFint)['bf'],3)

bf
Alt., r =0.707 -0.61 <d <0.61 5
Alt., r =0.707 !( -0.61 <d <0.61) 27

bf01 <- as.data.frame(ttBFint)[['bf']]

The ratio 27.39/5.03 = 5.45 is the Bayes factor that compares an absolute difference
|d| ≥ 0.61 with |d| < 0.61.

The Effect of Changing Sample Size
Figure 1.24 shows, for three choices of p-value and for a range of sample sizes, Bayes
Factor estimates as returned by BayesFactor::ttest.tstat(). Panel B shows
the effect sizes – these are as estimated from a sample that yields the specified
p-value.

For all three choices of p-value, the Bayes Factor soon starts to decrease with
increasing degrees of freedom. For p=0.05 sooner than for smaller p-values, a point is
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in due course reached where the sample effect size is too small to be of consequence.
The Bayes Factor reflects this, giving a perspective on the information in the data
that is different from that offered by p-values.

The somewhat larger Bayes Factors at smaller sample sizes, relative to a given
p-value, come with a caution. Even more than for p-values, sampling variation is a
greater concern when samples are small.

Exercise 1.31 looks at the effect of replacing rscale="medium" with rscale=
"wide". Exercise 1.32 shows results with the JUI family of priors for which the
function statsr:bayes_inference has provision.13 In the example considered, the
Bayes Factor is smaller.

Different Statistics Give Different Perspectives
A difference between p = 0.00001 and p = 0.000001, in a one-sample and one-
sided t-test with n=40, will not ordinarily attract much attention. The correspond-
ing Bayes Factors, calculated using BayesFactor::ttest.tstat() and rounded to
whole numbers, are 1012 and 8328. While the difference looks impressive, it is read-
ily explainable by statistical variation and/or small departures from assumptions.

bf1 <- BayesFactor::ttest.tstat(qt(0.00001, df=40), n1=40, simple=T)
bf2 <- BayesFactor::ttest.tstat(qt(0.000001, df=40), n1=40, simple=T)
rbind("Bayes Factors"=setNames(c(bf1,bf2), c("p=0.00001","p=0.000001")),

"t−statistics"=c(qt(0.00001, df=40), qt(0.000001, df=40)))

p =0.00001 p =0.000001
Bayes Factors 1012.0 8327.8
t- statistics -4.8 -5.6

Various authors (see, e.g., Kass and Raftery, 1995) suggest a scale of evidence
akin to the following for Bayes Factors:

1 – 3 3 – 20 20 – 150 >150
A bare mention Positive Strong Very strong

Small Bayes Factors (much less than 1.0) can be interpreted as evidence against
the alternative and in favour of the null.

∗Technical Details of the Family of Priors Used in BayesFactor
The Cauchy distribution is a t-distribution with a single degree of freedom, used as
a relatively uninformative prior. It results from assuming a normal distribution for
the difference δ, with the variance of δ distributed as inverse chi-square. The median
is its location parameter, while its scale parameter is half the inter-quartile range.
The mean and variance are not defined. The Jeffreys distribution has a similar role
for the variance of the normal distributions that are assumed both under the null
and under the alternative. See ?dcauchy and ?BAS::Jeffreys.

13 Differently from the unit information prior used in Subsection 2.9.2 to motivate the BIC
statistic, it is here centered on the null.
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1.8 Resampling Methods for SEs, Tests, and Confidence Intervals

Resampling methods rely on the selection of repeated samples from a “population”
that is constructed from the sample data. They can be an effective recourse when
departures from normality are an issue.

As there are in general too many possible distinct samples to take them all, re-
liance is on repeated random samples. In this section, we demonstrate permutation
and bootstrap methods. We start by demonstrating the use of permutation tests
for the equivalent of one-sample and two-sample t-tests.

1.8.1 The One-Sample Permutation Test

Consider the paired elastic band data from the data frame DAAG::pair65:

1 2 3 4 5 6 7 8 9
heated 244 255 253 254 251 269 248 252 292
ambient 225 247 249 253 245 259 242 255 286
heated - ambient 19 8 4 1 6 10 6 -3 6

If the treatment has made no difference, then an outcome of 244 for the heated band
and 225 for the ambient band might equally well have been 225 for the heated band
and 244 for the ambient band. A difference of 19 becomes a difference of −19. The
assumption is that each of the 29 = 512 permutations, and thus its associated
mean difference, is equally likely. This exchangeability assumption is weaker than
independence. It may be seen as a weak form of independence.

We then locate the mean difference for the data that we observed within this
permutation distribution. The p-value is the proportion of values that are as large
in absolute value as, or larger than, the mean for the data.

The first row of the following table shows absolute values of the nine differences:

Difference 19 8 4 1 6 10 6 3 6
19 8 4 −1 6 10 6 3 6
19 8 4 1 6 10 6 −3 6

In the permutation distribution, these each have an equal probability of taking a
positive or a negative sign. There are 29 possibilities, and hence 29 = 512 different
values for d̄. Rows 1 to 3 of the table show the possibilities that give a mean
difference that is as large as or larger than in the actual sample. There are another
three possibilities that give a mean difference that is of the same absolute value,
but negative. (These three possibilities are obtained by reversing the signs of all
elements in rows 1 to 3 of the table.) Hence, p = 6/512 = 0.0117.

In general, when the number of pairs is large, the computational demands of an
enumeration approach such as has been demonstrated become severe. A suitable
recourse is to take repeated random samples from the permutation distribution.
The function DAAG::onetPermutation() may be used for this.
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Figure 1.25 Density curves for two samples of 2000 each from the permutation
distribution of the difference in means, for the two-sample elastic band data.

1.8.2 The Two-Sample Permutation Test

Suppose we have n1 values in one group and n2 in a second, with n = n1 + n2. The
permutation distribution results from taking all possible samples of n2 values from
the total of n values. For each such sample, we calculate

mean of the n2 values that are selected – mean of remaining n1 values.

The permutation distribution is the distribution of all such differences of means.
We locate the differences of means for the actual samples within this permutation
distribution. Thus, consider the data from the dataset DAAG::two65. In order to
keep computational demands within reasonable bounds, we will take samples of
2000 or more from the permutation distribution.
Ambient: 254 252 239 240 250 256 267 249 259 269 (Mean = 253.5).
Heated: 233 252 237 246 255 244 248 242 217 257 254 (Mean = 244.1).

The proportion of samples (here out of 2000) where the absolute value of the
difference of the two resampled means was greater than or equal to that for the
observed means can be used as a p-value. A much larger sample size than 2000 is
not warranted, given the sampling uncertainty inherent in the initial sample sizes
of 10 for the ambient bands and 11 for the heated bands.

Figure 1.25 overlays three estimates of the permutation distribution that were
obtained by taking, in each instance, 2000 random samples from the permutation
distribution. The point where the difference in means falls with respect to the
sampled values (253.5− 244.1 = 9.4) has been marked, as has minus this difference.
The code used for the first of the density curves was in essence that for the function
DAAG::twotPermutation, preceded by set.seed(47).

1.8.3 ∗ Estimating the Standard Error of the Median: Bootstrapping

The bootstrap idea is to treat the one sample that we have, for purposes of esti-
mating the sampling distribution of a sample statistic, as an approximation to the
entire population. We take repeated resamples with replacement from the given
sample, compute the median for each of the resamples and calculate the standard
deviation of all of these medians. Even though the resamples are not genuine new
samples, this estimate for the standard error of the median has good statistical
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properties. A similar approach works well for estimating the standard error of such
statistics as the median, lower and upper quartiles, and correlation. The bootstrap
approach contrasts with simulation, sometimes termed the parametric bootstrap,
where sampling is from a theoretical distribution.

The formula given in Subsection 1.4.4 for the SEM has the same form, irrespective
of the distribution, as long as the sample has been chosen randomly. By contrast,
the formula for the standard error of the median (Subsection 1.4.4) applies only
when data are normally distributed. Use of the bootstrap estimate of the standard
error of the median reduces also any need to look for an alternative theoretical
distribution that may be a better fit to the data.

A comparison between the bootstrap estimate and the normal theory estimate
allows an assessment of the seriousness of any bias that may result from non-
normality. We proceed to calculate the bootstrap estimate of the standard error
for the median length for the eggs that were in wrens’ nests. The boot package is
needed for all bootstrap examples. The result will serve as a check on our earlier
computation.

Output from R for the lengths of eggs from the wrens’ nests is:

## Bootstrap estimate of median of wren length: data frame cuckoos
wren <- subset(DAAG::cuckoos, species=="wren")[, "length"]
library(boot)
## First define median.fun(), with two required arguments:
## data specifies the data vector,
## indices selects vector elements for each resample
median.fun <- function(data, indices){median(data[indices])}
## Call boot(), with statistic=median.fun, R = # of resamples
set.seed(23)
(wren.boot <- boot(data = wren, statistic = median.fun, R = 4999))

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = wren , statistic = median .fun , R = 4999)

Bootstrap Statistics :
original bias std. error

t1* 21 0.054 0.21

The original estimate of the median was 21. The bootstrap estimate of the stan-
dard error is 0.215, based on 4999 resamples. Compare this with the slightly larger
standard error estimate of 0.244 given by the normal theory formula in Section
1.4.4. The bootstrap estimate of the standard error will of course differ somewhat
between different runs of the calculation. Also given is an estimate of the bias, that
is, of the tendency to under- or over-estimate the median.
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1.8.4 Bootstrap Estimates of Confidence Intervals

The usual approach to constructing confidence intervals is based on a statistical
theory that relies, in part, on normal distribution assumptions. If the normal as-
sumption is not applicable and an alternative theory is not available, the bootstrap
may be helpful. Calculation for the median and for the correlation now follow.

The function boot.ci() implements five different methods for using bootstrap
estimates of a statistic to calculate confidence intervals. The perc (percentile) type
is the most the most commonly used. The bca type (bias corrected accelerated or
BCa) may give a substantial improvement. A sample size of n = 15, as in the wren
egg length data that follows, is too small for the difference to be of consequence.
Efron and Tibshirani (1993) describes these methods, together with a theoretical
justification for the use of the BCa method.

Bootstrap 95 Percent Confidence Intervals for the Median
We will construct 95 percent confidence intervals for the median of the cuckoo egg
lengths in wrens’ nests. Results are given for the BCa method, as well as for the
percentile method that may be preferred for symmetric distributions.

The object wren.boot from Subsection 1.8.3 can be used as a starting point The
endpoints for the 95 percent percentile confidence interval are calculated as the 2.5
and 97.5 percentiles of the bootstrap distribution of medians:

## Call the function boot.ci() , with boot.out=wren.boot
boot.ci(boot.out=wren.boot, type=c("perc","bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = wren.boot , type = c(" perc", "bca "))

Intervals :
Level Percentile BCa
95% (21 , 22 ) (20 , 21 )
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

The Correlation Coefficient
Bootstrap methods do not require bivariate normality. Independence between ob-
servations, that is, between (x, y) pairs, is as important as ever. Note, however, that
a correlation of, for example, 0.75 for a nonnormal distribution may have quite dif-
ferent implications from a correlation of 0.75 when normality assumptions apply.

We will compute 95 percent confidence intervals for the correlation between chest
and belly for the possum data frame. Results are given for BCa as well as for
percentile confidence intervals.

## Bootstrap estimate of 95% CI for `cor(chest, belly)`: `DAAG::possum`
corr.fun <- function(data, indices)

with(data, cor(belly[indices], chest[indices]))
set.seed(29)
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corr.boot <- boot(DAAG::possum, corr.fun, R=9999)

boot.ci(boot.out = corr.boot, type = c("perc", "bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 9999 bootstrap replicates

CALL :
boot.ci(boot.out = corr.boot , type = c(" perc", "bca "))

Intervals :
Level Percentile BCa
95% ( 0.48 , 0.71 ) ( 0.47 , 0.71 )
Calculations and Intervals on Original Scale

The Bootstrap – Parting Comments
Bootstrap methods are not a panacea. They must respect the structure of the
data. Any form of dependence in the data must be taken into account. There are
contexts where the bootstrap is invalid and will mislead. The bootstrap is unlikely
to be satisfactory for statistics, including maximum, minimum, and range, that are
functions of sample extremes. The bootstrap is usually appropriate for statistics
from regression analysis – means, variances, coefficient estimates, and correlation
coefficients. It also works reasonably well for medians and quartiles, and other such
statistics. See the references in boot::boot.

1.9 Organizing and Managing Work, and Tools That Can Assist

Each R session starts in a specific working directory, which can be changed using
the command setwd(), or the equivalent menu item. It can be a challenge to keep
track of the resources – R packages, other software, other internet resources, relevant
publications, other data – that bear on the task. Work will typically break down into
several separate subtasks, with occasional need to move between them. Analyses
need to be documented, with a description that may become part of a report or
paper.

Full advantage should then be taken of tools that can help remove complexity
from the analyst’s mind or notebook and place it in the external world. The tools
now noted can be classified, broadly, as either integrated development environments
(IDEs), or graphical user interfaces (GUIs). R binaries come with a very basic GUI.

As an alternative to the R GUI that is supplied with R binaries, there are several
GUIs that provide, also, graphical and analysis abilities. The web page https:
//r4stats.com/ lists and compares a number of the possibilities. Look under Articles
| Software Reviews | r-gui-comparison.

Especially for novices or infrequent users of R, a GUI interface can be helpful
for handling data input, for creating simple graphs, for simple tabulation and sum-
marization, and for fitting standard models. The balance of preference is likely to
change in favor of the command line as familiarity with R increases.
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Menu and command line modes of use can be mixed. for inspection and/or mod-
ification and/or for audit trail purposes. The user can examine the help page for
the relevant function(s), modify the code as required, and reexecute it. For ease of
presentation, our discussion will usually assume use of the command line, either
directly, or from an editor window in a GUI or IDE.

The RStudio Integrated Development Environment
Once an R user moves from simple exercises in typing code at the command line
to serious work with R, workspace management can be a challenge. For managing
work with R, we recommend the highly rated RStudio IDE (go to www.rstudio.com).
RStudio is designed to organize work by projects. Notwithstanding its name, the
abilities available in RStudio now extend to working with languages other than R.

The RStudio IDE has extensive features that assist with the following.

• The organization of work into projects. Moving to a new project will at the same
time change the working directory to that for the new project.

• A GUI for handling a wide range of tasks that it is often most convenient to
initiate from the menu.

• Maintaining a record of files that have been accessed from RStudio, of help pages
accessed, and of plots. The record of files is maintained from one session of a
project to the next.

• The editing, maintenance, and display of code files.
• Abilities that assist reproducible reporting, using the knitr package for processing

file formats that include code and code markup that specifies how the code is to
be used and processed. Currently, most of the attention is on R Markdown and
Sweave. Subsection 1.9.1 has further details.

• The development and maintenance of R packages.

Click on View | Show Tutorial to be taken to extensive interactive R-related tutorial
material, powered by the learnr package.

RStudio has very extensive web-based documentation. Within the R main menu
panel, click on Help | RStudio Docs to go to links to a wide range of online resources.
The RStudio website has, additionally, extensive help on getting started with R.

Among alternatives to RStudio, note the ESS interface to Emacs (http://ess.
r-project.org/), aimed at advanced users who are comfortable working with the
Emacs editor. The R interface is one of several interfaces to different language or
statistical package environments.

1.9.1 Reproducible Reporting – the knitr Package

The R package knitr has extensive abilities that allow the mixing of text and R
code for automatic report generation. There has been heavy reliance on its abilities
in the preparation of this text.

The R code chunks are embedded within markup that includes options to con-
trol the display of code and of any computer output. When suitably processed, a
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document is generated that contains the text, and the specified combination of R
code and computer output. The functionality of knitr is automatically available,
via a GUI interface, to RStudio users.

There are several different types of document where markup code can be used
to control how text and other document features will appear after processing for
printing. Sweave, used for the present text, is LATEX with R markup added. R
Markdown, which is Markdown with a similar style of markup added, is much
simpler to learn and use. It is widely used for preparation of R-related documents
and texts. Output alternatives are PDF, or HTML, or Word.

A short R Markdown document that introductory help details can be created
from the File menu on the main RStudio panel. Click on New File | R Markdown.
This will display a skeleton R Markdown document that can be edited as required,
or processed as it stands. Clicking on the **Knit** button will generate a document
that includes text as well as output from any embedded R code chunks. Note also
the reference material available by clicking on Markdown Quick Reference under
Help on the R main menu panel.

1.10 The Changing Environment for Data Analysis

This is a time when new and rich sources of data abound, with new ways to extract
meaning from the available data. The use of open databases has been crucial to
progress in such areas as earthquake science, the study of viruses and vaccines,
modeling of epidemics, and climate science. In molecular biology, freely accessible
databases have played a pivotal role in the technology that allowed a much more
effective response to the COVID-19 pandemic than would have been possible two
decades earlier. This sharing of data and skills, and use of modern technology, also
helps in the critique of what has been published earlier.

There remain too many areas that, because potential gains are less obvious, have
not put in place measures that ensure open access to the original data on which
reported results are based. Data should, unless there are strong countervailing con-
fidentiality reasons, be available both for other researchers to check and for uses
that extend beyond the individual paper. A published result attracts greater confi-
dence if it has been checked out over multiple datasets where a comparable pattern
of response would be expected. Multiple datasets may together allow investigation
of questions that individual datasets cannot on their own address. Meta-analyses,
or systematic reviews that aim to bring together results of a range of studies that
bear on the same issue, can be really effective only if carried out with access to the
original data.

1.10.1 Models and Machine Learning

The models described in this chapter have had, to a varying extent, a theoretical
motivation. The tree-based models that are the subject of Chapter 8 have, by con-
trast, a largely algorithmic motivation. Their use, and checks to examine whether
they are serving their intended purpose, do, however, involve a modeling of the pro-
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cesses involved. The limited assumptions made are important. Tree-based models
have been widely used in “machine learning".

The Limits of Current Machine Learning Systems
In an era when new and rich data sources abound, there is more need than ever for
tools and approaches that will assist in critical evaluation both of the data and of
consequent analyses. Automation of numerical computations makes obvious sense;
it frees the analyst to focus on those parts of the exercise that really do require
conscious attention. Can machines extend their role beyond this? Can they acquire
the skills needed to do the job of a skilled data analyst, as the term machine learning
(or, more recently, deep learning) might seem to suggest?

Machine learning approaches have been very successful in, for example, the cre-
ation of automated guidance systems, and in robotics. These are, in key respects,
highly automated statistical processing machines. They take large amounts of often
noisy data from their sensors, then using that data as a basis for action. Extreme
care is needed to avoid or reduce the risk of faults in the data inputs or in the data
processing that have an immediate and obvious result. Automated aircraft guidance
systems have been, for the most part, extraordinarily successful. Two Boeing 737
Max 8 crashes in 2019, with a total of 346 deaths, tell a story of human failure to
take meticulous care in moving such a system to a new context.14

When machine learning algorithms extend their reach into social, business, and
government decision making, very different types of feedback issues come into play.
In contrast to automated guidance systems, there may be little or no direct feed-
back that can be used to check on data or analysis inadequacies. Consider, in this
connection, systems that make judgments on job applicants, on rehiring and pro-
motion, on the risk that prisoners will reoffend, on loan applications, on hedge fund
investments, and on much more besides.

Issues of this type, for systems currently in place, are documented at length in
O’Neil (2016, Weapons of Math Destruction). O’Neil cites the example of a teacher
who was fired because of a low score from an automated rating system. The reason
was, apparently, that under her tutelage the reading scores of her incoming fifth
graders had not progressed from the inflated levels that they had been given, at a
feeder school, at the previous year’s end. Automated systems must, to be effective,
allow room for the human ability to step back and reflect, to learn from failures,
and to correct mistakes. As O’Neil (2016) comments:

... it’s not enough to just know how to run a black box algorithm. You actually need to
know how and why it works, so that when it doesn’t work, you can adjust.

“Interpretable machine learning” is designed to address such challenges. See, for
example, Rudin et al. (2022).

Traps in Big Data Analysis
Primary interest may be in accurate prediction. Or interest may be in the drivers of
model predictions. In a study of the effectiveness of seatbelts and airbags reducing
14 https://en.wikipedia.org/wiki/Boeing_737_MAX#cite_note-Leap-228, (2023-2-7).
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fatalities in vehicle accidents, the interest is in the factors – seatbelt use, airbag de-
ployment, and other factors that may influence survival. In the various approaches
that have been used to predict flu trends, a primary aim has been accurate predic-
tion. The story of Google Flu Trends highlights the importance of attention to the
drivers, even where the chief interest is in prediction.

Google Flu Trends was launched in 2008 and updated in 2009, with the aim of
using Google search queries to make accurate and timely prediction of flu outbreaks.
The account that now follows is based on the Lazer et al. (2014) article “The parable
of Google Flu: Traps in big data analysis.”

In early 2010 the algorithm predicted an outbreak in the mid-Atlantic region of
the United States two weeks in advance of official sources. Thereafter, until the
publication of estimates ceased in 2013, the system consistently overestimated flu
prevalence. In February 2013, the system made headlines by over-predicting doctor
visits for influenza-like illness by a factor of more than two. The methodology had
large ad hoc elements, and was not taking advantage of time series structure in
the data, resulting in a performance that was inferior to that of forward projection
methods that used Center for Disease Control data. Google shut down the predic-
tion function in 2015. Lazer et al. (2014) use this history as a warning they term
“Big data hubris”:

Big data hubris is the often implicit assumption that big data are a substitute for, rather
than a supplement to, traditional data collection and analysis. . . . quantity of data does
not mean that one can ignore foundational issues of measurement, construct validity and
reliability, and dependencies among data.

The insights that informed more conventional approaches can be incorporated
into algorithms in the style of Google Flu Trends, as argued in Guo et al. (2021).

Of Mice and Machine Learning – Missing Data Values
Missing data, noted earlier in Subsection 1.1.3, are a persistent nuisance to the
data analyst. A version of Multiple Imputation is the strategy that is usually pre-
ferred when some observations are incomplete. The Amelia and mice packages both
contain a number of functions for this purpose. See further Section 9.8.

A number of machine learning algorithms have been proposed recently to tackle
missing data problems as well. Wang et al. (2021) carried out an extensive and
carefully conducted simulation comparison of several popular and promising deep
learning algorithms with two of the mice functions, one based on classification and
regression trees, and the other based on random forests. The simulation study was
based on repeated removal of swaths of a large survey. The findings of the study
indicate that the deep learning algorithms are much faster than the functions in
mice. Also, for the goal of predicting a particular missing value, the deep learning
algorithms possess some advantage. However, the accuracy of repeated-sampling
properties of the estimates (i.e., bias and variance) based on mice turn out to be
vastly superior to those of the deep learning algorithms. Code and data for this
study can be found at https://github.com/zhenhua-wang/MissingData_DL.
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On R resources for multiple imputation, and helpful references, see Sections 9.7
and 9.8. Sangari and Ray (2021) give an overview of studies that compare impu-
tation methods, do a comparison of their own, and provide helpful brief summary
details of the methods that are compared.

Humans Are Not Good Intuitive Statisticians
While the human mind has remarkable intuitive abilities (consider the ability, with-
out apparent effort, to recognize a familiar face), it is not a good intuitive statis-
tician. Kahneman’s ground-breaking book (Kahneman, 2013) on human judgment
and decision making argues the case at length. Hence the need for training, and es-
pecially for training in forms of critical scrutiny that will help analysts to recognize
and learn from their mistakes.

The Yule–Simpson “paradox,” discussed in Subsection 1.2.7, is one of a number of
traps for overly simplistic use of data that highlight the limits of untrained human
intuition. Smith (2014) gives a number of examples from the public sphere. The
traps that such paradoxes set for data analysis results can readily get built into
black box automated systems, where there may be no ready way either to discover
how the black box reached apparently faulty conclusions, or to get attention to
problems that have been identified.

Disturbingly often, the careful examination of published analyses reveals serious
flaws. Over the course of the COVID-19 pandemic, a number of papers have been
published which have a focus on matters of strong public interest. They attracted
critical expert scrutiny and were quickly withdrawn, though not before they had
fed viral online media activity, exacerbating a COVID-19 misinformation crisis.
An example is a June 2021 paper in Vaccines, titled “The safety of COVID-19
vaccinations – We should rethink the policy.” Among other issues, it treated reports
of death from any cause following vaccination as attributable to COVID-19, and
took data on benefits from a study of a different population that examined deaths
over a six-week period only, with no adjustment for the different age distributions.15

Researchers who wish to focus on the subject-specific aspects of their work may
find close attention to the statistical methodology an annoying diversion. There is
no good way to escape those challenges. Difficulties arise when, as often, research
institutions have not made effective provision for access to high-quality statistical
advice. Our hope is that this text will be a help along the way.

1.10.2 Replicability Is the Definitive Check

Where a total study is independently repeated, we will use the terms replicate and
replicability. These are used in preference to the terms reproduce and reproducibility
that in some literature relates to the reproducing of the statistical analysis.

Statistical methodology, and scientific processes more generally, have to be jus-
tified by their effectiveness in answering questions of interest. Their effectiveness

15 See www.bmj.com/content/374/bmj.n1726 (2022-02-24) for commentary.
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can and should be open to empirical investigation. The critical test for laboratory
science is replicability – are other scientists able to reproduce the results?

To What Extent Is Published Work Replicable? What Is the Evidence?
In important areas of laboratory science, worrying evidence has emerged that sug-
gests that a majority of published results are not replicable. In one widely quoted
case (Begley and Ellis, 2012), scientists from the bio-pharmaceutical company Am-
gen who attempted to reproduce 53 “landmark” cancer studies were successful in
six cases only. The main issues appear to have been with faults in laboratory pro-
cedure and in statistical analysis (Begley, 2013). Among other such reports from
attempts by industry scientists to reproduce published work see, for example, Prinz
et al. (2011), where results were marginally more encouraging.

How has this happened? Journal editors, and the scientific community at large,
have fallen for the seductive notion that the statistical analysis of data, generated
at one time and in one laboratory and leading to a suitably small p-value, is an
effective replacement for the more stringent requirement that other scientists should
reproduce the reported results.

Some Major Replication Studies
Concerns raised by the Begley and Ellis paper, and by other reports that point
in the same direction, have been the impetus for several systematic attempts to
replicate published results. Such studies are important for the light they shed on
the interplay between statistical analysis issues (and especially on the role of p-
values) and issues that relate to the funding, planning, executing, and reporting of
experimental studies.

Other replication studies, looking at studies more generally, have shown a much
higher failure rate. The “Reproducibility: Psychology” project replicated 97 studies,
published in 2008 in one of three journals. Using a simplistic p ≤ 0.05, around 40
percent of the studies were successfully reproduced. See Open Science Collaboration
(2015). Data and R code are available from https://osf.io/fgjvw/.

The median Cohen’s d effect size for the 43 cognitive psychology papers dropped
from 1.16 in the original to 0.52 in the replicate. For social psychology (54 papers),
the drop was from 0.64 to 0.15. For the 47 studies with an original effect size of
0.5 or less, the median was 0.044, with a mean of 0.072. Unless features of an
individual study can be identified that set it apart, an individual researcher who
tries to replicate such a study might expect, on average, a difference of similar
magnitude from that in the original study. Exercise 3.17f in Chapter 3 pursues
further the analysis of data where the original effect sizes were 0.5 or less.

In an article that is primarily about the replicability of laboratory experiments
in economics, Camerer et al. (2016) report on two studies on the replicability of
macroeconomic studies, from 1986 and 2006. Only 13 percent and 23 percent, re-
spectively, of original results were replicable, even when the original data and code
were available.
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Replicability in Preclinical Cancer Research
A $1.3 million grant from the Laura and John Arnold Foundation funded an exer-
cise, reported in Rodgers and Collings (2021), that aimed to replicate the 53 “most
impactful” preclinical cancer biology studies published over 2010–2012. In the end,
50 experiments from 23 papers were repeated.16 In 92 percent of the completed ex-
periments, replication effect sizes were smaller than the original, with the median
effect size 85 percent smaller than reported for the original experiment. Barriers
to repeating experiments included shortcomings in documentation of the original
methodology; failures of transparency in original findings and protocols; failures to
share original data, reagents, and other materials; and methodological challenges
encountered during the execution of the replication experiments. These challenges
meant that only 50 of the planned 193 replication experiments were able to proceed.
The challenge to established practices has generated controversy in the research
community, and highlighted questions on just what constitutes replication.17

Studies Where There May Be Strong Social Influences
Especially where there may be strong social influences at play, it can be important
to check the extent to which results generalize to different countries and cultures.
The Klein et al. (2014) study was specifically designed to check the extent to which
results from l3 widely quoted “classic and contemporary psychology studies could
be reproduced across different samples and settings internationally.” Results were
obtained, for each of the 13 studies, from 36 independent samples, 25 from the
United States and 13 from elsewhere, with a total of 6344 subjects participat-
ing. Plots showed a relatively similar pattern of between study variation for all
13 studies. Replications were successful for 10 of the 13 studies, weakly success-
ful in one case, and unsuccessful in two cases. The data are available online (at
https://osf.io/wx7ck/?view_only=). See also Yong (2012).

The Scientific Study of Scientific Processes
Results from replication studies are important in establishing the extent to which
publications (even in very reputable journals) can be relied upon. They provide
important evidence, in the areas covered, on the extent of problems with current
scientific processes.

Replicability demands can and should go hand in hand with the fostering of in-
formed imaginative exploration and insight. Imaginative exploration provides nec-
essary leads into new areas of work and investigation, but requires checks against
allowing an unrestrained imagination to take research down blind alleys.

The issues that these studies raise bear directly on the aims that we have set
for this text. Failures in experimental design and in laboratory procedure all too
frequently compromise the trustworthiness of the data used for analysis. While

16 See the web link Errington (2021), and the papers Errington et al. (2021), and Rodgers and
Collings (2021).

17 Nosek and Errington (2020).
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experimental design and more general data collection issues are not a particular
focus of this text, we do want to emphasize their importance.

The package ReplicationSuccess has functionality that is designed to assist in
planning and analysing replication studies.18

A key component of replicability is the reproducibility of the analysis, whether
with the data used for the published paper, or with new data. The technology that
is now available leaves little excuse for failure to attend both to the maintenance
of data records through time, and to reproducible reporting.

Would Lowering the p-Value Threshold Help
There have in some quarters been calls to lower the p-value significance threshold
to α = 0.005 (Benjamin et al., 2018). Ioannidis (2018) argues that such a move
should be considered only as a temporary recourse, put in place until such time as
more durable solutions emerge. A different threshold, perhaps as low as 10−6, is
suggested for observational studies. Especially for large studies, it is important to
report estimated effect sizes. An estimated effect size of 0.1 gives, for a one-sample
t-test with n=800, a p-value that is a little under 0.005.

Other types of summary statistic, such as Bayes Factors, should be used where
appropriate. For Bayes Factors, details of the prior that was assumed would be an
essential accompaniment. Given the large element of individual judgment involved
in the choice of a prior, it is hard to see how Bayes Factors or other such statistics
could readily be a complete replacement for p-values. Irrespective of changes that
may be made to reporting protocols, there is a clear need for greater attention to
statistical literacy as part of research training.

Peer Review at the Study Planning Stage
Starting in 2013, the Center for Open Science (see http://cos.io/rr) has facilitated
the submission of registered reports (RRs) for review prior to observing study out-
comes, with more than 300 journals now offering this route to publication. As noted
on the COS website (http://cos.io/rr):

Manuscripts that survive pre-study peer review receive an in-principle acceptance that will
not be revoked based on the outcomes, but only on failings of quality assurance, following
through on the registered protocol, or unresolvable problems in reporting clarity or style.

Results that appear in published work provide later researchers with starting points
on which to build. They may also have an important role in drawing attention to
lines of inquiry that have been pursued earlier and have lead nowhere.

Scheel et al. (2021) describe a comparison between 71 papers that had used the
RR mechanism as of November 2018 with a random sample of 152 hypothesis-
testing studies from the standard literature in psychology. The authors found 96
percent (146/152) of “positive” results in the standard literature, as opposed to 44
percent (31/71) for RRs. This suggests strong selection effects in what appears in
the published literature.
18 Enter vignette(’ReplicationSuccess’, package=’ReplicationSuccess’) to see the

extensive commentary in the package vignette.
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1.11 Further, or Supplementary, Reading

Extensive R-related tutorial material is available online. The Learn R web page on
the website www.r-bloggers.com/ has extensive tutorial content, and includes links
to content that is available elsewhere (Galili, 2015). See also https://r4ds.had.co.
nz/.

Reference was made earlier to the extensive interactive R-related tutorial mate-
rial, powered by the learnr package, which can be accessed by clicking on View |
Show Tutorial on the main RStudio menu panel.

Introductions to R include Dalgaard (2008). Braun and Murdoch (2021) is an
elementary introduction to the R programming language. More technical and de-
tailed accounts of the R language include: Aphalo (2020), Chambers (2008), Matloff
(2011), Wickham (2015), and Wickham (2016).

Kahneman (2013) gives important insight into human propensities for misin-
terpreting statistical data. O’Neil (2016) has insightful commentary on the nature
and limitations of mathematical models, and on the limitations of machine learning
technology in current use as a replacement for human judgement. They become, if
trained on data that has inherent biases, “weapons of math destruction”! Thaler
(2015) is an extended commentary on the mismatch between the decision mak-
ing processes of the idealized agents of the models of classical economics (he calls
these “Econs”) and human agents, with serious implications for economic and social
policy.

On planning experimental trials, see Robinson (2000). The detailed discussion,
with detailed practical examples, has much to say that is relevant to studies more
generally. See also Cox (1958).

Papers that comment on statistical presentation issues, and on deficiencies in the
published literature, include Andersen (1990), Maindonald (1992), Wilkinson and
Task Force on Statistical Inference (1999), and Allison et al. (2016). On errors in
the interpretation of p-values, see Greenland et al. (2016), and the extensive list of
references given in that paper. Wilkinson and Task Force on Statistical Inference
(1999) makes helpful comments on the planning of data analysis, on the role of
exploratory data analysis, and more.

On formal hypothesis testing, see Gigerenzer (1998) and Wilkinson and Task
Force on Statistical Inference (1999). The misuse of p-values has been a strong focus
in the debate over reproducibility. Greenland et al. (2016) make the point that p-
values test the total context in which work has been undertaken. The role of failures
in experimental design and execution has not received the same level of attention
in the scientific literature as issues that relate to the use and meaning of p-values.

Ioannidis (2005) has been a key reference in the debate on reproducibility. Changes
are needed in the conduct of major areas of science – in publication, in manage-
ment, and in reward systems. Nosek et al. (2015) and Mogil and Macleod (2017)
make detailed proposals. Allison et al. (2016) note common errors. They discuss
roadblocks to getting corrections or retractions published. Button et al. (2013) dis-
cuss in detail the issues posed by the use of small under-powered studies. They
note the huge transformation in the reliability of gene association studies that has
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resulted from the collaboration of groups of researchers to increase the sample size
and minimize the labor and resource input of any one contributor.

Gigerenzer et al. (1989) discuss the history that has led to differences in styles
and approaches to inference in different area of statistical application. Wonnacott
and Wonnacott (1990) have an elementary account of Bayesian Methodology. See
also Gelman et al. (2003). Gigerenzer (2002) demonstrates the use of Bayesian argu-
ments in several important practical contexts, including AIDS testing and screening
for breast cancer. Chapters 3 and later of Ellenberg (2015) are largely occupied with
statistical issues, using real-world examples as points of departure. Note, in par-
ticular, Part II, titled “Inference,” moving finally to Bayesian inference. Kass and
Raftery (1993) remains an informative source of comment on the history of Bayes
Factors, and on their use and interpretation.

Books and papers that set out principles of good graphics include Robbins (2012).
See also the imaginative uses of R’s graphical abilities that are demonstrated in
Murrell (2011). Chang (2013) is a helpful resource for ggplot2 . Bowman et al. (2019)
discuss aspects of graphical presentation that are too easily ignored.

1.12 Exercises

1.1. The data frame DAAG::orings has details of damage that had occurred in US
space shuttle launches prior to the disastrous Challenger launch of January 28,
1986. Observations in rows 1, 2, 4, 11, 13, and 18 were shown in the prelaunch
charts used in deciding whether to proceed with the launch, with remaining
rows omitted.

Compare plots of Total incidents against Temperature: (i) including only
the observations shown in the prelaunch charts; and (ii) using all rows of data.
What did the full set of data strongly suggest that was less clear from the plot
that showed only the selected rows?

1.2. For the purposes of the exercises that follow, type ?sample at the R command
line, and take a careful look at the help page that appears. Note in particular
the arguments size and replace.
a. Write out and execute the code required to select a random sample of 25

numbers, with replacement, from the numbers from 100 through 200.
b. Write and execute code that randomly assigns 30 patient labels in such a

way that 20 patients are assigned to a treatment group, and 10 patients are
to a control group.

c. Suppose 30 patients are to be assigned randomly to treatment, control and
placebo groups. Write and execute code that randomly assigns 10 patient
labels to each of the three groups.

1.3. For the data frame DAAG::possum

a. Use the function str() to get information on each of the columns.
b. Using the function complete.cases(), determine the rows in which one or

more values is missing. Print those rows. In which columns do the missing
values appear?
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1.4. The following plots four different transformations for the columns brain and
body in the Animals dataset. What different aspects of the data do these
different graphs emphasize? Consider the effect on low values of the variables,
as contrasted with the effect on high values.

Animals <- MASS::Animals
manyMals <- rbind(Animals, sqrt(Animals), Animals∧0.1, log(Animals))
manyMals$transgp <- rep(c("Untransformed", "Square root transform",

"Power transform, lambda=0.1", "log transform"),
rep(nrow(Animals),4))
manyMals$transgp <- with(manyMals, factor(transgp, levels=unique(transgp)))
lattice::xyplot(brain∼body|transgp, data=manyMals,

scales=list(relation='free'), layout=c(2,2))

1.5. Calculate the following correlations:
with(Animals, c(cor(brain,body), cor(brain,body, method="spearman")))
with(Animals, c(cor(log(brain),log(body)),

cor(log(brain),log(body), method="spearman")))

Comment on the different results. Which is the most appropriate measure?
1.6. Use the function abbreviate() to obtain six-character abbreviations for the

row names in the data frame DAAG::cottonworkers. Plot survey1889 against
census1886, and plot avwage*survey1889 against avwage*census1886, in
each case using the six-letter abbreviations to label the points. What indica-
tions, different from those of the 1886 survey data, do the 1886 census data give
of the contributions of the different classes of worker to the overall wage bill?

1.7. Plot a histogram of the earconch measurements for the DAAG::possum data.
The distribution should appear bimodal (two peaks). This is a simple indica-
tion of clustering, possibly due to sex differences. Obtain side-by-side boxplots
of the male and female earconch measurements. How do these measurement
distributions differ? Can you predict what the corresponding histograms would
look like? Plot them to check your answer.

1.8. For the data frame DAAG::ais, draw graphs that show how the values of the
hematological measures (red cell count, hemoglobin concentration, hematocrit,
white cell count, and plasma ferritin concentration) vary with the sport and
sex of the athlete.

1.9. In the data frame DAAG::cuckoohosts, column names with first letter c refer
to cuckoos, while names starting with h refer to hosts. Plot clength against
cbreadth, and hlength against hbreadth, all on the same graph and using
different colors to distinguish points for the cuckoo eggs from points for the
host eggs. Join the two points that relate to the same host species with a line.
What does a line that is long, relative to other lines, imply? Code that you
may wish to use or adapt is:

usableDF <- DAAG::cuckoohosts[c(1:6,8),]
nr <- nrow(usableDF)
with(usableDF, {

plot(c(clength, hlength), c(cbreadth, hbreadth), col=rep(1:2,c(nr,nr)))
for(i in 1:nr)lines(c(clength[i], hlength[i]), c(cbreadth[i], hbreadth[i]))
text(hlength, hbreadth, abbreviate(rownames(usableDF),8), pos=c(2,4,2,1,2,4,2))

})
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1.10. The following uses a graph to illustrate least squares estimation of the mean:
## Take a random sample of 100 values from the normal distribution
x <- rnorm(100, mean=3, sd=5)
(xbar <- mean(x))
## Plot, against `xbar`, the sum of squared deviations from `xbar`
lsfun <- function(xbar) apply(outer(x, xbar, "−")∧2, 2, sum)
curve(lsfun, from=xbar−0.01, to=xbar+0.01)

Write code that repeats the calculations 500 times, storing the sample means
in a vector avs and the sample medians in a vector meds. Create the plot:

boxplot(avs, meds, horizontal=T)

Interpret what you see in light of what Subsection 1.4.4 had to say about the
sampling distribution of the median.

1.11. In the data frame DAAG::nswdemo, plot re78 (1978 income) against re75 (1975
income). What features of the plot call for attention, if the interest is in finding
a relationship?
a. Restricting attention to observations for which both re78 and re75 are

nonzero, plot log(re78) against log(re75), and fit a trend curve. Addi-
tionally, fit a regression line to the plot. Does the regression line accurately
describe the relationship? In what respects is it deficient?

b. Now examine the diagnostic plot that is obtained by using plot() with the
regression object as parameter. What further light does this shed on the
regression line model?

1.12. The MASS::galaxies data frame gives speeds of 82 galaxies (see the help file
and the references listed there for more information). Construct a density plot
for these data. Is the distribution strongly skewed? Is there evidence of clus-
tering?

1.13. Figure 1.5B plotted brain weight (units of 100 g) versus body weight (units of
100 kg), for 28 animals, using logarithmic scales. Copy the plot and use a ruler
or other straight edge to draw a line through the main body of points. Use
the ratio of vertical to horizontal distance, between the points where the line
intersects the left and right boundaries of the plotting region, to estimate the
slope of the line. The slope can be interpreted as the ratio between the relative
rate of increase of brain weight, and that for body weight. For a body weight
increase of 5 percent (this counts for this purpose as a small increase), what
increase might be expected in brain weight? Compare the line that you have
drawn with the regression line for log(brain) on log(body).

1.14. An experimenter intends to arrange experimental plots in four blocks. In each
block there are seven plots, one for each of seven treatments. Use the function
sample() to find four random permutations (i.e., orderings or arrangements)
of the numbers 1 to 7 that will be used, one set in each block, to make the
assignments of treatments to plots.

1.15. The following are total numbers of aberrant crypt foci (abnormal growths
in the colon) observed in seven rats that had been administered a single
dose of the carcinogen azoxymethane and sacrificed after six weeks (thanks
to Ranjana Bird, Faculty of Human Ecology, University of Manitoba for use
of these data):
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87 53 72 90 78 85 83

Calculate the sample mean and variance. Is the Poisson model appropriate? To
investigate how the sample variance and sample mean differ under the Poisson
assumption, repeat the following simulation experiment several times:

x <- rpois(7, 78.3)
mean(x); var(x)

1.16. The following simulates 100 normal random variates from each of (i) a nor-
mal distribution and t-distributions with (ii) four degrees of freedom and (iii)
two degrees of freedom. Run the code several times, on each occasion counting
the number of points that appear out beyond the whiskers in each of the two
boxplots.

nvals100 <- rnorm(100)
heavytail <- rt(100, df = 4)
veryheavytail <- rt(100, df = 2)
boxplot(nvals100, heavytail, veryheavytail, horizontal=TRUE)

Comment on the differences between the three distributions in the number of
points that are tagged as potential outliers.

1.17. Use t.test() to test the null hypothesis that the mean is 0 for random samples
of 10 values from a normal distribution:
a. with mean 0 and standard deviation 2;
b. with mean 1.5 and standard deviation 2.
Finally, write a function that generates a random sample of n numbers from
a normal distribution with mean µ and standard deviation 1, and returns the
p-value for the test that the mean is 0.

1.18. Use the function that was created in Exercise 1.17 to generate 50 independent
p-values, all with a sample size n = 10 and with mean µ = 0. Use qqplot(),
with the argument setting x = qunif(ppoints(50)), to compare the distri-
bution of the p-values with that of a uniform random variable, on the interval
[0, 1]. Comment on the plot.

1.19. The following function draws, when called with n=1000, 10 boxplots of ran-
dom samples of 1000 from a normal distribution, and ten boxplots of random
samples of 1000 from a t-distribution with seven degrees of freedom:

boxdists <- function(n=1000, times=10){
df <- data.frame(normal=rnorm(n∗times), t=rt(n∗times, 7),
sampnum <- rep(1:times, rep(n,times)))
lattice::bwplot(sampnum ∼ normal+t, data=df, outer=TRUE, xlab="",

horizontal=T)
}

Run the function, first with n=1000, and then with n=200. Refer back to the
Subsection 1.4.2 note on heavy-tailed distributions, and comment on the dif-
ferent numbers of points that are flagged as possible outliers.

1.20. Run the following code:
a <- 1
form <- ∼rchisq(1000,1)∧a+rchisq(1000,25)∧a+rchisq(1000,500)∧a
lattice::qqmath(form, scales=list(relation="free"), outer=TRUE)

https://doi.org/10.1017/9781009282284.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009282284.002


84 Learning from Data, and Tools for the Task

Repeat, first with a = 0.5, and then with a = 0.33. Which choice of a ap-
pears to give the best approximation to a normal distribution?

1.21. The following code generates random normal numbers with a sequential de-
pendence structure:

y <- rnorm(51)
ydep <- y1[−1] + y1[−51]
acf(y) # acf plots `autocorrelation function'(see Chapter 6)
acf(ydep)

Repeat this several times. There should be no consistent pattern in the acf
plot for different random samples y, and a fairly consistent pattern in the acf
plot for ycor that reflects the correlation that is introduced by adding to each
value of y the next value in the sequence.

1.22. Assuming that the variability in egg length in the cuckoo eggs data is the
same for all host birds, obtain an estimate of the pooled standard deviation as
a way of summarizing this variability. [Hint: Remember to divide the appro-
priate sums of squares by the number of degrees of freedom remaining after
estimating the six different means.]

1.23. Write a function that simulates simple linear regression data from the model

y = 2 + 3x + ε,

where the noise terms are independent normal random variables with mean 0
and variance 1.

Using the function, simulate two samples of size 10. Consider two designs:
First, assume that the x-values are independent uniform variates on the inter-
val [−1, 1]; second, assume that half of the x-values are −1s, and the remain-
der are 1s. In each case, compute slope estimates, standard error estimates
and estimates of the noise standard deviation. What are the advantages and
disadvantages of each type of design?

1.24. ∗ The following code can be used to obtain and plot, for a specific choice of
eff and N, a set of simulated p-values as in Figure 1.20 in Subsection 1.3.6:

ptFun <- function(x,N)pt(sqrt(N)∗mean(x)/sd(x), df=N−1, lower.tail=FALSE)
simStat <- function(eff=.4, N=10, nrep=200, FUN)

array(rnorm(n=N∗nrep∗length(eff), mean=eff), dim=c(length(eff),nrep,N)) |>
apply(2:1, FUN, N=N)

pval <- simStat(eff=.4, N=10, nrep=200, FUN=ptFun)
# Suggest a power transform that makes the distribution more symmetric
car::powerTransform(pval) # See Subsection 2.5.6
labx <- c(0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25)
bwplot(∼I(pval∧0.2), scales=list(x=list(at=labx∧0.2, labels=paste(labx))),

xlab=expression("P−value (scale is "∗p∧{0.2}∗")") )

a. Use the following to compare the distribution from direct use of simStat()
with that from the data frame df200 that was created in Subsection 1.3.6:

pvalDF <- subset(df200, effsize==0.4 & N==10)$stat
plot(sort(pval∧0.2), sort(pvalDF∧0.2))
abline(0,1)
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Compare with the plot of sort(pval) against sort(pvalDF). Which plot
is more useful, and why?

b. Repeat the calculations using eff2stat() with the argument ‘FUN‘ set
to calculate two-sided p-values. (In the argument FUN, replace mean(x) by
abs(mean(x))) and double the value returned by pt().)

c. Repeat with ‘FUN‘ set to simulate sample effect sizes, thus:
## Estimated effect sizes: Set `FUN=effFun` in the call to `eff2stat()`
effFun <- function(x,N)mean(x)/sd(x)

# Try: `labx <- ((-1):6)/2`; `at = log(labx)`; `v = log(labx)
## NB also, Bayes Factors: Set `FUN=BFfun` in the call to `eff2stat()`
BFfun <- function(x,N)BayesFactor::ttest.tstat(sqrt(N)∗mean(x)/sd(x), n1=N,

simple=T)
# A few very large Bayes Factors are likely to dominate the plots

d. Create an equivalent of effFun() that returns t-statistics. For one combi-
nation of eff and N, plot the 100 simulated values.

1.25. Using the data frame cars (datasets), plot dist (i.e., stopping distance) ver-
sus speed. Fit and plot the a line. Then try fitting and plotting a quadratic
curve. Does the quadratic curve give a useful improvement to the fit? [Readers
who have studied the relevant physics might develop a model for the change
in stopping distance with speed, and check the data against this model.]

1.26. The distance that a body, starting at rest, falls under gravity in t seconds
is well approximated as d = 1

2 gt2, where g ≃ 9.8 m.s−2. The equation can
be modified to take account of the effects of air resistance, which will vary
with barometric pressure and other atmospheric conditions. How useful will
a time–distance relationship for a human dummy that falls from a height of
some thousands of meters be for predicting the time–distance relationship for
another dummy, or for a human, falling at another time from a similar height?
How is the challenge similar to, and how different from, the use of the lawn
roller data of Subsection 1.5.1 for such indications as it can provide that are
relevant to another time and place? (Humans have very occasionally survived
falls from such heights. See www.greenharbor.com/fffolder/ffresearch.html.)

1.27. The dataset MPV::radon gives percentages of radon released when radon-
enriched water was used in showers with differently sized orifices. The tem-
peratures were:

(degC <- setNames(c(21,30,38,46),paste('rep',1:4)) )

rep 1 rep 2 rep 3 rep 4
21 30 38 46

a. Use the following code to manipulate the data into the form required and
plot the observations against temperature for each orifice diameter:

radonC <- tidyr::pivot_longer(MPV::radon, names_to='key',
cols=names(degC), values_to='percent')

radonC$temp <- degC[radonC$key]
lattice::xyplot(percent ∼ temp|factor(diameter), data = radonC)

(On tidyr and other tidyverse packages, see Subsection A.2.5.)
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b. What common pattern do you observe in each of the six time plots? What
does this tell you about the measurements?

c. A clearer pattern can be obtained by plotting the residuals or scaled resid-
uals. The latter are obtained by subtracting the treatment means and then
dividing by the treatment standard deviations, as in

matplot(scale(t(MPV::radon[,−1])), type="l", ylab="scaled residuals")

Execute this code and then modify it to obtain the time plots of the raw
residuals.

d. The raw residuals can be calculated by applying aggregate() to the case-
by-variable form of the data obtained in part (a):

radon.res <- aggregate(percent ∼ diameter, data = radonC, FUN = scale,
scale = FALSE)

The technique of part (a) involving the pivot_longer() function yields
the residual time plots. Modify the code above appropriately to obtain the
scaled residual time plots.

1.28. ∗ In the unusual case where the variance is known, the function AIC() defines
the AIC statistic for normal theory regression models as:

AIC =
RSS
σ2 + 2p + const, where const = n(1 + log(2π)).

Show that, if σ2 is replaced by the maximum likelihood estimate RSS
n , this

reduces to Equation (1.5).
1.29. Conduct the following simulation experiment to verify the robustness property

of the mean absolute deviation relative to the sample standard deviation and
the inter-quartile range.
a. Generate 100 independent standard normal random variates using the rnorm()

function assigning them to an object called x.
b. Estimate σ using sd(), IQR(), and mad(), using the results in Subsection

1.3.4. Observe how close each estimate is to the true value (σ = 1).
c. Now replace the first 20 observations in x with independent normal variates

having mean 0 and standard deviation 10. Reestimate σ for this contami-
nated dataset using each of the three estimators. Which estimate is closest
to the value 1?

d. Repeat the preceding experiment using different numbers of contaminated
data points and different standard deviations.

1.30. Compare the two plots:
diamonds <- ggplot2::diamonds
with(diamonds, plot(carat, price, pch=16, cex=0.25))
with(diamonds, smoothScatter(carat, price))

Why does the first plot give the impression that the price values are truncated
at the upper end, while the second plot suggests that this may not be real?
Check the help page ?adjustcolor, and repeat the first plot with the argu-
ment col=adjustcolor('blue', alpha=0.1). What does this tell you that
was not obvious from the first two plots?
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1.31. The following function can be used to obtain the data for Figure 1.24:
t2BF <- function(t, n=10, rscale="medium", mu=0){
if(!(length(mu)%in%(1:2)))stop("mu must be of length 1 or 2")
if(length(mu)==1){

BayesFactor::ttest.tstat(t=t, n1=n, rscale=rscale, simple=TRUE)} else {
null0 <- BayesFactor::ttest.tstat(t=t, n1=n, nullInterval=mu,

rscale=rscale,simple=TRUE)
alt0 <- BayesFactor::ttest.tstat(t=t, n1=n, nullInterval=mu, rscale=rscale,

complement=TRUE, simple=TRUE)
alt0/null0}
}

The following is a cut-down version of the needed calculations:
bfDF <- expand.grid(p=c(0.05,0.01,0.002),n=c(10,40,160))
bfDF[,'t'] <- apply(bfDF,1,function(x){qt(x['p']/2, df=x['n']−1, lower.tail=FALSE)})
bfDF[,'bf'] <- apply(bfDF,1,function(x)t2BF(t=x['t'], n=x['n'], mu=0,

rscale="medium"))
bfDF[,'bfw'] <- apply(bfDF,1,function(x)t2BF(t=x['t'], n=x['n'], mu=0,

rscale="wide"))
## Now specify a null interval
bfDF[,'bfInterval'] <- apply(bfDF,1,function(x)t2BF(t=x['t'], n=x['n'],

mu=c(−0.1,0.1),rscale="medium"))
bfDF[,'bfIntervalw'] <- apply(bfDF,1,function(x)t2BF(t=x['t'], n=x['n'],

mu=c(−0.1,0.1),rscale="wide"))

Comment (i) on the effect of changing from rscale="medium" to rscale="wide",
and (ii) on the effect of the change from a point null to the specific null interval
that was chosen.

1.32. ∗The function bayes_inference in the statsr package implements, in addition
to the JZS priors that are implemented in the BayesFactor package, the JUI
(Jeffreys unit information) prior that replaces the Cauchy distribution for the
mean with a normal distribution. Also, it returns Bayesian credible intervals
which (unlike frequentist confidence intervals) can be interpreted as a proba-
bility that the statistic of interest lies within the interval. Try the following
calculations:

df <- data.frame(d = with(datasets::sleep, extra[group==2] − extra[group==1]))
library(statsr)
BayesFactor::ttestBF(df$d, rscale=1/sqrt(2)) # Make default setting explicit
bayes_inference(d, type='ht', data=df, statistic='mean', method='t', null=0,

rscale=1/sqrt(2), alternative='twosided', prior_family = "JZS")
# Set `rscale=1/sqrt(2)` (`bayes_inference()` default is 1.0)
# `prior_family = "JZS"` is the default

# Compare with `prior_family = "JUI"`, with default settings
bayes_inference(d, type='ht', data=df, statistic='mean', method='t',

alternative='twosided', null=0, prior_family = "JUI")

a. Compare the 95 percent Bayesian credible interval that is obtained with the
corresponding frequentist confidence interval. What difference has it made,
to the Bayes Factor and to the Bayesian credible interval, to replace the
JZS family by the JUI family?

b. Repeat the comparisons for the comparison between horsebean and linseed
feeds in the statsr:chickwts dataset. (See the example in the help page
?statsr:chickwts.)
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