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1. Introduction. We consider the hypothesis that an operator T on a given Banach
space can always be perturbed by a compact operator K in such a way that, whenever a
complex number A is in the semi-Fredholm region of T + K, then T + K — A is either
bounded below or surjective. The hypothesis has its origin in the work of West [11], who
proved it for Riesz operators on Hilbert space. In this paper, we reduce the general
Banach space problem to one of considering only operators of a special type, operators
which are, in a spectral sense, natural generalizations of the Riesz operators studied by West.

We shall adopt the following notation and terminology, where X denotes a Banach
space.

B(X) will denote the algebra of bounded linear operators on X, and, for T e B(X)
ker(T) denotes the null space of T;
nul(T), the nullity of T, is the dimension of ker(T);
def(r), the defect of T, is the dimension of X/T(X);
ind(T), the index of T, is nul(T)—def(T), provided not both those quantities are
infinite;
minind(T), the minimum index of T, is the smaller of nul(T) and def(T).
If Y is a linear subspace of X, then T\Y-Y-+X is the restriction of T to Y, and

TY: Y-* Y will denote a compression of T to Y. If Y is invariant for T, then TY is bounded
and is independent of the projection used for the compression. Otherwise, TY need not,
of course, be bounded. Where it is significant, the exact compression intended will be
obvious from the text.

We shall be concerned with the following subsets of B(X):
$ + ( J ) = {Te B(X): T(X) closed and nul(T) < °°} is the set of upper semi-Fredholm
operators on X;
®-(X) = {Te B(X): T(X) closed and def(r) <<»} is the set of lower semi-Fredholm
operators on X.

For T e B(X),
o{T) = {A e C: A - T is not invertible in B(X)} is the spectrum of T;
os_F(T) = {A e C: A - T $ ®+(X) U ®-(X)} is the semi-Fredholm spectrum of T;
ps-F(T) = C\os-F(T) is the semi-Fredholm region of T;
ow(T) = o(T)\{k € ps-F(T): ind(A - T) = 0} is the Weyl spectrum of T;
os(T) = os-F(T) U {A e PS-F(T): min ind(A - T) #0} will be called the subspectrum
of T;
a°p(T) = {A e o(T)\ow(T): (i i o(T) for |/x - A| sufficiently small and non-zero} is the
set of Riesz points of the spectrum of T.
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An operator T e B(X) for which

will be called a West operator. An operator T e B(X) for which there exists a compact
operator K e B(X) such that

a(T + K) = o(T)\a°p(T)

will be said to have a West decomposition. If T e B(X) and there exists a compact
operator K e B(X) such that

then K will be called a compact correction for T.
West [11] showed that every Riesz operator on a Hilbert space has a compact

correction. His result was extended by Stampfli [10]. The conjecture we are considering is
that every operator on a given Banach space X has a compact correction. This was shown
to be true for Hilbert spaces by Apostol [2], and for a certain special class of Banach
spaces, including c0 and lp (1 =£/?<<»), by Davidson and Herrero [3]. The general
problem remains unsolved. Our principal task here is to show that the above conjecture is
equivalent to the conjecture that every West operator on X has a West decomposition.

2. Reducing the problem to countable proportions and discovering the compliant
nature of the remaining points. In this section, we shall show that the nub of the
compact correction problem is the removal from an operator's subspectrum of a
countable set of isolated points, each of which is a point of finite ascent or descent for the
operator. We begin with two lemmas.

LEMMA 2.1. Let X be a Banach space and let T be a semi-Fredholm operator on X
with ind(T) ^ 0 (resp. ind(T) > 0). Then there exists a finite rank operator F e B(X) such
that T + KF is bounded below (resp. surjective) for all A e C\{0}.

Proof. We shall assume, without loss of generality, that ind(r) <0. Let P e B(X) be
a projection onto ker(7), and let Q e B(X) be a projection of the same finite rank as P
which satisfies QT = 0.

Choose A, BeB(X) such that AQB = P, and set F = QB. Then Fis finite rank, so
we certainly have

XFe <D+(Z) (A e C\{0}),

and it suffices to show that the T + XF are injective. But

(T + kF)x = 0z> 7x = -XFx

^>Tx = 0 = Fx (since QT = 0 and QF = F)

The second lemma is a splitting of the well known Riesz-Schauder theorem for poles

https://doi.org/10.1017/S0017089500007771 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007771


THE COMPACT CORRECTION PROBLEM 221

of finite multiplicity of the resolvent set. This splitting was originally due to Laffey and
West [6], who used holomorphic left inverses of Allan [1] to achieve the result for
Fredholm operators. That their results belong properly to ring theory and Banach algebra
theory was shown in [8]. In the lemma below, we do the splitting for all semi-Fredholm
operators on Banach space. The proof is adapted from one given by West [unpublished]
for Atkinson operators.

LEMMA 2.2. Let X be a Banach space and let T be an upper (resp. lower)
semi-Fredholm operator on X. Suppose there exists a positive real number e such that
T - X is bounded below (resp. surjective) for all A e C with 0 < |A| < e. Then T has finite
ascent (resp. descent).

Proof. We suppose that Te®+(X). The result for Te<t>_(X) will follows by
duality.

Let

W = 0 Tn(X).
n = l

Then W is a closed invariant subspace for T, and it is easy to show that Tw is surjective
(see, for example, Kato [5, p. 241]). Hence (T — A)w is surjective for sufficiently small A.

Now it is clear that (T — k)w is bounded below whenever T — A is; so it follows
immediately that Tw is invertible in B(W), for, otherwise, Tw would be in the boundary
of the invertible elements of B(W), and, being therefore a two-sided topological divisor
of zero, could not be surjective. In particular,

W n ker(T) = {0}.

Since nul(T) < °°, we have, for sufficiently large neN.

ker(T) D Tn(X) = ker(7) D W = {0},
and hence

ker(rn+1) = ker(Tn).

We now utilize Lemma 2.1 in a method of proof not unlike that used by Stampfli [10]
when he removed connected index-zero components from the spectrum of an operator on
Hilbert space.

THEOREM 2.3. Let X be a Banach space and let e be a positive real number. Let
T e B(X). Then there exists an operator K e B(X) in the closure of the finite rank
operators, and of norm not exceeding e, such that the set os(T + K)\os..F(T) has
accumulation points only in os-F(T), and is therefore countable. Moreover, for each
[i e os(T + K)\as_F(T), the operator T + K- fi has either finite ascent or finite descent,
depending on whether its index is non-positive or non-negative.

Proof. Let A = {An: n e N} be a dense subset of ps-F(T).
We choose a sequence (en)"=0 of positive real numbers and a sequence (Fn)"=1 of

finite rank operators inductively as follows. Let e0 = \e- For each successive neN, we
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choose £„ and Fn according to the following rule: use Lemma 2.1 to choose Fn to have norm
n

less than \en-\ and be such that T — An + E F,I is bounded below or surjective; and use the
1=1

openness of the set of operators which are either bounded below or surjective to choose

£n<^£n_t such that, for each UeB(X) with | | t / | |<£n, the operator T-kn + U+ E Ft
i=i

is bounded below or surjective.
oo

Now E Fn converges to an operator K e B(X) with \\K\\ < e. Furthermore, for each
n = l

n e N, we have

1 00 II

y F <e
l=n + l II

so that T + K — An is bounded below or surjective.
The semi-Fredholm punctured neighbourhood theorem states that, for each ae

ps_F(T), we can find a complex neighbourhood Ga of a such that nul(T + K — /x) and
def(7" + K — ju) are constants for iieGa\{a}, and do not exceed nu\(T + K — a) and
def(r + K - a) respectively. Each Ga has non-empty intersection with A, so that one
of those constant is zero. It follows that the set os(T + K)\os_F(T) has no accumulation
point in ps-F(T) and is therefore countable. The rest of the result is a consequence of
Lemma 2.2.

3. The efficacy of this approach. Before proceeding to our main result, we shall
step aside to demonstrate the efficacy of our approach by using Theorem 2.3 to give a
direct proof of Apostol's Theorem [2] on Hilbert space. Our proof is somewhat easier
than that of Apostol. One interest here is to see where the proof fails in the general
Banach space context, and, towards that end, we shall couch much of the proof in the
language of Banach spaces.

We begin with two easy lemmas:

LEMMA 3.1. Let X be a Banach space and let T e ®+(X) have non-positive index. Let
Y be a closed linear subspace of X which is invariant for T. Then Ty e <I>+(Y).

Proof. By Lemma 2.1 we can find a finite rank operator F e B(X) such that T + F is
bounded below. Then (T+ F)\Y:Y-+X is bounded below, so that T\Y:Y->X is upper
semi-Fredholm, and hence TYe<&+(Y).

LEMMA 3.2. Let X be a Banach space and let T € B(X). Let Y be a closed linear
subspace of X which is invariant for T. Suppose T has finite ascent, that ker(77") c Y
(n e N) and TY is Fredholm of index zero. Let Z be any algebraic complement for Y in X.
Then Tz is an injective linear transformation on Z.

Proof. We may assume, without loss of generality, that the ascent of T is one.
Suppose there exists z e Z\{0} such that Tzz = 0. Then Tz $ T(Y), since ker(T) c Y.

So the codimension in Y of T(Y) © CTz is less than the finite quantity def(Ty), which in
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turn is equal to nul(ry). Since ker(Ty) = ker(T), it follows that T(X) n ker(T) # {0},
contradicting the assumption that T has ascent one.

THEOREM 3.3. Let H be a Hilbert space and let V e B(H). Let e be a positive real
number. Then V has a compact correction K e B(H) with

\\K\\ < e + sup{dist(A, a,_F(V)): A e os(V)}.

ion K' to

\\K'\\<ie

Proof. Firstly, we make a correction K' to V as described in Theorem 2.3, being
careful to ensure that K' satisfies both

and
sup{dist(A, o(V)): A e CT(V + K')} < \e.

Put T = V + K'.
We shall assume, without loss of generality, that the set

A = {A e os(T)\os_F(T): ind(A - T) < 0}

is infinite, and that the sequence (kn)n€N is an enumeration of its elements.
Let kn be the ascent of T — An (n e f̂ J) and let Pn be the orthogonal projection onto

Yn, where

Yn = 0 ker(T - A,)* (n e N).
i

Set Y = U Yn. Now choose (an)neN on the boundary of os_F(T) such that
neN

\kn -an\ = dist(An, a,_F(T)) (n e N).
oo

Then it is clear that, taking Po = 0> E (ocn - An)(PM - Pn-i) converges to a compact

operator K" e B(H) with \\K"\\ = sup \an - Xn\. Now Yn (n € M) and Y are closed invariant
JIEN

subspaces for both T and K", and it is easy to check that o(TYJ = {A1; . . . , An} and
o((T + K")Yn) = {au . . ., an). In particular,

(71 - n)Y has dense range for /i e C\A (*)

and

(T + K" - n)Y has dense range for fi e C\(an)neN (**).
Let Z be any algebraic complement of Y in H. We note that K"z = 0 and we make the

following three checks.
(i) If T - n is surjective, then so is T + K" - fi.
Proof. If T — n is onto H, then ft $ (an)neN, so (T + K" — n)Y has dense range, by

(**), and (T - n)z is onto Z. So T + K"~n has dense range, and, being lower
semi-Fredholm, is onto H.
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(ii) If T — /* is bounded below, then so is T + K" — fi.

Proof. Suppose T — fi is bounded below. Then p $ A[J (an)neN, so (T — /x)y has
dense range, by (*); it is clearly bounded below, so is invertible in B(Y). Therefore
(T + K" - n)Y is Fredholm of index zero; also, it has dense range, by (**), so it is
invertible in B(Y). Furthermore, since (T — fi)Y is invertible and T — n is injective, we
have (T - n)z injective. So T + K" - fi is injective, and, being upper semi-Fredholm, is
bounded below.

(iii) If A e A then T + K" - A is bounded below.

Proof. If A e A, then A $ (arn)neN, so (T + K" - k)Y has dense range, by (**), and is
upper semi-Fredholm by Lemma 3.1, so is onto Y. Now, for /ieC\{A} and \fi — A|
sufficiently small, we have both (T - pi)Y and {T + K" - n)Y invertible in B(Y) from (ii)
above; so (T + K" — X)Y is invertible in B(Y) and (T - k)Y is Fredholm of index zero. So
T — k satisfies the hypotheses of Lemma 3.2. Therefore (T - k)z is injective, and so is
T + K" — A. Being upper semi-Fredholm, T + K" — A is therefore bounded below.

We can now perturb (7* + K")* in a similar fashion with a compact operator
L e B(H). We put K = K' + K" + L*, and it is clear that K is a compact correction for V.

As a finishing touch, it is easy to see that the spaces on which K" and L* act are
orthogonal, so that ||JT|| satisfies the required inequality.

The norm estimate achieved in Theorem 3.3 is not the best possible by any means.
Herrero [4] has made an analysis of that problem and has achieved sharp estimates.
Apostol's estimate was better than that given above, but is achievable by incorporating
the work of the next section.

Before leaving this section, we note that the statements (*) and (**) in Theorem 3.3
are true for any choice of projections Pn onto the spaces Yn. Provided Pn and an can be
chosen in such a way as to ensure the convergence of

fl(an-kH)(PH-Pn.1)
n = l

then the erasure of A from os(T) can be effected. Pursuing this line of reasoning would
give us an analogue of the theorems proved by Laurie and Radjavi [7] for Riesz
operators.

4. Reduction to West operators. In this section, we show that a trick used by
Apostol [2, Lemma 4.2] for operators on Hilbert space is applicable in the general
context. We use it to complete our reduction.

LEMMA 4.1. Let Y and Z be Banach spaces, let CeB{Z, Y) be of finite rank; suppose
AeB(Y) satisfies C(Z)^A(Y) and suppose BeB(Z) has closed range and satisfies
ker(fl) c ker(C). Then there exist solutions Tt e B(Z, Y) and T2 e B(Z, Y) of the equation
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with

T1(Z) = C(Z) and ker(r2) = ker(C).

Proof. Let {ex,... , en} be a basis of C(Z) and let (f>1,. . ., <pn e Z* be such that

C= j>,®0,.
1=1

The condition on B implies that the following set of equations defines bounded
functionals V,e£(Z)*:

rpi(Bz) = <pi(z) (z e Z, i = 1 , . . . , n).

We extend the V; to Z by the Hahn-Banach theorem and set

Then TtB = C and TX{Z) = C(Z).
Also, since C(Z) s ^ ( i ' ) . we can choose fu .. . ,fneY such that

We set

Then
AT2 = C and ker(T2) = ker(C).

LEMMA 4.2. Let X be a Banach space and let X=Y(B Z be a decomposition of X into
[A C~\

closed subspaces. Suppose T e B(X) has representation T = \ on Y ®Z = X,

where C e B{Z, Y) is of finite rank, and either
(i) B e B{Z) is bounded below and A e B(Y) is nilpotent,

or
(ii) A e B(Y) is surjective and B e B(Z) is nilpotent.
Then there exists a bounded projection of X onto Y which commutes with T.

Proof. We prove the Lemma in case (i). The other case can be handled similarly.
We suppose, then, that B is bounded below and that neN satisfies A" = 0. We use

Lemma 4.1 to solve successively the n pairs of equations:

F1B = C and

FiB=AFi.1 and F,(Z) =/4'~1C(Z)

We put F = -(Fi + ...+ Fn) and note that AFn = 0. Then AF-FB = C, so that the
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projection

r/ n
Lo oJ

commutes with T.
Now we are ready to apply Apostol's argument to this context.

LEMMA 4.3. Let X be a Banach space; let T be an upper (resp. lower) semi-Fredholm
operator on X with ind(r)=£0. Let e be a positive real number. Suppose that T — A is
bounded below (resp. surjective) for each non-zero A in some complex neighbourhood of
zero. Then there exists a finite rank operator F e B(X) with \\F\\ < e which satisfies both

(i) T + F bounded below (resp. surjective)
and

(ii) min ind(r - A) = 0=> min ind(T + F - A) = 0 (A e C).

Proof. We suppose that T — A is bounded below for each non-zero A in some
complex neighbourhood of zero. The other case can be treated similarly. By Lemma 2.2,

[ A C~\
_, on Y © Z' = X where Y = ker Tk, and Z'

0 B J
is a closed complement for Y in X. We assume Y =£ {0}, since that case is trivial.

Since is finite rank it follows that is semi-Fredholm, so that
LO OJ LO Bi

B 6 S(Z') has closed range.

[o nfi^~\
2k for some D e B(Z', Y), so that, for z € Z',

0 B J

Bk
z = o=> r^z = o=> r*z = o=>z = o.

It follows that B is injective and therefore bounded below. Consequently, we can apply
Lemma 4.2 to represent

where Z is an appropriate closed complement of Y in X. Tx is nilpotent and T2 is bounded
below. Furthermore, T2 is not onto Z since that would clearly force ind(T) = 0.

Now, it is easy to see, by writing Tx in Jordan form, that we can choose a finite rank
operator Fn e B(Y) of arbitrarily small norm such that Tx + Fn is nilpotent and

We choose our Fu accordingly such that ||i^|| < \e where

Fl = [FQ o] o n Y ® z = x-
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Then, we let e e Z\T2(Z) and we choose <f> e Y* such that

0(ker(r! + Fn)) =* {0} and ||F2||<2£
where

2~le<8><f> 0
We now put F = Fi + F2 and it is elementary to check that F satisfies the requirements

of the lemma.

THEOREM 4.4. Let X be a Banach space and let T e B(X). Let e be a positive real
number. Then there exists an operator K e B{X) in the closure of the finite rank operators,
and with norm less than s, such that T + K is a West operator.

Proof. Firstly we apply Theorem 2.3 to T, constructing an operator Kx e B(X) with
ll^ill < 2*£ s u c r i that os(T + K{)\as^F(T) accumulates only on the boundary of os_F(T).

Let T* = T + KU and let

A = {A € os(T*)\os-F(T): ind(T* - A) # 0}.

Suppose, without loss of generality, that A is an infinite set and let {An:neN} be an
enumeration of the elements of A.

We construct a sequence (£n)"=0 of positive real numbers, and a sequence (Fn)™=0 of
finite rank operators inductively as follows. Let eo<min(l,2e) and let i^ = 0. For each
successive n e N, we choose en and Fn according to the following rules: we use Lemma 4.3
to find Fn with norm less than 2en_x which satisfies both

n

(i) T* — An + E Fj is bounded below or surjective and, for A e C,
1=0

(ii) minindl T* — A + E Fjj = 0^>minindl 7"* — A + E '
\ i=O / \ 1=0

Now we use the openness of the sets of surjective and bounded below operators to
choose £„<!£„_] such that

AeSn and \\B\\ <£n=>minind(r* - X + B + J) F) = 0,
^ 1=0 '

where

Sn =

This is possible since Sn is a compact subset of C\a s ( r*+ E FA and the function dn

defined on C by I=o

dn(k) = dist(r* - A + £ Fh B(X)\{S e <t>+(X) U ®-(X): min ind(S) = 0})
\ i=o /

is continuous.
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Now £ Fn converges to an operator K2eB(X) with H ^ l l ^ 6 - Furthermore, we
0

1 00 II

2 FA<en for each n eN
II

have n=0

and

so that

We put K = Kx + K2. Then \\K\\ < e and T + K is a West operator.

We note that, even if we are interested in achieving a compact correction of minimal
norm for an operator, then the upper semi-continuity of the spectrum ensures that we
may take Theorem 4.4 as our starting point.

The following three results are easy consequences of the foregoing, and we state
them without proof.

COROLLARY 4.5. Let X be a Banach space and suppose that every West operator on X
has a West decomposition. Then every operator on X has a compact correction.

COROLLARY 4.6. Let X be a Banach space and let T e B(X). Suppose that ow(T) =
o(T). Then T has a compact correction of arbitrarily small norm.

COROLLARY 4.7. Let X be a Banach space and let U be the unilateral shift on I2. Let a
be any complex number with modulus greater than the essential spectral radius of T. Then

T 0 aU e B(X 012)

has a compact correction.
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