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Abstract 

For realistic stellar atmospheres the equations describing mesoturbulent 

line formation are solved numerically. The general dependence of theo­

retical line profiles and equivalent widths on the correlation length 1 

and the mean square turbulent velocity a is demonstrated. Also empiri­

cal relations between the basic parameters of the micro-macroturbulence 

description (v . , v ) and the fundamental mesoturbulence parameters mic mac 
(l,a) are derived. 

Introduction 

It has been shown (see Traving's contribution) that turbulence in 

stellar atmospheres is necessarily of finite scale length. So meso­

turbulence is a very common phenomenon which should be taken into 

account in line formation studies. 

In this contribution we shall apply the mesoturbulence formalism 

(e.g. Auvergne et al. (1973), Gail et al. (1974), Gail and Sedlmayr 

(1974), Frisch (1975)) to line formation in realistic atmospheres. 

Our aimes are 

(i) to demonstrate the basic effects of the correlation length 1 

and the mean square turbulent velocity a on the line profiles 

and equivalent widths, and 

(ii) to derive empirical relations between the classical parameters 

(microturbulent velocity v_. and macroturbulent velocity v ) 
1 mic •* mac 

and the fundamental parameters of the mesoturbulence description 

1 and a. 
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1. The Numerical Method 

Two particular stochastic models have been adopted for discussing 

mesoturbulent line formation in stellar atmospheres: 

a) The Uhlenbeck-Ornstein Process (UOP) 

The UOP is a stationary Markovian process continuous in space with 

both Gaussian one-point and two-point velocity distribution functions. 

The resulting transfer equation for the monochromatic local condition­

al intensity q(s,v) is therefore a parabolic partial differential 

equation of Fokker-Planck type (Gail et al. (1974), Gail and 

Sedlmayr (1974) : 

If =T ( " V ^ + a 2 1 f 2 ) " <"o* + Kc> ( q - S , < (1) 

o V 

with s being the distance along the ray, v the actual velocity, K $ 

and K the line and continuum absorption coefficients. $(s ,v,a,AX) is 
the profile function and S the monochromatic local source function. 
K ,K and S are assumed to be independent of the velocity v. o c c J 

The expectation value for the monochromatic local intensity <I(s)> 

is obtained by multiplication of q by the one-point velocity distri­

bution P *(v) and integration with respect to the velocity variable: 

<I(s)> = /^dvf1(v)q(s,v), (2) 

Given a model atmosphere which provides K , K and S, and given 

appropriate initial and boundary conditions the above transfer 

equation can be solved numerically straight-forward by the Crank-

Nicholson method (e.g. Richtmyer and Morton,(1967)). 

Without going into any technical details I shall point to the only 

problem which may arise and which results from an inconsistent in­

corporation of the boundary conditions: The natural boundary condi­

tions for our problem are given by the asymptotic limits v •* ±°° , 

where the line absorption vanishes and the radiative transfer is con­

trolled by continuous absorption only. It turns out that in the case 

of strong lines or large turbulent velocities one has to take into 

account rather large |v | to approach these limits with sufficient 

accuracy and to avoid slight instabilities near the boundaries. 
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b) The Kubo-Anderson Process (KAP) 

The KAP is a stationary Markovian process discontinuous in space with 

a Gaussian one-point velocity distribution function (like UOP) but a 

non-Gaussian two-point velocity distribution function which bridges 

the gap between the two limiting cases of complete correlation and 

complete noncorrelation by a linear ansatz (Auvergne et al. (1973), 

Frisch and Frisch (1975); see also Traving's contribution). 

Using the KAP one arrives at an integro-differential equation for the 

monochromatic local conditional intensity q(s,v): 

(3) 
9 q ( 3 s

V ) = j |/*™ dv'P1 (v')q(s,vM- q(s,v)j - ( K ^ + Kc> (q(s,v)-S). 

From this equation the expectation value of the emergent intensity can 

be calculated 

(i) by means of the semianalytical methods used by Auvergne et al. 

(1973), and Frisch (1975) or 

(ii) by a direct numerical solution of (3) and a subsequent integration 

according to (2). A proper discretisation in the velocity coordi­

nate reduces this equation to a system of coupled linear ordinary 

differential equations which can be solved by standard methods 

(Gail et al. (1976). 

However, both procedures have inherent specific difficulties either 

connected with instabilities in the region of very small 1 (microtur-

bulent limit) or problems of large matrix size respectively. 

Thus for numerical reasons we consider the straigthforward solution 

of the Fokker-Planck equation described in a) to be more efficient. 

2. Effect of a Correlated Velocity Field on Line Profiles and 

Equivalent Widths 

Adopting the UOP line profiles, equivalent widths and curves of 

growth have been calculated for selected lines of particular elements 

formed in the solar photosphere. In order to account for the effects of 

model atmospheres different from the sun we have extended these com­

putations to atmospheres of earlier and later spectral type (AOV (Wega) 

and K2III (Arcturus)J also. 
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All calculated profiles show a similar monotonic dependence on 1 and a 

respectively. Thus for demonstration of principle effects we may re­

strict ourselves to the discussion of an arbitrary line in the solar 

photosphere. 

For a given mean square turbulent velocity a and a non-negative corre­

lation function microturbulence always yields the maximum absorption 

for a spectral line. Hence line profiles which originate in a velocity 

field determined by a small scale length are always deeper than the 

corresponding profiles formed in a velocity field with equal turbulent 

velocity but larger correlation length. 

This is clearly seen in Fig. 1a, where for the line Fel X62oo theore­

tical profiles are plotted for a = 2 km/s and different values for the 
4 

correlation length 1. 1 = 1 km and 1 = 1o km refer to the microturbu­
lent and macroturbulent limit respectively. 

If the correlation of the velocity field is increased for fixed a both 

the line depth and the width of the corresponding profiles decrease 

monotonically until for very large 1 (> 3ooo km) saturation is achiev­

ed (macroturbulent limit). 

This general behaviour is also demonstrated in Fig. 2 which for differ­

ent values of a - but for the same line - shows the effect of the 

correlation length 1 on the central depth r and the equivalent width 
o 

W. of the emergent profile. 

For a < 1 km/s thermal broadening exerts the essential influence on 

the absorption coefficient. Hence for small mean square turbulent 

velocities both the central depths and equivalent widths depend only 

slightly on 1. With increasing a the thermal contribution becomes more 

and more negligible and the influence of the correlation of the turbu­

lence field on r and W. is considerably increased. 

For large a both r and W become monotonically strongly decreasing 

functions with increasing 1 approaching their minimum value in the 

macroturbulent limit. In this case the equivalent widths become inde­

pendent on a; a fact which causes all W, - curves in Fig. 2 to converge 

asymptotically. 

The theory of mesoturbulent line formation provides a simple criterion 

which allows a quantitative estimate of a profile's deviation from the 

corresponding microturbulent result (see Traving's contribution). Accord­

ing to this criterion microturbulence should be a good approximation if 
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Fig. 1: All calculations have been performed on the basis of the em­
pirical solar model atmosphere of Holweger (1967) assuming a mean 
square turbulent velocity 0=2 km/s and a normal iron abundance. 

AX[mA] a) Theoretical profiles of the 
line Fel X62oo for different 
values of the correlation length 
1. 1 < 1 km and 1 > 3ooo km 
correspond to the micro- and 
macroturbulent limit respective­
ly. 

b) Mean square root of the line 
absorption coefficient 
K. = K (s) <)> (S/V,a,AX) versus 
X at dSfferent optical depths 
(Rosseland depth scale). 

c) Deviation of a profile (cal­
culated with a finite correla­
tion length) from the microtur-
bulent profile normated to the 
microturbulent value. 

d) Deviation of a profile (cal­
culated with a finite correla­
tion length) from the microtur­
bulent profile normated to the 
difference between the micro-
and macroturbulent profile. 
This quantity indicates quanti­
tatively which part of a profile 
is mainly determined by micro-
turbulent or macroturbulent 
conditions respectively. 
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Fig. 2: Dependence of the central depth r and the equivalent width W. 
of the line Fel A62oo on the correlation length 1 for different values 
of the mean square turbulent velocity a. 

the condition 

2 2 
1 <KZ> - <K>A „_. 
2 T r T s — 2 — < < 1 

< K > 

( 4 ) 

holds. K~ . . ' indicates the average values calculated by means of the 

one-point velocity distribution function, and x. = 1<K> and T = S<K> 

are characteristic optical depths corresponding to the correlation 

length and the relevant geometrical depth of line formation respective­

ly. Thus by definition x is usually of the order of unity. With x = 1 

and T, = 1<K> the proper wavelength dependence of (4) is essentially 
2 2 given by the quantity (<tc > - <K> )/<K>, which is plotted in Fig. 1b 

for relevant optical depths x. 

From Fig. 1b we expect the largest deviations for a line profile cal­

culated with fixed values l,a from the corresponding microturbulent 

result to occur at the transition from the core to the wing of the line 
2 2 

where the curves (<K > - <K> )/<K> show a pronounced maximum. 

However, condition (4) is primarily a mathematical condition which for 

each wavelength measures the magnitude of the difference between a 

profile calculated with finite correlation length and the same profile 
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calculated under the assumption of microturbulence. Obviously Fig. 1b 

shows that for the line centre and the outer wings the deviations from 

the microturbulent profile are considerably smaller than for the 

transition region even for large 1. This is confirmed by the results 

in Fig. 1c where for different values of 1 the normated deviations 

from the microturbulent profile are plotted versus X. However, this 

does not indicate that for large 1 these parts of the line do form 

under microturbulent conditions, but only that for these parts of the 

profile the microturbulent result is a reliable approximation for the 

true profile. 

In order to decide whether micro- or macroturbulent conditions pre­

vail we have plotted in Fig. 1d the quantity 

dl,a = (rmic,a _ r l , a } f (rmic,a _ r « a C , 0 ) (5) 

for a = 2 km/s and several values of 1. Essentially two regions can be 

distinguished: 

1) o < d,' < T : Microturbulence governs the radiative transfer. For 

1 - 1oo...5oo km this case applies only to the line cores and the 

outer wings. We infer that for smaller 1 the entire line is formed 

under microturbulent conditions. 

2) — < d ' J 1: Macroturbulence governs the radiative transfer. This 

effect is most pronounced at those parts of the profile where the 

curves of Fig. 1b have their maximum. For correlation lengths 

1 > 1ooo km the entire line is formed under macroturbulent condi­

tions. 

Throughout this discussion the UOP has been adopted. Using the KAP 

would yield quantitatively very similar results. However, due to the 

underlying cell structure of this model, KAP results always show a 

higher degree of correlation than the corresponding UOP results ob­

tained for the same line with an identical correlation length and mean 

square turbulent velocity, (Frisch (1975), Gail et al. (1976)). 

3. Empirical Relations between ^ m i C ' v
m a c ' ant* d » a ) 

In this section we want to present preliminary results obtained by a 

cooperation with H. Holweger (Kiel). 

There are essentially two reasons which provide the motivation for the 
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study of the relations between the classical micro-macroturbulence 

parameters (v . , v ) and the fundamental parameters of the mesotur-r mic mac 
bulence description (l,a). 

1) In classical theory v . and v have been introduced as free para-
mic mac 

meters to fit observed and calculated profiles and curves of growth. If 

it is possible to relate these quantities in a simple way to 1 and a 

the corresponding parameters of the turbulent velocity field, we 

arrive at a physically more justified interpretation of v . and v 
c J J J L mic mac 

2) In the past analyses of stellar atmospheres on the basis of classi­

cal micro- macroturbulence theory have been performed providing em­

pirical values for v . and v . By means of relations between 
r mic mac 

these quantities and 1 and a one is in the position to determine the 

mean turbulent velocity and the correlation length of the turbulence 

field for such atmospheres without reanalizing them by means of the 

more complex mesoturbulence formalism. 

In order to find out the relations between these two sets of parameters 

the following procedure has been used: 

For a given model atmosphere and artificial data for Fel- and Fell-

lines curve of growth have been computed for a 1- a- grid. On the other 

hand the conventional microturbulence approach has been used to cal­

culate an independent set of curves of growth for the same transitions. 

By varying the parameter v . an optimum fit between these two sets of 

data has been found using as criterion the minimum value of 

* = ^ f K 1 C " w J ' V w J ' 0 ] 2 • (6) 
l i n e s 

Having thus determined a relation between v_. and l.a we use 
. mic 

the calculated profiles r,^ ' and r.,' to derive an optimum macro-

turbulent velocity v_ by minimizing 
•* mac J 3 

. „ _ , mic,mac l,a.2 ,_. 
lines SX. AX. AX.' 

In this way for each pair (l.a) a corresponding pair (v . , v ) has 
r mic mac 

been determined empirically. 

A typical result for the sun is shown in Fig. 3 where for three differ­

ent artificial iron lines the optimum values for v . and v are 
r mic mac 

plotted versus 1 for a given mean square turbulent velocity a. We see 

the expected strong correlation between the "decrease" of microturbu­

lence and the corresponding "increase" of macroturbulence with growing 
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correlation of the turbulence field. 
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F l 9 - J; Empirical dependence of the classical micro- and macroturbulent 
velocity on the correlation length 1, derived on the basis of three 
artificial iron lines with wavelength X = 5ooo A and an excitation 
energy of the lower level x (A mean square turbulent velocity 
•2o - 2.o6 km/s has been chosen, because this value - according to 
relation (8) - corresponds exactly to the empirical values 

mic,0 
of Holweger (1967)) 

1 km/s and v m a c = 1.8 km/s. (Empirical model photosphere 

The curves of Fig. 3 resemble to some extent the filter functions intro­

duced by de Jager (1972, 1979), de Jager and Vermue (1977) and Vermue 

and de Jager (1979) in order to describe the fraction of energy con­

tained in the microturbulent and macroturbulent mode respectively. 

However, there are significant conceptual differences: 

(i) In the description of de Jager and Vermue the adopted definition 

of microturbulence is based solely on the investigation of weak 

lines, whereas in our approach the microturbulence velocity is 

derived by a classical curve of growth analysis with no restric­

tion concerning the line strength. 

(ii) The filter function method is based on the consideration of one 

single mode u(k) of the Fourier spectrum of the turbulent field, 

whereas our statistical approach by means of probability distri­

butions and correlation functions describes the mean values of the 
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turbulent field to which all modes contribute. 

The fact, that in the filter function presentation the transition 

from the micro- to the macroturbulent regime is much steeper than 

in our approach may be due to this difference. 

In order to demonstrate the empirical relations between (v . , v ) 
mic mac 

and (l,a) more clearly for an arbitrary line of the solar photosphere 
2 2 1/2 the quantity (v . + v „ ) is plotted in Fig. 4a versus 1 for a ^ mic mac r 

given a. This plot provides strong evidence for a relation of the form 

2 2 2 
2v = v„, + vf=„ mic mac 

(8) 

which seems to hold with considerable accuracy at least within the 

region of relevant 1 values. 

This relation, which has been confirmed by computing a large number of 

lines, also holds for different stellar atmospheres (AOV, K2III). In no 

case deviations from the relation (8) of more than few percents have 

been found. 

lkm/s] 
2.2 

2.1 -

2.0-

1.9 

1 r 
Fel Xt =4eV 
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X=5000£ 
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. 
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b 

tsl 
u O 
E 

> 

1000 

[km] 

100 

10 100 1000 

correlation length I [km] 

2 2 Fig. 4: The quantities (v . + v ) — a ^ mic mac 
v_ 

and 1(: 
v 

:) versus X for the 

same line as Fig. 3. H is the pressure scale height at the depth of 
line formation. 
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To relate the correlation length 1 to the velocity parameters an 

additional typical scale length H characterizing the atmosphere has to 

be introduced. This scale length turns out to be the pressure scale 

height taken at an optical depth which corresponds to the region of 

line formation. From Fig. 4b, where the quantity 1( ) is plotted 

versus 1, we conclude that for 1 values which can be aetermined reliab­

ly a satisfactory fit is obtained by the relation 

H = ,Vmic,2 (9) 
1 lv ' ' mac 

Relation (9), like (8), has been confirmed for the considered atmo­

spheres by calculating a large number of lines. In no case a deviation 

of more than 1o percent has been found. 

Such empirical relations should reflect similar relations connecting 

the basic physics of these approaches. In order to give an at least 

heuristic explanation for these basic relations we require that the 

corresponding one-point and two-point velocity distribution functions 

describing classical micro-macroturbulence and mesoturbulence respect­

ively are identical: 

mic,mac l,a 
J?.,(v) = ]P1 (v) (1o) 

and 

mic,mac l,a 
P2(v1,v2) =P2(v1,v2,p) . (1.1: 

With 
mic,mac 

P 1 ( v > = [ ^ v mic + W > ] ' e * P [ - 2 \ 2 ] <12) 

u v . + v J 

and 
mic mac 

p/fv) = [TT2CJ]~1 / 2 exp [ - ^ - j ] (13) 

one immediately ob ta ins r e l a t i o n 

(8) 2a2 = v 2 . + v2 

mic mac 
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From 
mic,mac 
uiiU/iuai; r 9 9 0 ? 1-1/9 

]P,(v..,v,) = U V f . (v„. + 2v„a„) " , (14) 
2 1 2 •- mic mic macJ 

2 2 2 2 2 
f (vmic + vmac)(v1 + v 2 ) " 2vmacv1v2 1 
L" „2 ,2 + . 2 , J 

exp 
v . (v . + 2v ) mic mic mac 

and 

» V i r o 2 M 2J /27" 1 r v1 + v2 - 2 p v 1 v 2 l 
J P 2 < v 1 ' v 2 ' p ) = L ( P ' J eXpL 2 2 J 

with 

p(s) = exp( - f) . ( 1 6 ) 

One sees that eq. (11) can hold only for one particular value of the 

correlation function p(s). 

Using eq. (8) one obtains for this particular value 

2 
v 

p(s) = 

vmac (17) 
2 ^ 2 

v . + v_ mic mac 

which for s << 1 immediately yields the approximate relation 

s_ „ ,Vmic, 2 (18) 
1 V ' mac 

So at least the analytical form of the empirical result (9) is recover­

ed. As s is a typical geometrical dimension of the line forming region, 

it should be closely connected with the scale height H introduced in (9) 

In order to justify the assumption s << 1 we plot in Fig. 3 two hori­

zontal lines indicating the empirically determined values for v . -
= f •* mic,0 

and v respectively (Holweger (1967)). This plot is shown in Fig. 3c 
mac, © 

The abscissas of the intersection points of each line with the corres­

ponding v . - or v - curves determine the region of best fitting 1 
^ ^ mic mac ^ 3 

values. We see that the optimum 1 values are confined to a rather 

narrow interval of 53o km < 1 <, 64o km. These 1 values are considerably 

larger than the scale height H shown in Fig. 4b, which justifies our 

above assumption. 
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X=5000A F e I X( = 4 e V 

Fe I Xi = 1 eV 
Fe II Xi = 3 eV 

correlation length i [km] 

Fig- 3a: See Fig. 3. The horizontal lines indicate the empirically 
determined photospheric values for v . and v (Holweger (1967)). 
The vertical lines determine the interval of bestcfltting 1 values 
(strongly crosshatched on the abcissa) . 

Our result for the optimum correlation of 1 = 6oo km for the solar 

photosphere is in close agreement with the average value ~ - 6oo km 

for the inverse wavenumber of the velocity spectrum derived by de Jager 

and Vermue (1977) by means of the filter function method. The fact 

that these very different methods yield approximately the same results 

provides confidence for this value of the scale length. 

Conclusion 

Our analysis of the radiative transfer of selected lines in three 

particular atmospheres (AOV (Wega), G2V (Sun), K2III (Arcturus)) demon­

strates that a finite correlation length of the turbulent velocity 

field exerts a strong influence on the line formation. The general 

dependence of this effect on the basic parameters (l,a) is similar in 

all atmospheres and for all profiles considered. 

A comparison between profiles and curves of growth computed by means 

of the mesoturbulence formalism at one hand and by the classical micro-
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macroturbulence method at the other, provides strong evidence for very 

close relations between (l,a) and (v . ,v ) . These relations 
mic mac 

allow a reinterpretation of the classical micro-macroturbulence dicho­

tomy which is closer to physics. 
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