Novel Time-Resolved Fluorescence Microscope System using TCSPC and Multi-frequency techniques

L.L. Chandler and J.R. Mattheiss

Fluorescence Division, Horiba Jobin Yvon, Inc., 3880 Park Ave., Edison, NJ 08820

Time-resolved fluorescence microscopy is the ultimate tool to study dynamic events in cellular structures and nano-materials. Unlike the intensity based fluorescence microscopy, fluorescence lifetime is an intrinsic property of a fluorophore, and its measurement does not suffer any interference caused by changes in fluorescence intensity, such as photo-bleaching, excitation light instability, and light scattering. More importantly, time-resolved measurements can provide essential dynamic information about a fluorophore microenvironment and its interaction with other molecules. Currently, TCSPC time-domain and frequency-domain techniques are commonly used for fluorescence lifetime imaging microscopy (FLIM). HORIBA Jobin Yvon (HJY), the leader in fluorescence spectroscopy, introduces a filter-based fully automated confocal microscope system (DynaMycTM) to measure fluorescence lifetime and intensity in micro scales. This unique FLIM system can be configured with either TCSPC or multifrequency technique. In this paper, the merits of each time-resolved methodology will be discussed. In addition, a novel HJY multi-frequency domain lifetime system will be presented. By virtue of its ability to measure multiple frequencies simultaneously, this new multifrequency lifetime system exhibits ultra-fast data acquisition over a broad dynamic range. In contrast to single frequency measurements that provide average lifetime information, the multiple frequency measurements allow accurate resolution of individual lifetimes for complex decays in a single acquisition. This system is presented to highlight its potential to revolutionize time-resolved microscopy.

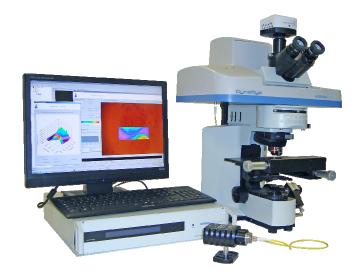


Figure 1, HJY DynaMycTM fluorescence lifetime imaging system

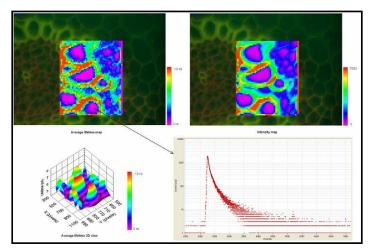


Figure 2, Lifetime and fluorescence intensity imaging on convallaria sample