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Hanna Neumann was one of the pioneers of the algebraic theory of near-
rings. In the functional analysis, the near-rings appear as the sets of non-linear
mappings of a space into itself. The relations between the algebraic properties
of these near-rings and the analytic structures of the spaces and mappings in-
volved have not been fully investigated. The purpose of this note is to consider
one of such problems.

Let £ be a real Banach space and its dimension be not less than two. Let
•s/ be a near-ring whose elements are continuous mappings of E into itself. By
/(£) we denote the set of all constant mappings of E into itself, and we denote
the set of all continuous linear mappings of E into itself by L(E).

THEOREM. / / s/ contains I(E) and L(E), then every automorphism <f> is
inner.

PROOF. By Yamamuro [5, Theorem 1], which is a modification of a method
used by Magill [3], there exists a bijection h of E into itself such that

(*) <£(/) = hfh'1 for every fes/.

Take any x such that h~l(x) ¥= 0 and take deE (the conjugate space of E) such
that <Ji~y(x), a} = 1, where the left-hand side denotes the value of a at h~ 1(x).
Then, for arbitrary a e E and b e E, since the linear mappings a ® d and b ® a,
denned, for instance, by (a ® d)(z) = <z, d>a for every zeE, belong to L(E) a si,
we have

4>{a ® d + b ® d)(x) = (j)(a ® d)(x) + <j>(b ® d)(x),

which, together with (*), implies

h(a + b) = h(a) + h(b).
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Hence, since we have the same property for h~l, for any u eL(E), <f>{u) is con-
tinuous and additive. Consequently, </>(«) e L(£). In other words, <j> maps L(£)
into L(£). To show that <j) is onto, take u e L(E). Since </>: si -> ,s/ is onto,
there is / e ^ such that <£(/) = w. By (*), we have / = h~1uh and, hence, / is
continuous and additive. Thus, / e L ( £ ) .

Therefore, <t> is an automorphism of the ring L(£) onto itself. Thus, a theorem
of Eidelheit [2] implies that there is an invertible element ht of L(£) such that

<t>(u) = htuhi1 for every ueL{E).

Then, by using a ® a defined above, we get hx = h, which means that h e L(£)
and <f> is inner.

We add a few remarks.
1. Let S be an s-category defined by Bonic and Frampton [1]. Then, for

any Banach space £ , S(£) = S(£, £) is a near-ring and it contains /(£) and L(£).
Therefore, every automorphism of the near-ring S(E) is inner. The near-ring
C°(£) of all continuous mappings of E into itself; the near-ring £)(£) of all Frechet
differentiable mappings of £ into itself and the near-ring C ( £ ) of all n-times
(n = 1,2, •••) continuously differentiable mappings of £ into itself are special
cases of S(£).

2. By the same method as the above proof, we can show that for Banach spaces
£ and F, if the near-rings s/(E) and s/(F) satisfy the conditions of the theorem
and isomorphic algebraically, then E and F are topologically and algebraically
isomorphic. Therefore, for instance, if S(£) and S(F) are isomorphic as near-
rings, then E and F are isomorphic as Banach spaces.

3. As we have mentioned above, Eidelheit [2] has shown that every auto-
morphism of the ring L(£) is inner. Later, Rickart [4] has shown that every auto-
morphism of the semigroup L(£) is inner .The corresponding semigroup version
of our theorem has not been obtained.
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