A NOTE ON NEAR-RINGS OF MAPPINGS

Dedicated to the memory of Hanna Neumann

SADAYUKI YAMAMURO

(Received 15 May 1972)

Communicated by M. F. Newman

Hanna Neumann was one of the pioneers of the algebraic theory of nearrings. In the functional analysis, the near-rings appear as the sets of non-linear mappings of a space into itself. The relations between the algebraic properties of these near-rings and the analytic structures of the spaces and mappings involved have not been fully investigated. The purpose of this note is to consider one of such problems.

Let E be a real Banach space and its dimension be not less than two. Let $\mathscr A$ be a near-ring whose elements are continuous mappings of E into itself. By I(E) we denote the set of all constant mappings of E into itself, and we denote the set of all continuous linear mappings of E into itself by L(E).

THEOREM. If $\mathscr A$ contains I(E) and L(E), then every automorphism ϕ is inner.

PROOF. By Yamamuro [5, Theorem 1], which is a modification of a method used by Magill [3], there exists a bijection h of E into itself such that

(*)
$$\phi(f) = hfh^{-1}$$
 for every $f \in \mathcal{A}$.

Take any x such that $h^{-1}(x) \neq 0$ and take $\bar{a} \in \bar{E}$ (the conjugate space of E) such that $\langle h^{-1}(x), \bar{a} \rangle = 1$, where the left-hand side denotes the value of \bar{a} at $h^{-1}(x)$. Then, for arbitrary $a \in E$ and $b \in E$, since the linear mappings $a \otimes \bar{a}$ and $b \otimes \bar{a}$, defined, for instance, by $(a \otimes \bar{a})(z) = \langle z, \bar{a} \rangle a$ for every $z \in E$, belong to $L(E) \subset \mathcal{A}$, we have

$$\phi(a\otimes\bar{a}+b\otimes\bar{a})(x)=\phi(a\otimes\bar{a})(x)+\phi(b\otimes\bar{a})(x)\,,$$

which, together with (*), implies

$$h(a+b) = h(a) + h(b).$$
214

Hence, since we have the same property for h^{-1} , for any $u \in L(E)$, $\phi(u)$ is continuous and additive. Consequently, $\phi(u) \in L(E)$. In other words, ϕ maps L(E) into L(E). To show that ϕ is onto, take $u \in L(E)$. Since $\phi: \mathscr{A} \to \mathscr{A}$ is onto, there is $f \in \mathscr{A}$ such that $\phi(f) = u$. By (*), we have $f = h^{-1}uh$ and, hence, f is continuous and additive. Thus, $f \in L(E)$.

Therefore, ϕ is an automorphism of the ring L(E) onto itself. Thus, a theorem of Eidelheit [2] implies that there is an invertible element h_1 of L(E) such that

$$\phi(u) = h_1 u h_1^{-1}$$
 for every $u \in L(E)$.

Then, by using $a \otimes \bar{a}$ defined above, we get $h_1 = h$, which means that $h \in L(E)$ and ϕ is inner.

We add a few remarks.

- 1. Let S be an s-category defined by Bonic and Frampton [1]. Then, for any Banach space E, S(E) = S(E, E) is a near-ring and it contains I(E) and L(E). Therefore, every automorphism of the near-ring S(E) is inner. The near-ring $C^0(E)$ of all continuous mappings of E into itself; the near-ring D(E) of all Fréchet differentiable mappings of E into itself and the near-ring $C^n(E)$ of all E-rimes E-rimes of E-right of E-rimes of E-rimes of E-rimes of E-rimes of E-right of E-rimes of E
- 2. By the same method as the above proof, we can show that for Banach spaces E and F, if the near-rings $\mathscr{A}(E)$ and $\mathscr{A}(F)$ satisfy the conditions of the theorem and isomorphic algebraically, then E and F are topologically and algebraically isomorphic. Therefore, for instance, if S(E) and S(F) are isomorphic as nearrings, then E and F are isomorphic as Banach spaces.
- 3. As we have mentioned above, Eidelheit [2] has shown that every automorphism of the ring L(E) is inner. Later, Rickart [4] has shown that every automorphism of the semigroup L(E) is inner. The corresponding semigroup version of our theorem has not been obtained.

References

- [1] R. Bonic and J. Frampton, 'Smooth functions on Banach manifolds', J. Math. Mec. 15 (1966), 877-898.
- [2] M. Eidelheit, 'On isomorphisms of rings of linear operators', Studia Math. 9 (1940), 97-105.
- [3] K. D. Magill, Jr., 'Automorphisms of the semigroup of all differentiable functions', Glasgow Math. J. 8 (1967), 63-66.
- [4] C. E. Rickart, 'One-to-one mappings of rings and lattices', Bull. Amer. Math. Soc. 54 (1968), 758-764.
- [5] S. Yamamuro, 'A note on semigroups of mappings on Banach spaces', J. Austral. Math. Soc. 9 (1969), 455-464.

Department of Mathematics Institute of Advanced Studies Australian National University Canberra